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Cellular processes are often carried out by intricate systems of interacting genes and
proteins. Some of these systems are rather well studied and described in pathway
databases, while the roles and functions of the majority of genes are poorly understood.
A large compendium of public microarray data is available that covers a variety of con-
ditions, samples, and tissues and provides a rich source for genome-scale information.
We focus our study on the analysis of 35 curated biological pathways in the context of
gene co-expression over a large variety of biological conditions. By defining a global
co-expression similarity rank for each gene and pathway, we perform exhaustive leave-
one-out computations to describe existing pathway memberships using other members
of the corresponding pathway as reference. We demonstrate that while successful in
recovering biological base processes such as metabolism and translation, the global
correlation measure fails to detect gene memberships in signaling pathways where co-
expression is less evident. Our results also show that pathway membership detection
is more effective when using only a subset of corresponding pathway members as ref-
erence, supporting the existence of more tightly co-expressed subsets of genes within
pathways. Our study assesses the predictive power of global gene expression correla-
tion measures in reconstructing biological systems of various functions and specificity.
The developed computational network has immediate applications in detecting dubious
pathway members and predicting novel member candidates.
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Introduction

A gene carries out its function through its
products in one or more biological pathways,
forming protein complexes or playing an inter-
active role in metabolism and signaling. One
of the most pertinent tasks in systems biol-
ogy today is the identification of genetic inter-
actions across different biological conditions.
The graphical notation of vertices and edges
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to represent genes and their interactions within
a biological network is a common approach
adopted by all main pathway databases.1–3 Al-
though early collections of biological pathway
databases predate the human genome sequenc-
ing project, only a small fraction of genes are
mapped to at least one pathway. The major
pathway databases KEGG1 and Reactome2

account for only 4,220 and 1,804 interact-
ing genes out of the approximately 23,000
protein-coding genes that comprise the human
genome.4

High-throughput gene expression data have
proved a rich source of genome-scale informa-
tion ever since the first studies appeared in
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1997.5,6 Some interacting proteins exhibit a
global correlation in gene expression,7 allow-
ing researchers to reveal potential members of
large protein complexes such as proteasome or
ribosome.8 Most interacting proteins, however,
vary in expression over different biological con-
ditions and display more evident correlation
in only a selection of conditions. For example,
Brand and colleagues9 show that during the
erythroid differentiation switch, MafK changes
its dimerization partner from Bach1 to p45 to
form the NF-E2 complex. This result highlights
the importance of exploring possible gene in-
teractions across many meaningful biological
conditions. The number of publicly available
gene expression datasets has grown rapidly in
recent years, and numerous biological condi-
tions can be included in a gene network study.

The first objective of this work is to study
the predictive power of gene co-expression to
infer gene memberships of known human path-
ways, using a large number of gene expres-
sion datasets. By conducting an exhaustive se-
ries of leave-one-out computation experiments
for every gene and related pathway, we re-
trieve a correlation-based gene rank that re-
flects the co-expression of the gene and the
pathway in many biological conditions. Our
results show that correlation ranks vary sig-
nificantly across different types of pathways.
Expression correlation clearly distinguishes
members of transcriptionally regulated basal
biological processes such as metabolism and
translation, while failing to recover signaling
networks where post-translational modifica-
tions and ligand–receptor interactions have a
dominant regulatory role.

It has been argued that gene networks con-
tain active subpathways that are more rele-
vant to the expression of a gene than all the
pathway members taken together.10 Genes that
code components for the same protein complex
need to have similar expression patterns to keep
the complex intact. For example, genes in cell
cycle minichromosome maintenance (MCM)
and origin recognition complex (ORC) form
co-expressed pathway subsets that are differ-

entially expressed compared to cell cycle reg-
ulators (such as CDK6). Indeed, arguing this
from a numerical perspective, if one can iden-
tify the most correlated subset of a pathway for
a gene, the resulting correlation score would
be higher than the same score for all pathway
members.

The secondary objective of our work is the
identification of members and candidates of
known pathways using a selection of path-
way members as reference. We perform an ex-
ploratory analysis that detects the optimal cor-
relation threshold for every gene, so that the
subset of genes in a pathway (that is, a subpath-
way) corresponding to the threshold results in
the best gene rank for the pathway in question.
In the process of computing subpathway-based
co-expression ranks for members of different
pathways, we produce lists of candidate genes
that exhibit strong similarity to the subpath-
ways. In some cases, we provide supporting
evidence for the membership of these candi-
dates in the form of shared protein–protein in-
teractions with the pathway and enrichments
in related Gene Ontology (GO) terms.11 Our
method therefore proves to be a promising new
direction in detecting pathway member candi-
dates and assessing dubious annotations.

Previous studies have successfully applied
gene expression data to infer certain pathways
and thus supported the biological assumption
of coregulation, similar functionality, and cor-
related gene expression profiles.12–16 Neverthe-
less it is well known that many gene networks
are not recoverable by exclusively using gene
expression data. Other approaches have used
topological information such as gene connec-
tivity.15 The method proposed in this paper
chooses a subset of the most correlated path-
way genes to compare a gene ranking without
taking into account the existence of links be-
tween genes in the pathway subset. We show
that despite computing ranks from optimal sub-
pathways, there are several examples of known
pathway members with uninformative expres-
sion patterns that prohibit the recovery of such
genes from expression data alone. Our method
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therefore clearly highlights the shortcomings
of exclusively using expression data for path-
way recovery, and encourages the application
of methods such as that used by Gevaert and
colleagues in Reference 17 that infer networks
from heterogeneous sources of evidence.

Materials and Methods

Gene Expression Data and Pathways

In this study, we use the human gene expres-
sion atlas compiled by Lukk and colleagues.18

The compendium covers 6,108 manually cu-
rated and quality controlled samples from dif-
ferent biological conditions that have been
jointly normalized using the RMA algorithm.19

The entire sample collection originates from
the popular AffyMetrix HG_U133A microchip
platform that includes about 12,000 genes that
we consider the genome.

Note that a significant fraction of the genes
on the HG_U133A platform have multiple mi-
croarray probe sets corresponding to a single
gene. In our analysis, we select the most favor-
able probe set for each gene in order to get
the highest correlation score between a pair of
genes.

This study covers all 35 human pathways
from the pathway database Reactome2 version
23. Reactome includes processes like transla-
tion and DNA repair, various signaling path-
ways, and several metabolic pathways. Pathway
associations and gene-probe set mappings are
provided by the g:Profiler software.20

Query Genes and Training Genes

First, let us denote a pathway as a set of
genes P = {p1, . . ., pm} and the set of genes in
the genome outside the pathway as G = {g1,
. . ., gn}. Each gene in the pathway is used in
turn as a query gene, denoted as p∗. We refer to
the remaining m-1 genes in the pathway as the
training genes, the set denoted as P ′. We derive
a rank r∗ for the query gene p∗ by computing
the average co-expression score between p∗ and
the training genes P ′, and comparing it to the

co-expression scores between P ′ and the rest of
the genes in G.

As we compute the rank for every gene in
a selected pathway, we assess the predictive
power of gene co-expression in the context of
this pathway. As a side result, we obtain a list of
candidate genes that are not annotated to the
pathway but show strong similarity to its ex-
pression patterns, frequently outweighing the
co-expression values of annotated members.

Correlation Scores and Gene Ranks

Our goal is to compute a rank r∗ for a se-
lected query gene p∗ and a pathway P . The
rank measures the query gene’s co-expression
with the genes within the pathway, in contrast
to the pathway members’ co-expression with
all other genes in the genome. We first define a
correlation-based similarity score to measure the av-
erage co-expression between a gene g and the
members of a pathway P = {p1, . . ., pm}. Given
that g is not part of P and m is the number of
members of P , we compute the score as follows:

score (g, P ) = 1
m

∑
p∈P

corr(g, p).

In order to compute rank r∗, we split the
pathway of interest into the query gene p∗ and a
set of training genes P ′ = P \ p∗. In other words,
we leave the query gene out of the pathway,
regarding it to be without annotation. We then
calculate the scores si = score(gi, P ′) for all the
genes gi of G = {g1, . . ., gn} outside the pathway,
as well as the score s∗ = score(p∗, P ′) for our query
gene p∗. The gene rank r∗ of p∗ is the position of
the score s∗ after sorting the list of scores (s∗, s1,
. . ., sn) in descending order.

The rank r∗ varies within the range of genes
on the microarray platform. Intuitively, r∗ = 1
delivers the fact that, on average, the gene p∗ is
more similar to the pathway than any other un-
related gene. Increasing rank reflects decreas-
ing expression similarity between p∗ and the
pathway, meaning that there are other genes in
the genome that actually exhibit stronger co-
expression to the pathway.
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Correlation and Absolute Correlation

Throughout this study, we apply the stan-
dard Pearson correlation method to evaluate
expression pattern similarity. Although Pear-
son correlation admittedly fails to detect cer-
tain types of variable dependencies, the com-
parison between other similarity metrics such
as Euclidean distance and mutual information
criteria remains beyond the scope of this study.

While studies have found Pearson’s correla-
tion to be an effective method for measuring co-
expression, it does not account for all interac-
tions. Most importantly, there are well-known
instances where pathway members behave as
suppressors and have an anticorrelated pattern
in their expression profiles. In light of this, we
performed a second run of our algorithm us-
ing the absolute Pearson measure that equally
captures anticorrelation and thus models the
activating and inhibiting regulation within the
pathway in a more meaningful way.

Subpathways and Gene Ranks

The gene rank computation algorithm de-
scribed above uses all the genes in the pathway
P as training genes to assess the pathway co-
expression of query gene p∗. However, it is gen-
erally known that pathways may contain sub-
systems and compartments that show higher
co-expression values due to common regula-
tory mechanisms. We use the term subpath-
way to refer to the optimal pathway subset. It
should be noted that in the context of this anal-
ysis, co-expression and pathway annotation
are the only criteria for constructing subpath-
ways; topological information such as edges
and paths between members are not taken into
account.

In order to incorporate subpathway associ-
ations into our analysis, we extend the rank-
ing method to choose an optimal subset from
the m-1 training genes as reference of p∗, rather
than automatically measuring the similarity be-
tween p∗ and all the training genes in P ′. The
subpathway is considered optimal if it includes

only those training genes that incur a lowest r∗.
To this end, we define a threshold t so that the
correlation scores score(g, P ) are computed using
only correlations corr(g, p) ≥ t. It is the choice of
t that matters here; a small t results in all m−1
training genes participating in the rank, while
an overly stringent t excludes most or all genes
from the calculation. The choice of t could be
made using no prior information about p∗, and
a predictive model may be derived. However,
this is more of an explorative study that investi-
gates the impact of subpathway considerations
on the gene rank. Therefore, we perform an
exhaustive search by varying the threshold t
over the correlation search space of 0 to 1 in
0.02 steps, and choose the threshold that gives
the lowest rank for p∗. It should be noted that
while absolute Pearson correlations range from
0 to 1, Pearson correlations range from −1 to
1; therefore we normalize the Pearson correla-
tions to a one-unit space in order to keep the
search space fixed.

We demonstrate in the following section that
the optimized procedure yields a lower and thus
more informative rank for p∗, when compared
to the rank derived from all training genes.
These results reinforce the notion that the con-
sideration of subpathways can greatly enhance
pathway inference techniques.

Results

In this section we present the results of co-
expression ranks for the genes in 35 Reactome
pathways (see Table 1). We highlight the advan-
tage of our subpathway method, which selects
an optimal set of training genes to calculate the
rank for the query gene, compare the Pearson
correlation measure with absolute Pearson cor-
relation, and discuss the resulting differences
in gene ranks and underlying causes. We also
present plots that demonstrate the proportion
of high-ranking uninformative genes within dif-
ferent pathways, and discuss the possibility of
using our methods to uncover potential path-
way genes and verify dubious annotations.
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FIGURE 1. Receiver operating characteristic
(ROC) curves indicating the percentage of pathway
genes that have a rank of less than indicated on
the x-axis. Large areas under curve (AUC) indicate
better performance.

The Subpathway Advantage

We study the performance of leave-one-out
computations with four different experimental
settings (see Fig. 1). First, we use either all the
training genes in the given pathway to infer the
gene rank (“FullNW” in figure) or apply the
method of finding an optimal subpathway. Sec-
ond, we use either Pearson correlation (“Pear-
son”) or absolute Pearson correlation (“AbsP”)
to measure gene co-expression.

Figure 1 shows the percentage of all pathway
genes (y-axis) that have a rank less than or equal
to the x-axis value. Such graphical displays,
known as receiver operating characteristic
(ROC) curves, have proven reliable for evalu-
ating the quality of a classification function.21

The area under curve (AUC) gives an idea of
the performance of the method. Curves that
hug the upper left corner are optimal and have
an AUC close to 1.0; in contrast, curves of
random methods approach the plot diagonal
and result in an AUC of 0.5. In case of absolute
correlation, the AUC of our optimal subpath-
way method is 0.865, which is nearly a 15%
advance over the full pathway AUC of 0.755.
We see similar values for standard correlation:
the ROC curve for the subpathway method
has an AUC of 0.894, almost 13% more than
the AUC of the full pathway approach.

Standard and Absolute Pearson
Correlation

Regarding the comparison of standard and
absolute Pearson correlation, the ROC curves
in Figure 1 display an AUC difference of 3% to
the advantage of standard Pearson correlation,
mainly covering genes with ranks above 1,000.
A possible explanation is that remotely related
genes in the pathway involve a larger number
of low correlations, and the absolute score is
more pronounced since it involves both positive
and negative correlation. On the one hand, the
absolute correlation generally includes more
genes and therefore produces a higher and po-
tentially noisier rank than the more selective
standard correlation. On the other hand, Pear-
son correlation recovers a higher number of
pathway genes with ranks less than 100 (see
Fig. 1), suggesting that absolute correlation bet-
ter captures closely correlated and anticorre-
lated genes. Although these differences are in-
teresting, there is insufficient statistical support
to decide upon the advantage of one method
over another.

However, while using absolute Pearson cor-
relation, we uncovered a strong example of
RHOQ gene in the pathway Signaling by Rho
GTPases, where absolute correlation ranks the
gene first, while the standard correlation rank
is almost 500. The gene with highest anticor-
relation with RHOQ is RHOT2. The pair are
known to be induced during myogenic and
neuronal differentiation and have differential
expression in muscle and brain.22 This may
account for the anticorrelation found in our
study.

Low-Ranking Pathway Genes

Earlier we established that our subpathway
method results in lower gene ranks. Here we
examine in detail the ranks of pathway genes
below selected thresholds. In Figure 2, we show
the percentage of pathway genes (y-axis) with
lower ranks than defined thresholds (x-axis).
The thresholds are derived using the Pearson
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FIGURE 2. ROC curves indicating the percent-
age of pathway genes that have a rank of less than
indicated on the x-axis. Three pathways have more
than 50% of the genes with a rank below 100 and
are drawn in solid black lines. Pathways where less
than 50% of the genes have ranks below 100 are
drawn in dotted blue lines, and pathways where less
than 25% genes have ranks below 100 are drawn
in red lines.

correlation and vary from 1 to 100 for each
pathway. Pathways with more than 50% of their
gene ranks below the highest threshold of 100
are indicated in black, pathways with more than
25% and less than 50% of genes are in blue, and
pathways with up to 25% are in red. There
are three pathways in black with about 70% of
their genes having ranks smaller than 100: Elec-
tron Transport Chain, Pyruvate metabolism and TCA
cycle, and Translation.

The Best Predicted Pathway—Translation

Our methods recovered a good number of
genes with the best possible rank of 1. Rank
1 was assigned to 21% of the genes in Pyru-
vate metabolism and TCA cycle, 24% of Metabolism
of noncoding RNA, and 31% of Translation. The
Translation pathway consists mainly of riboso-
mal genes, translation initiation factors, and
elongation factors. Ribosome itself is a com-
plex of ∼80 proteins that need to be highly
co-expressed to form the functional cellular
machinery. We identified seven genes (RPS3A,
RPS26P10, RPS12, RPL31, RPL10, RPS8,
and RPL3L) that have been shown to be part

of either a small or large subunit of the ribo-
some complex, but whose expression is not as
similar to other ribosomal genes as compared
to the rest of the protein complex components.
Extraribosomal activity has been shown for at
least three of the above seven genes. For exam-
ple, RPS3A takes part in apoptosis,23 RPL10 is
known to interact with GDNF and to be active
in neurite growth,24 and RPL31 (also known
as chondromodulin-3) participates in synthesis
of chondrocytes.25 Such biological insights sug-
gest a reason for the different expression pro-
files that distinguish those genes from the other
ribosome components.

The Worst Predicted
Pathway—Signaling by NGF

The genes in signaling pathways appear to
have the worst ranks in our results, which is
an unsurprising observation given the nature
of signaling. Signaling pathway components do
not necessarily exhibit co-expression since most
of the signaling does not involve stable pro-
tein complexes or transcriptional control; in-
stead post-translational modifications and tem-
poral ligand–receptor bindings mediate the
processes. Using pathway-specific perturbation
data would probably give better results in re-
covering signaling genes and identifying good
candidates.

The nerve growth factor (NGF) pathway con-
sists of nine genes showing low co-expression
values and unsatisfactory ranks. Interestingly,
our methods detect genes that are not anno-
tated to the pathway but nevertheless show
high co-expression to pathway genes. We have
identified five such genes as potential path-
way candidates. One of the genes, Dynamine
1 (DNM1) is a nerve terminal phosphopro-
tein known to be upregulated after NGF in-
duction of PC12 cell differentiation into neu-
rons.26,27 The other four candidates (SMPD1,
NR1D1, PPP3CC, and L3MBTL) are known
to be expressed in the brain (see for example
GeneCards28).
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FIGURE 3. A two-dimensional plot of the Trans-
lation pathway genes and candidates. The figure de-
picts the result of principal component analysis (PCA)
of gene correlation scores. Note the three subgroups
that form in the figure. The genes represented by stars
in the ellipse are initiation factors.

Low-Ranking Non-pathway Genes

When a rank r∗ for a query gene p∗ in the
pathway is greater than 1, this inherently im-
plies that the method recovered r∗ − 1 lower-
ranked genes that are not annotated to the
pathway. Here we investigate the possibility of
these genes playing a functional role in the
pathway, and we refer to them as candidate
genes. We compile a list of 54 candidate genes
with rank ≤30 for the Translation pathway and
compute absolute correlation scores between
the candidates and all the 137 pathway genes.

Upon further investigation, we found that
five of these candidate genes had an average
rank of less than 10: P4HA1, a ribosomal pro-
tein homolog PD-1; RACK1, a gene that is
localized in the 40S subunit29 and regulates
translation through the RACK1-PKC com-
plex; ENSG00000214925, a novel Ensembl
transcript prediction that represents the riboso-
mal protein L44E; EEF1B2, elongation factor
1-beta; and FEN1, the only well-ranking candi-
date that lacks such a well-defined connection
to the pathway.

Using the scores as features, we apply prin-
cipal component analysis (PCA) to project the
data into two dimensions and observe the prox-
imity of pathway genes and candidates (Fig. 3).

The PCA plot also suggests that pathway genes
and candidates can be partitioned into three
main groups. In fact, the pathway in question
consists of three main types of genes: ribosomal
genes, elongation factors, and initiation factors.
We indicate the initiation factors by drawing an
ellipse that encapsulates the pathway genes (in-
dicated by the blue stars in Fig. 3) and a number
of candidate genes (indicated by the red circles
in Fig. 3).

Interestingly, genes inside the ellipse in
Figure 3 fall into two main categories: transla-
tion initiation factor complex genes and spindle
complex genes. We found a reference for Xeno-
pus laevis where a gene named Maskin (TACC3
in H. sapiens) is shown to associate both with
the spindle assembly30 and the translation ini-
tiation factor complex eIF4F.31 Although no
transcriptional control has been described be-
tween these associates, it is possible that Maskin
plays a crucial role in the formation and regu-
lation of both complexes.

Gene Ontology Analysis
of Candidate Genes

We investigated pathway candidates through
a functional enrichment analysis of Gene On-
tology (GO) terms,11 KEGG1 and Reactome2

pathways, miRBASE microRNA (miRNA) tar-
get sites32 and TRANSFAC regulatory mo-
tifs.33 The functional analysis was performed
using the g:Profiler software.20 The numbers
of relevant categories are gathered in Table
2. We found several statistically significant ex-
amples of candidates sharing common GO
annotations with pathway genes. It is worth
noting that the candidates of the pathway Sig-
naling in Immune System are enriched in im-
mune response (GO:0006955) and immune
system process (GO:0002376) with P-values
below 1.0–25. Another example is the Mitotic
Cell Cycle pathway where 13 candidate genes
with an average rank <30 are mapped to
various GO terms related to mitotic cell cy-
cle (such as GO:0000278) with a P-value of
8.78−18. These results indicate that our method
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TABLE 2. Protein–protein interactions and GO analysis for candidate genes

Protein– Number of Mean number of
Candidate protein relevant GO GO candidate

genes interactions categories genes

Apoptosis (36) 396 34 1 12
Cell cycle checkpoints (64) 137 82 25 10.44
Cell cycle, mitotic (102) 165 91 20 12
DNA repair (85) 273 103 18 11
DNA replication (49) 131 46 9 8.56
Electron transport chain (64) 290 12 8 9.38
Gene expression (203) 592 162 1 21
Hemostasis (96) 412 88 14 13.29
HIV infection (134) 515 190 11 9.55
Influenza infection (68) 325 0 6 13.83
Integration of energy metabolism (37) 351 0 N/A N/A
Lipid and lipoprotein metabolism (118) 354 37 7 14.14
Membrane trafficking (9) 127 2 2 9
Metabolism of amino acids (65) 400 6 3 9.67
Metabolism of carbohydrates (70) 465 15 N/A N/A
Metabolism of noncoding RNA (17) 177 75 14 10.86
Metabolism of vitamins and cofactors (39) 453 4 N/A N/A
Metabolism of xenobiotics (59) 264 3 7 12.57
mRNA processing (116) 371 78 N/A N/A
Nucleotide metabolism (78) 322 18 3 13.67
Porphyrin metabolism (10) 142 0 1 4
Post-translational protein modification (32) 255 0 7 14
Pyruvate metabolism and TCA cycle (24) 208 0 2 5
Signaling by EGFR (6) 51 0 N/A N/A
Signaling by FGFR (20) 241 1 N/A N/A
Signaling by insulin receptor (32) 381 67 1 34
Signaling by NGF (9) 109 0 N/A N/A
Signaling by Notch (13) 156 1 N/A N/A
Signaling by Rho GTPases (105) 460 33 4 14.75
Signaling by TGF beta (11) 186 0 N/A N/A
Signaling by Wnt (10) 151 2 N/A N/A
Signaling in immune system (136) 380 0 27 13.33
Telomere maintenance (40) 202 55 19 13.16
Transcription (136) 453 214 5 14.4
Translation (137) 524 62 N/A N/A

The total number of resulting candidate genes for each pathway is shown (column 2), together with the number of
protein–protein interactions between pathway members and candidates (column 3). The last two columns show the
number of relevant GO categories for each pathway and the average number of candidate genes corresponding to a
category. Pathways discussed in the text are marked in bold.

successfully suggests candidate genes that
share characteristic GO terms with related
pathways.

Protein–Protein Interactions

We further studied the discovered candi-
date genes by exploring corresponding protein–

protein interactions (PPI) from the databases
Intact,34 HPRD,35 and ID_SERVE,36 using the
GraphWeb software.37 We found that pathway
genes have interactions with candidate genes in
the majority of pathways (see Table 2). Using
this approach, we detected a candidate gene
TNFRSF10C for the Apoptosis pathway. This
gene has protein–protein interactions to four
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pathway genes and is annotated to the Apoptosis
pathway in KEGG1 and to various apoptosis-
related terms in GO. TNFRSF10C was not
part of the Apoptosis pathway in Reactome ver-
sion 23 used in this study, but it appears in the
newest version 24, released in March 2008.

Conclusions

We present a computational study that as-
sesses the power of microarray gene expression
measurements to detect complex interactions
of genes and proteins of known pathways under
various biological conditions. We define a gene
rank-based similarity measure that takes into
account the co-expression correlation of genes
across many microarray samples. We then ap-
ply the measure to predict the members of 35
human pathways from the Reactome database,
using more than 6,000 microarray samples.
We perform exhaustive leave-one-out experi-
ments for all the genes in the pathways, deriv-
ing gene ranks based on their expression sim-
ilarity to other members of the corresponding
pathways.

Our study leads to several biologically
sound conclusions. Ranking of pathway com-
ponents shows significant improvement when
only a subset of pathway genes is used for
expression correlation reference. Such effect
refers to the existence of closely related sub-
sets of genes within pathways that display
stronger similarity to the gene in question
and potentially relate to common function and
regulation.

The reliability of gene expression measure-
ments in pathway analysis shows significant
variation depending on the biological role of
the pathway in question. Our approach of as-
sessing the limitations of gene expression anal-
ysis through an extensive study of curated hu-
man pathways is novel in the field. Our work
establishes this in a strong way because, de-
spite choosing the optimal subpathway and
rank, some pathway genes persistently achieve
insignificant ranks and remain unrecoverable

in a pathway. Genes involved in essential base
processes such as metabolism and translation
have smaller, informative ranks and are gen-
erally well predicted by our method. Signal-
ing pathways, on the other hand, exhibit larger
uninformative ranks due to lower levels of co-
expression. These conclusions can be explained
by different mechanisms of pathway regula-
tion, where genes in the former processes are
governed by consistent transcriptional regula-
tion and exhibit strong co-expression, while the
post-translational and cell signaling regulation
dominant in the latter processes is less related
to the mRNA expression levels measured with
microarrays.

Although gene expression alone cannot ex-
plain the complexity of biological pathways,
our computational framework is immediately
applicable to a number of interesting prob-
lems. Expression similarity ranks can be used
to detect candidate genes that are co-expressed
with known pathway components. Gene ex-
pression data from other species can be incor-
porated via gene orthology mapping in order
to improve pathway inference through con-
served co-expression patterns. Protein–protein
interactions and Gene Ontology analysis can
be applied for filtering candidate genes result-
ing from our methods. Candidates can then
be tested through experimental approaches
and, given sufficient evidence, incorporated
to curated pathways. A similar strategy can
be applied for verifying dubious pathway
annotations.
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