

The Edward S. Rogers Sr. Dept of Electrical and Computer Engineering
University of Toronto

ECE496Y Design Project Course – Final Report

Title:
 Scalable Behavioral Simulation of Application-layer Peer-to-Peer

Networking (Team 1)

Project I.D. # 0992002

Prepared by: Sasitheran Shanmugarajah shanmus@ecf.utoronto.ca
Steven Wolfman wolfma@ecf.utoronto.ca
Rehan Siddiqui siddiqr@ecf.utoronto.ca

Supervisor: Prof. Baochun Li

Section #: 4

Section
Coordinator:

 Phil Anderson

Date: April 11, 2003

 Page 1 of 105

EXECUTIVE SUMMARY

The purpose of this project was to build a software implementation of Freenet to

simulate the behaviour of a scalable application-layer peer-to-peer network. The project

consisted of implementing the Freenet functionality into an existing network simulator.

All milestones and objectives were completed successfully.

Freenet is a type of decentralized peer-to-peer network which allows the

distribution of uncensored information to its users. Anonymity of users is preserved by

using Freenet’s data and message transferring protocols which does not allow data to be

traced back to its originators. Freenet also uses routing algorithms to dynamically

relocate data over the network from areas where the data is in low demand to areas where

it is in high demand. These features can revolutionise the way the Internet is used and

could lead to more efficient and faster networks.

The project was implemented in C++ for the Linux operating system. The

following features of Freenet were added to the existing simulator: message protocols,

message and data routing algorithms, keys and searching algorithms, and management of

data.

Analysis of our test simulations conducted with 10, 100, 500 and 1000 node

topologies prove that the implementation accurately follows the Freenet protocol. Time

analysis of the results show that large and complex topologies can be simulated within a

seconds. These test results support our claim that this implementation of Freenet on the

skeleton is correct, fast and scalable.

 Page 2 of 105

Contributions

Below is an outline of the contributions made by the authors Rehan Siddiqui, Sasitheran
Shanmugarajah and Steven Wolfman towards the design project and final report.

Contribution made by Rehan Siddiqui to the design project are outlined in the table
below:

Task Individual(s) Responsible for the Task
Research into Freenet Rehan Siddiqui (with Sasitheran

Shanmugarajah and Steven Wolfman)
Research and Analysis of Network
Skeleton Code

Rehan Siddiqui (with Sasitheran
Shanmugarajah and Steven Wolfman)

Design Specifications Rehan Siddiqui (with Sasitheran
Shanmugarajah and Steven Wolfman)

Coding (Datastore and Routing Table) Rehan Siddiqui
Testing Components

- Data store and Routing Table
Rehan Siddiqui

Component Integration Rehan Siddiqui (with Sasitheran
Shanmugarajah and Steven Wolfman)

Integration Testing
- Datastore and Routing Table

Rehan Siddiqui

Contribution made by Sasitheran Shanmugarajah to the design project are indicated
below:

Task Individual(s) Responsible for the Task
Research into Freenet Sasitheran Shanmugarajah (with Rehan

Siddiqui and Steven Wolfman)
Research and Analysis of Network
Skeleton Code

Sasitheran Shanmugarajah (with Rehan
Siddiqui and Steven Wolfman)

Design Specifications Sasitheran Shanmugarajah (with Rehan
Siddiqui and Steven Wolfman)

Coding (Message Handling Functions) Sasitheran Shanmugarajah
Testing Components

- Message Handling Functions
Sasitheran Shanmugarajah

Component Integration Sasitheran Shanmugarajah (with Rehan
Siddiqui and Steven Wolfman)

Integration Testing
- Running Simulations

Sasitheran Shanmugarajah

Driver Program Sasitheran Shanmugarajah

 Page 3 of 105

Contributions made by Steven Wolfman to the design project are indicated below:

Task Individual(s) Responsible for the Task
Research into Freenet Steven Wolfman (with Rehan Siddiqui and

Sasitheran Shanmugarajah)
Research and Analysis of Network
Skeleton Code

Steven Wolfman (with Rehan Siddiqui and
Sasitheran Shanmugarajah)

Design Specifications Steven Wolfman (with Rehan Siddiqui and
Sasitheran Shanmugarajah)

Coding (Message Class and Processing) Steven Wolfman
Testing Components

- Message Class and Processing
Steven Wolfman

Component Integration Steven Wolfman (with Rehan Siddiqui and
Sasitheran Shanmugarajah)

Integration Testing
- Running simulations

Steven Wolfman

Driver Program Steven Wolfman

Contributions to the Final Report:

Section Individual(s) Responsible for the Section
Cover Page Rehan Siddiqui
Executive Summary Rehan Siddiqui
Team Members Contribution Rehan Siddiqui
Old Milestones Sasitheran Shanmugarajah
Revised Milestones Sasitheran Shanmugarajah
Table of Contents Rehan Siddiqui
Acknowledgements Steven Wolfman
Introduction Rehan Siddiqui
Design

Steven Wolfman
Sasitheran Shanmugarajah

Conclusion Steven Wolfman
Sasitheran Shanmugarajah

Appendices Steven Wolfman
Sasitheran Shanmugarajah

Formatting Rehan Siddiqui
Sasitheran Shanmugarajah

Editing Steven Wolfman
Sasitheran Shanmugarajah
Rehan Siddiqui

 Page 4 of 105

TABLE OF CONTENTS

1 Acknowledgments ..5

2 Introduction
2.1 Background Information .. 6

2.1.1 Freeenet and its Unique Characteristics .. 6
2.2 Motivation/Rationale ... 7

 2.3 Project Objectives .. 9
 2.4 Literature Survey ... 10

2.4.1 A distributed Decentralized Information Storage and Retrieval System 10
 2.4.2 The Freenet Protocol ... 13
 2.4.3 Lecture at Stanford, by Ian Clarke, creator of Freenet .. 14
 2.5 Report Outline.. 16
 2.6 Milestone Evaluation ... 16

3 Architecture of the Network Skeleton .. 18
 3.1 Datastore .. 18
 3.2 Routing Table... 19
 3.3 Messages.. 19
 3.4 Network ... 20

4 Architecture of the Freenet ... 21
 4.1 Keys ... 21
 4.2 Datastore .. 21
 4.3 Routing Table... 22
 4.4 Messages.. 22
 4.5 Message Types... 23
 4.6 Routing Algorithm ... 25

5 Implementation of the Freenet... 27
 5.1 Data.. 27
 5.2 Messages.. 28
 5.3 Nodes ... 29
 5.4 Datastore .. 32

6 Testing .. 35
 6.1 Running Simulations.. 35

7 Test Results .. 37
 7.1 Simulation Log Files ... 37
 7.2 Results of Log File Analysis ... 40
 7.2.1 Responses to Request Data Messages .. 40
 7.2.2 Responses to Request Insert Messages.. 41
 7.3 Simulation Times ... 41

8 Problems Encountered and Solutions .. 44

9 Conclusions
 9.1 Discussion of the Test Results .. 47
 9.2 Next Steps ... 49

APPENDIX A: Freenet Simulator Source Code .. 51
APPENDIX B: Simulation Logs .. 101
APPENDIX C: Old Milestones .. 103
APPENDIX D: New Milestones ... 104

List of References ... 105

 Page 5 of 105

1. Acknowledgments

 We would like to take this opportunity to thank our supervisor, Professor Li, for

all his motivation and support throughout the project, for arranging the tutorial with the

author of the skeleton code, Jiang Guo, and for giving us access to sim.ece to use for

running our simulations.

 We would also like to thank Jiang Guo for permitting us to use his code for the

network skeleton, and for giving a tutorial on the skeleton code to help us use it.

 Page 6 of 105

2. Introduction

2.1 Background Information

Peer-to-Peer networking is a style of networking that allows computers to

communicate directly with one another and thus allows the sharing of resources between

these computers. In such a network, each computer acts as a client, someone who makes

a request for a particular resource such as information, and as a server, someone who

responds to requests for these resources. It is through this client/server relationship that

large-scale peer-to-peer (P2P) networks such as Napster and Gnutella are able to function

as massive virtual information storage and retrieval entities. Freenet is another such P2P

network, and will be the focus of this project.

2.1.1 Freenet and its Unique Characteristics

Freenet allows for the distribution of information over a number of nodes (a node

is simply a computer connected to the network), each of which must be running a

software capable of communicating over a Freenet network [1]. The use of software here

implies that the Freenet is an application-layer network. That is, Freenet is not cognizant

of the underlying TCP/IP layer network that computers use today to connect to the World

Wide Web for example. The implications of this are that nodes that may be connected

within the Freenet may or may not be physically connected to each other.

 Page 7 of 105

A node can search for specific information over the network by sending a ‘query

request’ message. This message would be propagated until the query is satisfied by

another node possessing the information being sought. The answering node would then

send the data requested to the query originator by routing it back through the network.

Freenet is different from other P2P networks in that it values anonymity highly

[2]. Anonymity will ensure that information cannot be censored or denied, as no one will

know who the originator of the information is. As such, the Freenet topology is designed

to protect the privacy and security of each node in the network by ensuring that a

receiving node will not be able to trace, with certainty, which other node is sending the

data. This feature makes a Freenet network decentralized, that is, no one node can

control or influence the network. The Freenet model also uses a routing algorithm to

dynamically relocate data over the network from areas where the data is in low demand

to areas where it is in high demand [2]. This is achieved by temporarily storing data on

the nodes that lie on the routing path between the query originator and the replier.

2.2 Motivation/Rationale

The unique features of a Freenet network allow anonymity and an adaptive

automatic distribution of data, making it an extremely promising and exciting technology

that could revolutionize the way the Internet is currently being used. Since it is a very

new technology that is in its early stages of development, Freenet’s behaviour in large-

scale networks is still undergoing much study and analysis. There are many questions still

 Page 8 of 105

unanswered, such as how the network would behave at a very large scale, for example

using hundreds of thousands of nodes, and how the data would re-distribute itself on this

structure.

In a real-life network many external factors can affect the performance of a

Freenet topology such as the distance between nodes, the hops-to-live count of a message

(i.e. the number of nodes a message can propagate through the network), and the

connection speed and stability of each node. Controlling these factors in the real-world

makes it difficult to conduct any useful or reliable studies. Therefore, it would be

invaluable to be able to simulate Freenet over a network where all external variables can

be controlled. This would allow the behaviour and topology to be studied and analyzed as

well as improved to create a more efficient network design.

This project allows the achievement of this goal by implementing the Freenet

topology on to the network simulator. The completed project is able to make head-to-

head comparisons between Freenet and other P2P networks to see how each design copes

with stress factors such as the number of nodes, or the flow of information for example.

We can use these comparisons justify the feasibility of designs in terms of the efficiency

of the routing protocols.

 Page 9 of 105

2.3 Project Objectives

As mentioned previously, Freenet allows for the transfer of information in a

uniquely fashion that maximizes efficiency in time as well as security in the form of

anonymity. This design project will cast the Freenet topology onto a network simulator

and implement the routing algorithms specific to that topology. We will focus on the

efficiency and scalability of the Freenet. However, we will not take into account

Freenet’s other aspects such as data security via encryption.

The project can be broken up into several objectives that should be met for the project

to be successfully completed:

 The network simulation will be able to simulate a large-scale Freenet network

(several thousand nodes).

 The simulated Freenet nodes will adhere to the messaging protocols of the Freenet

network when communicating with each other.

 Each simulated Freenet node will route messages and data using the Freenet

routing algorithm.

 When data is distributed over the Freenet network simulation, it will propagate

adaptively over the nodes such that it is located in areas where it is in demand the

most.

 The data stored on a simulated Freenet node will be managed according to the

Freenet guidelines for managing data.

 Page 10 of 105

2.4 Literature Survey

There is an abundance of information relating to the Freenet that is readily

available on the Internet. Much of this information comes from the Freenet website:

http://freenetproject.org. These articles focused on the Freenet; its uses, advantages, and

methods of implementation. To get an idea of Peer-to-Peer networking in general, we

consulted [1].

2.4.1 A distributed Decentralized Information Storage and Retrieval System

Our initial inquiry into the Freenet led us to the paper written by the creator of

Freenet, Ian Clarke, entitled “A Distributed Decentralized Information Storage and

Retrieval System”. This is a paper written by Clarke during his undergraduate studies at

Edinborough, Scotland in 1999.

The paper describes the Freenet search algorithms as analogous to navigation in

prehistoric society, where there existed no central government, no maps. Yet, Clarke

argues, that people were still able to locate their destinations by taking advice from those

they encountered along the journey. In other words, people would have more

information about locations that were close to them, and a vague description of places far

off. The Freenet is such a network that adapts to the requests of the users or nodes that

are connected to the system. When a node makes a request to one of its neighbours, and

if the neighbour does not have the information, the request is forwarded to another node

 Page 11 of 105

that is most likely to have it. This is repeated until the information is found. Once that

happens, the information is relayed back the same path and each node in the path stores

that information locally. Nodes are also more likely to receive requests that are similar to

the information they store. Therefore nodes that are close to each other will ultimately

store similar information since the same type of information keeps moving closer and

closer to nodes that carry it. Minor subtleties such as what makes information A closer to

B than C, for example, are also explained in the paper.

The architecture of the Freenet is also given in the paper. Essentially, there are

four different message types that nodes use to communicate with each other: Data

Request, Data Reply, Request Failed and Data Insert. The protocol is as follows: node A

will send node B a “Data Request” message with a preset “hops to live” value in the

message header. This value is basically the number of times the user requests their

message to be forwarded. If node B does not have the information requested, it will

forward the “Data Request” message to node C. This forwarded message will have its

“hops-to-live” value decremented by one. This will repeat until the information is found

or the “hops to live” field in the message header is 0. If the information is found, the,

“Data Reply” message is sent back the same path to the originator of the “Data Request”.

If not, then a “Request Failed” message is sent back to the originator. The “Data Insert”

message is used to add data to the network. When a node receives such a message, it

locally stores the data and forwards the message to a node that will most likely have

similar data. This is repeated until the “hops-to-live” counter is zero. We will be using

this very same communication system to implement Freenet.

 Page 12 of 105

Finally, simulation setup, implementation and experimentation, and results are

also discussed at length in the article. The simulated network and implementation of

Freenet was coded in Java. One experiment of importance is the “Information Retrieval

Time”. The aim of this experiment was to determine how many requests are required to

obtain information after the network adapts to a number of queries. The results of this

experiment show that after about 800 queries, the network has adapted and stabilized so

that to retrieve information thereafter, it requires about 10 requests on average. Moreover,

this is regardless of the number of nodes, as experiments were conducted on 500, 600,

700, 800, and 900 node networks, all of which showed roughly the same result. This

information will be useful to us in our own studies of the Freenet. In other words, since

one of our goals is to achieve an optimized network we can use the simulation

information in this article as a benchmark for our own simulation results.

 Page 13 of 105

2.4.2 The Freenet Protocol

http://www.firenze.linux.it/~marcoc/index.php?page=protocol

This online article describes in detail the specific protocol used by the current

version of the Freenet. The way documents are organized is essentially a stack structure

and to find documents rather quickly, a hash table is proposed.

We will implement the message format similar to what is detailed in this article.

Message types are formatted such that they are broken into UTF-8 encoded lines. Instead

of UTF-8 however, we will be using ASCII encoded messages. The first line is the

message type. Then come a number of key-value headers with the key and value

separated by a single ‘=’ character. A typical example of such a header is given:

 DataReply
UniqueID=C24300FB7BEA06E3
Depth=a
HopsToLive=2c
Source=tcp/127.0.0.1:2386
DataLength=131
Data
 'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves
And the mome raths outgrabe.

Some common headers within message types and their description are also given,

for example, UniqueID, HopsToLive, Depth, KeepAlive and Source. These headers are

important for us during the implementation of message broadcasting within the network.

 Page 14 of 105

Also explained is the Cryptographic Link Layer. Although this is an integral part

of the Freenet framework, it has been discarded from our design. The reason for this is

that our intended purpose here is not to implement the dominant aspect of Freenet,

namely anonymity, but rather to implement its adaptive nature.

2.4.3 Lecture at Stanford, by Ian Clarke, creator of Freenet

http://murl.microsoft.com/LectureDetails.asp?765

Ian Clarke here describes his motivation for Freenet. That is, for free speech to

really be free and uncensored, anonymity is vital in order to avoid backlash or

punishment. The system itself is described to be decentralized and scalable. Scalability

was measured with simulations in fact. It was interesting to note that Clarke simulated up

to 30,000 nodes, and on average, each request for information went through only 2.7

nodes to get a hit. This information will be helpful in our own analysis of simulating the

Freenet within the skeleton network. Also, one fundamental requirement for Freenet to

work is that people must request information. Without requests, simulations showed that

the Freenet would drop information from the network. The more popular the information

therefore, the more readily it will be available.

The way information is stored locally is also explained in the lecture. Clarke

describes the data store essentially as a stack structure. Clarke draws the stack structure

for his audience similar to figure 5.1.1. Each entry has either two or three fields. The

first field is the key to which documents are matched. The second field is the address

 Page 15 of 105

from where the information came. The third field is the actual information or data. As

can be seen from the diagram, below item 5, the information field is empty. This is

because each node has a limit on the amount of information it can store. The question

then arises as to which information each node should store. And the answer to this is the

most requested information. The way it is implemented is that data that is requested

more often is moved up in the stack and the least requested data is at the bottom.

Therefore when a new piece of information is received, it is placed at the top of the stack

and the entry at the bottom is flushed out. This is the implementation that we will be

using for our own design.

Item# Key Location Information

1 62548 128.100.1.34 Fsdfseafesafefse32rqj9p23ijr2

2 62589 142.168.0.2 23krj23890rn433kjn23j54nn4k3n

3 23456 24.23.15.16 23klrj3lk2n3kln2l3kj203jiklkn59

4 62454 64.34.255.3 9cxu7908gdrus9gp8jwer8fg9ewj

5 1002 66.92.3.3 9cn4n8n423843n2lkj38svdklpsjje

6 965 102.52.101.9

7 687 201.59.64.65

8 601 24.42.15.171

9 201 24.153.23.66

10 12 66.129.32.128
Figure 5.1.1 – Sample datastore

Issues relating to the quality of service and efficiency of the Freenet were also

raised. With respect to efficiency, certain information is stored locally at each node and

it tends to move closer to where there is more demand for that information. Therefore,

 Page 16 of 105

there exists a trade-off between hard-disk space and bandwidth efficiency; an essentially

good trade-off since hard disk space is cheaper than bandwidth. The quality of service of

the Freenet is better than the World Wide Web. Denial-of-Service attacks are pointless

since there is no central server and no individual node is essential for the system to work.

2.5 Report Outline

This report will cover the main aspects of our project after the initial research into

Freenet. That is the design and implementation of the Freenet as well as the testing of the

design.

The design can be divided into two main areas:

1. The Architecture of the Skeleton Network, and

2. The architecture of the Freenet

These two sections will cover the important aspects of each area as they pertain to our

project design. Next, the report will examine the implementation of the above-mentioned

design, and how the above two areas of design were integrated. Finally, we will present

the test process and their results after the implementation of our design as well as our

conclusions to this design project.

2.6 Milestone Evaluation

The milestones as drawn up in the project proposal (refer Appendix C) were revised mid-

semester (refer to Appendix D). We completed the research into Freenet and the Network

 Page 17 of 105

Skeleton code as set on the original scheduled. The milestones we selected reflected our

design approach. Once the initial research into the Freenet was complete, the software

development cycle was split into two phases. The first phase focused on the specification,

that is, how to extend the skeleton to Freenet. The second phase focused on implementing

the specification and coding. The design project was split into 3 distinct parts so that

members of the group could work on the project simultaneously without having to

depend on each other’s work.

We reached all our revised milestones on schedule as expected. This was mainly

due to the fact the revised milestones better met our individual schedules compared to the

old milestone list. Coding was finished by late March, and this report is our final

milestone, completed on April 11th as expected.

 Page 18 of 105

3. Architecture of the Network Skeleton

 The network skeleton we used to implement our simulator is essentially a program

that contains the building blocks of a network to be used to construct any network

topology with an arbitrary number of nodes. It was written by Jiang Guo and given to us

by Professor Li to use for the implementation of our simulator.

In order to construct a network, the skeleton uses six main classes as network

components. The first of these components is the basic element of any network, a node.

Each node is assigned a unique id to identify it, as well as given a datastore and a routing

table. In addition to these features, each node also has a message pool, which it uses to

track the id of each message that is read by that node.

3.1 Datastore

The datastore is used to keep track of all the documents a node is holding. In

order to do this, the datastore is implemented as a map, mapping the document id of each

document stored at that node to a pointer to that document. The map stores this list in

order sorted by document id so that it can quickly find any document requested. The

datastore is assigned a default capacity of 20 documents, although this value can easily be

changed.

 Page 19 of 105

3.2 Routing Table

Similar to the datastore, the skeleton’s routing table is a map which maps a node

id to a pointer to that node. Again, the values are ordered by node ids, and the routing

table has a maximum capacity of 100 nodes.

A document is the main piece of “data” used by the skeleton. Although the name

may sound confusing, the documents used with the skeleton are simply objects, not actual

documents. Each document is assigned a single attribute, that being a unique

identification number.

3.3 Messages

The most important object used by the skeleton is a message. Messages are used

for all communication between nodes, and are the source of all activity in the network. In

the skeleton, a message is implemented by assigning it a field for source and destination,

as well as an id number. When a new message is created, only the id is assigned by the

skeleton, and the source and destination are filled in by the sender just before a message

is sent.

 Page 20 of 105

3.4 Network

 Finally, the network class brings all the components together. First, the network

is build by reading in all the nodes and documents, and assigning them as specified in the

appropriate topology files. Once the network has been constructed, the run function is

called. The run function starts running a simulation for a given number of rounds. In

each round, the network starts by randomly generating zero or more events for each node.

This is done by calling the generate_events() function in each node, which needs to be

implemented depending on the type of events you want your simulation to have, but

generally involves generating some messages and placing them in the inbox. The inbox

is a queue in which all generated messages are placed. Next, the network processes all

messages in the message inbox. The network processes the messages by taking one at a

time out of the inbox and sending it to the proper node as indicated in its destination

address. This is continued until all messages which started the round in the inbox have

been processed, and then the simulation moves on to the next round. This process is

continued for the specified number of rounds.

 Page 21 of 105

4. Architecture of Freenet

The Freenet is comprised of many components needing to be implemented in

order to obtain an accurate simulation of its properties. This section describes these

components of the Freenet that we have implemented, their interactions with each other,

and some of the design choices made to help us implement them.

4.1 Keys

Keys are the most important part of the Freenet. Every piece of data on the

network is described by a unique key. The Freenet assigns binary file keys to each file.

These keys are obtained by applying a hash function to a string pertaining to that file.

One of our more significant design choices was to not use this same method of obtaining

keys, but to preserve the method used by the network skeleton of representing documents

with short integers. In addition to keeping consistent with the skeleton, this choice made

the routing functions much simpler to implement, while still following the Freenet’s

routing algorithm.

4.2 Datastore

A node’s datastore is a table which stores a collection of documents at that node

in a least recently used order (LRU). Whenever a new document is inserted at that node,

or a request for a document passes through the node, that document is moved to the top of

 Page 22 of 105

the datastore. This process allows for documents which are unused or unwanted for long

periods of time to fade away. To clarify, the datastore can be thought of a table with 3

columns. The first is the document key, the second is the original source of the data, and

the third is the location of the actual data.

4.3 Routing Table

A routing table is another property of a node, and in the case of the Freenet, is

very similar to the datastore. The one difference between the routing table and the

datastore is that the routing table holds the original location of all data the node knows

about, not just the data it is currently holding. That is, the routing table holds the key and

original source of all the documents currently in the node’s datastore as well as all

previous documents which have been removed from the datastore due to lack of space,

but still exist in the routing table.

4.4 Messages

Messages are the core of the Freenet. All activity that takes place on the network

and all interaction between nodes is the result of messages being passed around. Our

simulator preserves this use of messages by using a message system almost identical to

that used by the Freenet. One small change was the omission of handshaking, as the

simulator controls all nodes, it can guarantee that any nodes are connected according to

the topology, and a handshake to establish a connection is not needed.

 Page 23 of 105

4.5 Message Types

Our simulator uses seven of the message types used in the Freenet. As mentioned

above, we chose not to implement the Freenet’s Request.Handshake and

Reply.Handshake as they are not necessary for simulation of the protocol.

The first message type is REQUEST_INSERT. This message is used when a user

wishes to upload a new piece of data to his or her node. The user generates a key for that

data and sends a REQUEST_INSERT message to their node containing that key. The

node then propagates this message through the network until the hops to live expire to

verify that no known documents already exist with that key. Any node receiving a

REQUEST_INSERT first checks its routing table and datastore to see if it knows of any

data with the same key. If a key collision is found with a document in the datastore, the

receiving node sends a SEND_DATA message back to the original node containing the

data it had with that key. If no data that key exists in the datastore but the key is present

in the routing table, a NOT_FOUND message is sent back to the original node, indicating

that the selected key is already used. Finally, if no collision is detected, there are two

options. If the hops to live of the original message have expired, a REPLY_INSERT

message is send back, indicating that it is ok to use the selected key. If, however, the

hops to live have not run out, the request is forwarded in the same manner as if it had

been a search request.

 Page 24 of 105

If at any point in the above process a message reaches a dead end before the hops

to live expire, the message backtracks to the first point where is can choose another

direction and goes in the new direction. When this happens, a REQUEST_CONTINUE

message is generated and sent back to the source of the original message letting it know

that its message needed to backtrack, and it should allow for more time before receiving a

response. Each node that generates a message requiring a response keeps a timer for how

long to wait for the response to come back, so it must be notified to extend this timer if

the message needs to extend its route. The timer is used in case messages get lost in the

network or can’t be delivered for any reason. Since each node tracks the messages it

sends and the responses it is waiting for, this list can get big if lost messages are kept in

the list forever. With the timer, a node forgets about a message and drops it from its list

when the timer expires. If the message arrives after the timer expires, the node simply

ignores it, causing the message to be killed.

After a node sends a REQUEST_INSERT, it waits for a REPLY_INSERT letting

it know it is ok to insert the data. When it receives the reply, it generates a

SEND_INSERT message containing the data, and forwards it upstream until it reaches

the node that first generated the REPLY_INSERT. Now the data is on the network, and

several other nodes near the original node also have the same data. This is important as

no one can pinpoint the exact original source of the data.

The most important part of the Freenet is being able to search for data, and the

algorithm used to find this data. When a user wishes to look for a document on the

 Page 25 of 105

Freenet, they sent a REQUEST_DATA message with the key of the document they are

looking for. A node receiving a REQUEST_DATA message first checks its datastore for

a document with the desired key. If it exists, the document is sent back towards the

original requestor in a SEND_DATA message. If the key is found in the routing table,

the node simply forwards the request message to the node listed in the table. However, if

the data is not found in either list, instead of asking all neighbours to look for the data, the

Freenet compares the key to other keys in its routing table and finds the closest match. It

then forwards the request to the node where the closest match was found. The search is

continued in this way until the key is found or the hops to live expire.

4.6 Routing Algorithm

 The routing algorithm used by the Freenet and described in [2] is one if it’s most

important features. As opposed to most other peer-to-peer networks which search for

data by broadcasting messages to all neighbours, the Freenet uses a unique method of

trying to guess the single “best” neighbour who might have the data. This is done by

comparing the key of the requested document with the keys in your routing table, and

selecting the node with the closest match as the best node. If that node has already been

visited, the next best match is selected. This will improve the efficiency of the network

in the long run for two reasons as proven in [3]. First, nodes will tend to acquire groups

of files with similar keys. This allows files in those groups to be easily found. Second,

the routing table at each node will improve in finding various sets of keys. This is

because of the first property. If a few surrounding nodes know you have files with

 Page 26 of 105

similar keys, you will get lots of request for other similar keys. This will result in your

routing table being tuned to properly direct requests for those keys, or even you receiving

those files yourself. In combination, these two properties create a very efficient

algorithm which becomes more and more efficient as it is used more and more nodes

learn about each other [3].

 Page 27 of 105

5. Implementation of the Freenet

This section of the report describes how the various components of Freenet were

implemented into the skeleton.

Our aim was to ensure that the Freenet implementation did not modify any

existing functionality in the skeleton. This was accomplished by making sure the design

made efficient use of existing code, and that addition of any functions and parameters

was done as a last resort.

5.1 Data

In a real Freenet topology, physical files are transferred from one node to another

[2]. To represent files and data the skeleton’s Document class was used. Each Document

object is identified by a unique integer key and can be dynamically created during a

simulation. The simulated nodes may then request or insert a Document using its key.

One of the project objectives is to ensure the implementation is scalable as

Freenet is in real life [3]. We took this into consideration when designing how the

program would handle data. To keep the simulation as fast and as efficient as possible,

only one copy of a unique Document object is created and stored. A pointer to that object

is then used to pass the data from node to node. So in effect, one copy of a file (in this

case a Document object) is held in the simulation and its distribution over the network is

simulated using pointers. Admittedly, this is very different from a real life topology,

 Page 28 of 105

where copies of files are created and transferred throughout the network, but a

compromise had to be made in this situation. In reality, each host computer needs only to

handle its own events and store its own documents, but in a simulator the CPU power and

storage is restricted, as it must simulated thousands of nodes and their data. To offset

these restrictions, the design we chose keeps the message size small requiring far less

calculation and storage which may have slowed the simulation down. Valuable CPU

time is not used in creating copies of these objects. Also in later versions of the skeleton,

since pointers to general data are being passed, the code need not be changed to

accommodate different types of data, for example another type of Document class.

5.2 Messages

The old skeleton Message class was inadequate for our needs as it consisted of

only a message id. To simulate the various attributes of a Freenet message, a new class -

FreenetMessage was added, which extended the Message class of the Skeleton. Since the

new class inherited the attributes of the Message class, it would be more compatible with

the existing skeleton functions.

The new parameters held by a FreenetMessage object are described below:

 Hops-to-live counter. This is set when the message is created by a node, and is

then decremented by one at every node it passes until it equals zero at which point

the message is discarded

 Page 29 of 105

 Message type: This variable identifies the type of the message. Nodes use this

value to determine how to handle and respond to the message

 Depth counter: This value is incremented each time the message passes through a

node, allowing a node to know how many hops a message has undergone

 Key: This short integer value holds the unique id of a document in a search

request message

 Data pointer: This pointer points to the actual location of data held by a message.

It is of type void so that any type of data may be held

With these parameters, Freenet Messages may be virtually simulated.

5.3 Nodes

Each node must have the ability to handle, process, and respond to these new

message types. The Node class was extended adding the fn_process_message, which

would take a Message, check its type, and then call the correct function to handle and

respond to it.

To make the code easier to maintain and re-use later on, each message type was

handled by separate functions. This modular approach to the design of our functions was

used throughout the coding process.

Each of the message handling functions takes in a message object, and returns a

new message which either contains a response, or is empty. The message handling

functions are described in table 5.3.1 on the following page:

 Page 30 of 105

Function Name Function Description

handle_reply_insert Checks whether this node is the source of the insert

request this message is replying to.

If it is, then the document is sent upstream as an

insertion into the network.

If not, it forwards the message downstream to the

source of the insert request.

handle_request_data Checks whether this node has the document being

requested. If it does, it is returned to the requestor.

If not, the message is forwarded to the next most

likely node to have the document.

handle_send_data Copies the document being sent into the cache, and

forwards the message upstream.

handle_not_found Checks whether the Not_Found is replying to one of

the messages sent out by this node. If it is, it will

take the appropriate action to cancel the last request.

If not the message is forwarded downstream to its

target.

handle_request_continue Forwards the request for data in another direction

within the network.

handle_request_insert Checks whether the Id of the document being

inserted collides with any existing documents in this

node’s cache.

If it does not, the message is forwarded to the next

node until its hops-to-live is zero.

If there is a collision, the document that was collided

with is returned to the source of the Request Insert.

handle_send_insert Copies the document being inserted into the node’s

cache, and checks if the message hops-to-live is

zero. If it is not, the message is forwarded upstream.
Table 5.3.1 – Message Handling Functions

 Page 31 of 105

A significant function added to the Node class was getBestNode. This function

accepts a document id and returns the id of node from the routing table that most

probably has that document. This was done using Freenet’s idea of closest keys, where

closeness is defined as the number numerically closest to the key.

Two C++ Standard Template Language maps are used to keep record of the ids of

messages that were created as well as forwarded by a node. When a response to a

previous message reaches a node, the list of created messages allow the node to verify

whether it is the source of the original message and can then take the appropriate action.

If it is not the source, the message must be forwarded downstream and so the list of

forwarded messages allows a node to look up which node passed the message to it before,

and can then forward the reply to it.

The diagram on the following page (figure 5.3.1) explains this more clearly. Node

A maintains two tables, that it uses to forward a message with Id = 432 from Node B to

Node C. It checks to see whether it created this message, and since there is no Message id

432 in the Message Created Table, it knows to forward the message downstream to Node

C, who must have originally forwarded the message being to replied to Node A.

 Page 32 of 105

Figure 5.3.1 – Message Passing within the Freenet

5.4 Datastore

In a Freenet network, the files on a node and the IP addresses of other sources of

the files are held in one table called a datastore. In the skeleton though, data is stored

separately from other locations of the data, therefore using two separate tables. One table

holds data hence called the skeleton datastore, and the other holds routing information

hence called the routing table. To ensure that our implementation would be compatible

with the previous functionality of the skeleton, we chose to implement the one Freenet

Datastore using this two-table structure as well.

The routing table is used to hold the locations of documents not stored on that

node. This information is held in the table by recording the id of the node that forwarded

a Document. The implementation preserves the anonymity of the source of the data as it

 Page 33 of 105

is highly possible that the node that forwarded the document was not the original source

of the document.

The Datastore class is used to simulate the storage medium on a node, and

contains a list of Document ids being held on a node. A modified version of the

Datastore class was used in our implementation for several reasons. A Freenet Datastore

has to contain a list of data, sorted by most recently used. But the old skeleton Datastore

uses a numerically ordered map to store data, which is inadequate to mimic the behaviour

of a Freenet datastore. After much analysis, it was decided that rather than change the

existing skeleton Datastore implementation, we would create a new Datastore class called

Fn_Datastore. This would allow us to achieve the goal of not modifying any existing

functionality but also allow us to implement the features we required as described in [2].

The new Datastore uses a C++ STL List object to store long integer values which

identify the Documents held on a node. A node’s Datastore is updated anytime a new

Document is inserted or removed from the node, along with the routing table. This tight

coupling of the two tables allows us to imitate the behavior of a Freenet datastore.

The algorithm used to update and replace documents in the Fn_Datastore and the

routing table works as follows: the last requested document is placed on top of the list.

The list has a user-defined limit, so only the first 20 Documents in the list are stored at

any time. The routing table is used to keep a temporary record of other nodes where this

document may be found. The diagram below (figure 5.4) shows this implementation:

 Page 34 of 105

Item# Key Location Information

1 12548 128.100.1.34 Fsdfseafesafefse32rqj9p23ijr2

2 66589 142.168.0.2 23krj23890rn433kjn23j54nn4k3n

3 965 102.52.101.9

4 687 201.59.64.65

 FN_DATASTORE

In the above diagram, the functionality of the Freenet Datastore is carried out by

two different tables as shown above. The arrows show where each column is mapped to

in the new tables. In the simulator the IP addresses are represented by node Ids and a

pointer to where the Document object is held is used instead of the actual information.

 In the Network class a new function was added to generate random messages and

insert them into the simulated network.

KEY NODE ID

12548 998891

66589 234333

965 883392

687 123422

KEY DATA POINTER

12548 0x122

66589 0x134

Figure 5.4.1 – Implementation of Datastore and Routing
Table FN_ROUTING TABLE

Freenet Datastore

 Page 35 of 105

6. TESTING

 The purpose of testing was to verify that our implementation of Freenet was

correct. The correctness was tested using a driver program written exclusively for testing.

 The tests were chosen and conducted to validate the following:

 Documents with unique keys can be inserted into the network

 Documents with keys that already existed are not allowed to be inserted into a

network, provided that a collision occurred

 The messages are correctly routed toward the most likely nodes to have the

requested document

 Requested Documents can be found and returned to the requesting node

 The correct replies are generated and forwarded for each type of message

 The performance of our simulated network was comparable to real life

performance results

6.1 Running Simulations

 A driver program was used to create random network topologies and events for

the test simulations. The driver program accepts an integer value for the number of nodes

in the network, and creates a random network topology and writes this topology into a

file. This file can be read by the skeleton to build the topology for a simulation. The

driver also creates random messages for every node in the generated network.

 Page 36 of 105

 Two types of messages are created by the driver: the Request Insert message

which allows a node to insert a Document into a network, and a Request Data message

which sends a request to other nodes for a Document. Random Documents are chosen

for insertions and requests each time. Some of the chosen Documents already exist in the

network causing key collisions a feature our tests must verify, and some Documents are

new allowing the insertion functionality to be verified.

 Once inserted into the network, a message is distributed to the other nodes using

the Freenet routing algorithm and may produce one or more replies. During the

simulated rounds, each node writes messages into a log file, allowing the tester to see

exactly what each node is doing, and where every message and Document is during any

round.

 After the simulations, the log files were analyzed to determine the paths various

messages and documents took through the network. These results are described in more

detail in the next section Test Results.

 Page 37 of 105

7. Test Results

 Simulations were conducted for 10 nodes, 500 nodes and 1000 nodes. These

samples numbers were chosen due to the large and complicated log files generated by the

simulation. Analysis of the logs was done by hand making it a very slow and arduous

process forcing us to restrict the number of nodes used in the topologies.

 As the logs produced are more than 100 pages each, this section show cases only

one log file for a network topology of 10 nodes. The full transcipt of this log is provided

in Appendix B.

7.1 Simulation Log Files

 Before viewing the log files, a brief description of what they contain and how to

interpret the information is provided here.

 The following virtual topology (refer to figure 7.1.1) made up of 10 nodes was

used in one of our test simulations. Each node has a unique Id number that identifies it in

the simulated network.

 Page 38 of 105

Figure 7.1.1 – Virtual Topology

 A sample log file for the above topology is shown and described in more detail

below. It has been split into sections so that the explanations will be clearer.

 The first section of the log file describes the random messages created for each

node by the driver program at the beginning of the simulation. As it is random, some

nodes have no messages created for it and a ‘No event generated’ message is produced.

Each line of the log file describes one generated event and the following information is

displayed for each:

 the type of message created,

 the ids of any Documents involved in the event,

 the id of the node the current message has been created on.

 Page 39 of 105

 This information can be seen below in the sample log file:

Message REQUEST_INSERT generated for doc 1004 by node 9889918
Message REQUEST_DATA generated for doc 1001 by node 8122812
No event generated by node 5865911in this round
Message REQUEST_DATA generated for doc 1004 by node 829392
Message REQUEST_INSERT generated for doc 9508535 by node 1596018
Message REQUEST_INSERT generated for doc 8825713 by node 5814251
Message REQUEST_INSERT generated for doc 109728 by node 6129444
No event generated by node 4880365in this round
No event generated by node 3744377in this round
Message REQUEST_INSERT generated for doc 1003 by node 2110256

 After all the events have been generated, each round is simulated. The next

section of the log file contains:

 the simulation Round number,

 the message id being currently processed from the global inbox,

 for each node, the message id and message type received

 for each node, the message type created in reply to a previous message

 This may be seen below in the fragment from the sample log file below:

Current round is 0
NETWORK: Processing Message 0 from 9889918 to 4880365
NODE 4880365: Processing message 0 of type 4
NODE 4880365: Message type 4 put in Queue for 3744377
NETWORK: Processing Message 1 from 8122812 to 829392
NODE 829392: Processing message 1 of type 0
NODE 829392: Message type 0 put in Queue for 9889918
NETWORK: Processing Message 2 from 829392 to 8122812
NODE 8122812: Processing message 2 of type 0
NODE 8122812: Message type 3 put in Queue for 829392
NETWORK: Processing Message 3 from 1596018 to 5865911
NODE 5865911: Processing message 3 of type 4
NODE 5865911: Message type 4 put in Queue for 9889918
NETWORK: Processing Message 4 from 5814251 to 2110256
NODE 2110256: Processing message 4 of type 4
NODE 2110256: Message type 4 put in Queue for 6129444
NETWORK: Processing Message 5 from 6129444 to 2110256
NODE 2110256: Processing message 5 of type 4
NODE 2110256: Message type 2 put in Queue for 6129444
NETWORK: Processing Message 6 from 2110256 to 5814251

 Page 40 of 105

NODE 5814251: Processing message 6 of type 4
NODE 5814251: Message type 3 put in Queue for 2110256

Current round is 1
NETWORK: Processing Message 0 from 4880365 to 3744377
NODE 3744377: Processing message 0 of type 4
NODE 3744377: Message type 3 put in Queue for 4880365
...

 These messages continue till all the rounds are over. As they are fairly long, the

full transcripts of the test log for this simulations may be found in Appendix B.

7.2 Results of Log File Analysis

 The responses for every message were verified by checking the status of the

message at the end of all the rounds. This was done as the log files were too large to be

analyzed line by line.

7.2.1 Responses to Request Data Messages

 This message carries a request for a specific document by a node. There are three

possible correct responses for this type of message, and an incorrect response [4].

1. Response 1: If a node storing this document receives the message, the reply

message should contain the data

2. Response 2: If a node does not have the document, the message should be

forwarded downstream to the requestor.

 Page 41 of 105

3. Response 3: If the document cannot be found and its hops-to-live counter is zero,

the message should be discarded

4. Incorrect Response: Any response that is not 1, 2 or 3

 Response 2 occurred 100% of the time, as it is the mechanism for forwarding the

messages. Thus, table 7.2.1.1 shows the results of our simulations for Response 1 and 3:

Topology

type
Number of
messages
generated

% Occurrence of
Response 1

% Occurrence
of Response 3

% Occurrence of
an incorrect

response
10 Nodes 9 100

0 0

100 Nodes 92 99 1 0

500 Nodes 420 79

21 0

1000 Nodes 932 77

23 0

Table 7.2.1.1 – Simulation Results

7.2.2 Responses to Request Insert Messages

 This message tries to insert a document into the network. There are two scenarios

that may occur with this message, producing different responses as based on [2]:

 Page 42 of 105

1. The document to be inserted does not already exist in the network. The correct

response for this case would be a Send Data message indicating that the document

can be inserted. An incorrect response is one which does not allow the document

to be inserted.

2. The document to be inserted already exists on the network, in which case a

collision occurs, that is, a node holding a document with the same id would

respond that that id cannot be re-used. The correct response would be one that

does not allow the document to be inserted. There is no incorrect response for

this scenario as it Freenet will allow duplicate keys to be used, although it is

frowned upon.

 The tables below show the results of both these scenarios. When determining

whether a correct or incorrect response has occurred, the scenario was taken into account

as described above:

Results of Scenario 1:

Topology
type

% Occurrence of A
correct Response

% Occurrence of an
Incorrect Response

10 Nodes 100

0

100 Nodes

100 0

500 Nodes 100

0

1000 Nodes 100

0

Table7.2.2.1 – Results of Scenario 1

 Page 43 of 105

Results of Scenario 2:

Topology
type

Number of messages
generated

% Occurrence of
Correct Response

10 Nodes 9 100

100 Nodes 92 97

500 Nodes 420 78

1000 Nodes 932 76

Table7.2.2.2 – Results of Scenario 2

7.3 Simulation Times

The following are the times the simulations for a specific topology took:

 Average time to run 10 Node simulation: 0.09 seconds

 Average time to run 100 Node simulation: 0.37 seconds

 Average time to run 500 Node simulation: 0.86 seconds

 Average time to run 1000 Node simulation: 1.12 seconds

 Page 44 of 105

8. Problems encountered and solutions

One of the first problems we encountered when starting work on this project was

with understanding the skeleton code we were given to work with. As our simulator

needs to work with the skeleton, it is essential we have a good understanding of the code

and how it works. The problem here however, is that the code doesn’t work. While it

does function correctly, it’s just a skeleton, i.e., it doesn’t do anything on its own. This

problem was compounded by the fact that we were just learning C++, the language we

would be writing the code in, and the language the skeleton was written in.

 In addition to focusing more on learning C++, we worked on this problem by

dividing the skeleton code up by class and going over each class thoroughly as a group.

Once we had a basic understanding of the code, we attended a tutorial session hosted by

the author of the code, Jiang Guo. This tutorial helped us to get a much better

understanding of how the skeleton worked and answered some of the questions we had.

We then reviewed the code several times, making sure we have a good understanding of

what each class did. As our understanding of C++ improved and we looked over the

code again and again, discussing it amongst ourselves each time, we started to get a better

and better understanding of the skeleton and how to use it.

 While this wasn’t the most serious problem, it was a problem that needed to be

dealt with, and done so as quickly as possible in order to get to work on planning how to

 Page 45 of 105

implement our simulator. Although we were able to overcome this problem without

much difficulty, it may have been a factor in leading to our second problem.

 The second and more serious problem we experienced was falling behind on our

schedule. Because of the extra time needed to understand the skeleton code, we were late

in starting the design for our simulator. This problem was compounded by the fact that

we were nearing the end of the fall term, with heavy course workloads to finish before

the end of the term, and upcoming exams to worry about. While we were originally

planning to be putting the final touches on our design at this point, we found ourselves

just starting the design and not having enough time to focus enough attention on it. This

set us back even further, as we did not get far into the design until the winter break

following our exams. By the time we got into the design, we found ourselves almost a

month behind schedule.

 While this problem can be significantly more detrimental to our project than the

first, it is much easier to solve. Fortunately in planning our original schedule we allowed

for some extra time at the end in case of such unexpected delays. In addition to this extra

time, some extra work was put in on the project over the winter break and early in the

new term while the course workload was still low. This extra work allowed us to finish

out design specifications early in the new term, now only a couple weeks behind our

original schedule. This time was then made up with some extra hours of coding over the

spring break, and final testing was completed within the extra week we had allowed

ourselves at the end of our schedule.

 Page 46 of 105

 This problem may have been able to be avoided with better planning and more

work early in the project however these were not the only causes. Several factors

compounded to create this problem and make it as serious as it was. Fortunately we had

allowed ourselves extra time at the end of the project to make up lost time, as well as

allowing ample time in each phase of the project which permitted us to complete each

phase faster than scheduled without compromising the quality of our code.

 Page 47 of 105

9. Conclusions

9.1 Discussion of the Test Results

 The results of the simulation support our claim that this implementation of

Freenet on the skeleton is correct, fast and scalable.

 The responses produced in reply to the randomly generated Data Request

messages match our expected results based on [3] and [4]. No incorrect responses were

generated for this message in any of the topologies, that is, only responses from the

expected three were produced by the simulation. If the simulator did not handle

messages correctly it would have responded to it with an incorrect reply, or by discarding

the message. All messages were accounted for at the end of the rounds and so no

messages were incorrectly discarded. Therefore it may be concluded that no incorrect

replies were detected and that these messages are processed and responded to correctly.

 It is noticeable that in the 500 and 1000 node topologies, the percentage of

successful document requests was 79% and 77%, respectively. The value is not 100%

due to the value of the hops-to-live attribute of the simulator messages. The hops-to-live

value is the number of nodes a message may pass through before it is discarded without

any response, and can be set by a user before running a simulation. If this value is too

low, then a message will not be able to traverse the whole network and thus may not find

the node holding the document. During our testing, this value was set at half the size of

the networks a typical value used by many real-life networks. This value was too low to

 Page 48 of 105

produce a 100% success rate as some nodes could not be reached by a message. It is still

fairly high, even though half the network could not be traversed, and this is attributed to

the fact that messages are routed toward the nodes most likely to have the document,

supporting the claim that our implementation correctly follows the Freenet routing

algorithm. The simulation would produce much higher results if run for more time with

constant messages, allowing documents to distribute over the network. This would

require a more complex driver program though, and is unnecessary to test our hypotheses.

 The replies to randomly generated Request Insert messages also matched our

expected results for both scenarios. In the first scenario for the Request Insert message,

the document does not exist anywhere in the network. The expected response to this

would be a Send Data message that indicated the document can be inserted into the

network. The node should then insert the document, which is forwarded upstream. In all

three network topologies 100% of this scenario was successful and the document was

inserted. This demonstrates that these messages are processed and responded to correctly.

 The second scenario is more complicated. Since the document to be inserted

already exists on the network, we expected that most of the time a collision would occur,

that is a node holding a document with the same id would respond that that id cannot be

re-used. But since the hops-to-live attribute of the message was set to half the size of the

network topology, we also expected that sometimes no collision would occur since not all

nodes could be reached. This is exactly what our results show occurred in the larger 500

and 1000 node topologies. In the topology containing 500 Nodes, a collision occurred

 Page 49 of 105

78% of the time, and in the 1000 Node topology 76% or the requests resulted in a

collision. This is a fairly high success rate considering that only half the topology can be

traversed by the message. The fact that in the much smaller 100-Node topology

collisions occurred 97% of the time supports the fact that the hops-to-live attribute has

decreased the number of collisions in the larger topologies. The smaller the topology the

greater the chance of a collision occurring. This was an expected outcome, and supports

our claim that the implementation is correct.

 The time taken to run all the simulations was in the range of 0.3 – 1.2 seconds.

Most of this time was taken up due to outputting messages to the screen rather than

processing the simulation. This shows that our implementation has met our objective of

being fast and efficient. This speed allows the simulator to simulate much larger network

topologies efficiently, making it scalable.

 It can therefore be concluded that these test results support the claim that this

implementation of our Freenet objectives is correct, fast, and scalable.

9.2 Next Steps

 Now that the simulator has been completed and shown to work for small networks,

the next logical step to take is to simulate larger networks with more nodes, and networks

with nodes distributes in different topologies. These simulations can then be analyzed to

determine the effect of the network topology on the Freenet’s efficiency.

 Page 50 of 105

 The simulator can also be used to look at the effects of changing various

parameters. For example, the hops to live count on the messages can be increased to

determine if each node can now find more data as its range has been increased, can find

that data faster than before, or if the change simply causes more congestion in the

network.

 Finally, other protocols can be implemented using the same network skeleton and

then compared against the Freenet using a common base for a fair comparison. The

networks can be compared in terms of time to retrieve data, retrieving data in the fewest

hops, or other such metrics to determine which networks are most efficient in which areas.

 Page 101 of 105

Appendix B: Simulation Logs

Log Files for 10 Node Topology

Message Hops-to-live = 5

Message REQUEST_INSERT generated for doc 1004 by node 9889918
Message REQUEST_DATA generated for doc 1001 by node 8122812
No event generated by node 5865911in this round
Message REQUEST_DATA generated for doc 1004 by node 829392
Message REQUEST_INSERT generated for doc 9508535 by node 1596018
Message REQUEST_INSERT generated for doc 8825713 by node 5814251
Message REQUEST_INSERT generated for doc 109728 by node 6129444
No event generated by node 4880365in this round
No event generated by node 3744377in this round
Message REQUEST_INSERT generated for doc 1003 by node 2110256

Current round is 0
NETWORK: Processing Message 0 from 9889918 to 4880365
NODE 4880365: Processing message 0 of type 4
NODE 4880365: Message type 4 put in Queue for 3744377
NETWORK: Processing Message 1 from 8122812 to 829392
NODE 829392: Processing message 1 of type 0
NODE 829392: Message type 0 put in Queue for 9889918
NETWORK: Processing Message 2 from 829392 to 8122812
NODE 8122812: Processing message 2 of type 0
NODE 8122812: Message type 3 put in Queue for 829392
NETWORK: Processing Message 3 from 1596018 to 5865911
NODE 5865911: Processing message 3 of type 4
NODE 5865911: Message type 4 put in Queue for 9889918
NETWORK: Processing Message 4 from 5814251 to 2110256
NODE 2110256: Processing message 4 of type 4
NODE 2110256: Message type 4 put in Queue for 6129444
NETWORK: Processing Message 5 from 6129444 to 2110256
NODE 2110256: Processing message 5 of type 4
NODE 2110256: Message type 2 put in Queue for 6129444
NETWORK: Processing Message 6 from 2110256 to 5814251
NODE 5814251: Processing message 6 of type 4
NODE 5814251: Message type 3 put in Queue for 2110256

Current round is 1
NETWORK: Processing Message 0 from 4880365 to 3744377
NODE 3744377: Processing message 0 of type 4
NODE 3744377: Message type 3 put in Queue for 4880365
NETWORK: Processing Message 1 from 829392 to 9889918
NODE 9889918: Processing message 1 of type 0
NODE 9889918: Message type 0 put in Queue for 4880365
NETWORK: Processing Message 2 from 8122812 to 829392
NODE 829392: Processing message 2 of type 3
NETWORK: Processing Message 3 from 5865911 to 9889918
NODE 9889918: Processing message 3 of type 4
NODE 9889918: Message type 2 put in Queue for 5865911
NETWORK: Processing Message 4 from 2110256 to 6129444
NODE 6129444: Processing message 4 of type 4
NODE 6129444: Message type 3 put in Queue for 2110256
NETWORK: Processing Message 5 from 2110256 to 6129444
NODE 6129444: Processing message 5 of type 2
NETWORK: Processing Message 6 from 5814251 to 2110256
NODE 2110256: Processing message 6 of type 3

Current round is 2
NETWORK: Processing Message 0 from 3744377 to 4880365
NODE 4880365: Processing message 0 of type 3

 Page 102 of 105

NODE 4880365: Message type 3 put in Queue for 9889918
NETWORK: Processing Message 1 from 9889918 to 4880365
NODE 4880365: Processing message 1 of type 0
NODE 4880365: Message type 0 put in Queue for 3744377
NETWORK: Processing Message 3 from 9889918 to 5865911
NODE 5865911: Processing message 3 of type 2
NODE 5865911: Message type 2 put in Queue for 1596018
NETWORK: Processing Message 4 from 6129444 to 2110256
NODE 2110256: Processing message 4 of type 3
NODE 2110256: Message type 0 put in Queue for 9889918

Current round is 3
NETWORK: Processing Message 0 from 3744377 to 9889918
NODE 9889918: Processing message 0 of type 3
NETWORK: Processing Message 1 from 4880365 to 3744377
NODE 3744377: Processing message 1 of type 0
NODE 3744377: Message type 2 put in Queue for 4880365
NETWORK: Processing Message 3 from 5865911 to 1596018
NODE 1596018: Processing message 3 of type 2
NETWORK: Processing Message 4 from 2110256 to 9889918
NODE 9889918: Processing message 4 of type 0
NODE 9889918: Message type 2 put in Queue for 2110256

Current round is 4
NETWORK: Processing Message 1 from 3744377 to 4880365
NODE 4880365: Processing message 1 of type 2
NODE 4880365: Message type 2 put in Queue for 9889918
NETWORK: Processing Message 4 from 9889918 to 2110256
NODE 2110256: Processing message 4 of type 2
NODE 2110256: Message type 2 put in Queue for 5814251

Current round is 5
NETWORK: Processing Message 1 from 4880365 to 9889918
NODE 9889918: Processing message 1 of type 2
NODE 9889918: Message type 2 put in Queue for 829392
NETWORK: Processing Message 4 from 2110256 to 5814251
NODE 5814251: Processing message 4 of type 2

Current round is 6
NETWORK: Processing Message 1 from 9889918 to 829392
NODE 829392: Processing message 1 of type 2
NODE 829392: Message type 2 put in Queue for 8122812

Current round is 7
NETWORK: Processing Message 1 from 829392 to 8122812
NODE 8122812: Processing message 1 of type 2

Current round is 8

Current round is 9

Current round is 10

 Page 103 of 105

Appendix C: Old Milestones

Milestone Target Date for Completion Responsibility
1) Technical Proposal 17th October, 2002 Steven Wolfman (1)

Rehan Siddiqui (2)
Sasi Shanmugarajah (3)

2) Research
a) Freenet
b) Network skeleton code

(Simulator)

Mid October
Mid November

1, 2, 3
1, 2, 3

3) Software Development

a) Design Specifications:
i) How to implement Freenet

into the simulator
ii) Design review and approval

b) Coding:
i) Query Protocols
ii) Keys and Searching
iii) Storing, retrieving and

managing data
iv) Message and Data routing
v) Component Integration

Early December

Mid December

Mid January
Mid January
Mid January

Late January
Early February

1,2, 3

1, 2, 3

1
2
3

3
1, 2, 3

4) Testing
a) Component Testing:
i) Query Protocols
ii) Keys and Searching
iii) Storing, retrieval and

managing data
iv) Message and data routing
v) Component integration

Late January
Late January
Late January

Mid February
Mid March

1
2
2

3
1, 2, 3

5) Documentation:
a) Progress Report
b) Final Report

January
11th April, 2003

1, 2, 3
1, 2, 3

 Page 104 of 105

Appendix D: New Milestones

Milestone Target Date for Completion
Responsibility

1) Technical Proposal 17th October, 2002 Steven Wolfman (1)
Rehan Siddiqui (2)
Sasi Shanmugarajah (3)

2) Research
a) Freenet
b) Network skeleton code

(Simulator)

Mid October
Mid November

1, 2, 3
1, 2, 3

3) Software Development

a) Design Specifications:
i) How to implement

Freenet into the simulator
ii) Design review and

approval

b) Coding:
i) Query Protocols
ii) Storing, retrieving and

managing data
iii) Message and Data routing
iv) Run-time Engine, and

Keys and Searching
v) Component Integration

Mid January

Late January

Early February
Early February
Early February
Mid February

Late February

1,2, 3

1, 2, 3

1
2
3

3
1, 2, 3

4) Testing
a) Component Testing:
i) Query Protocols
ii) Storing, retrieval and

managing data
iii) Message and data routing
iv) Run-time Engine, and

Keys and searching
v) Component integration

Early February
Early February
Early February

Mid February

Late March

1
2
2

3

1, 2, 3

5) Documentation:
a) Progress Report
b) Final Report

10th January, 2003
11th April, 2003

1, 2, 3
1, 2, 3

 Page 105 of 105

List of References

[1] A. Langley, “Freenet” in Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, A. Oram, Ed., Sebastopol CA: O'Reilly and Associates, 2001. pp
123-132.

[2] I. Clarke, A Distributed Decentralized Information Storage and Retrieval System,

unpublished report, Division of Informatics, University of Edinburgh, 1999.

[3] AmrZ.Kronfol, “FASD: A Fault-Tolerant, Adaptive, Scalable, Distributed Search

Engine” [Online Article] Available at:
http://www.freenetproject.org/kronfol_final_thesis.pdf

[4] A. Langley, “The Freenet Protocol” [Online Article] Available at:

http://www.firenze.linux.it/~marcoc/index.php?page=protocol

[5] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A Distributed

Anonymous Information Storage and Retrieval System” [Online Article] Available
at: http://www.firenze.linux.it/~marcoc/index.php?page=icsi-revised

[6] I. Clarke, “The Freenet Project:A distributed decentralized information storage and

retrieval system” [Online Lecture] [2001 Feb 14] Available at:
http://murl.microsoft.com/LectureDetails.asp?765

[7] T. Hong, “Performance” in Peer-to-Peer: Harnessing the Power of Disruptive

Technologies, A. Oram, Ed., Sebastopol CA: O'Reilly and Associates, 2001. pp
205-243.

