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ABSTRACT

Deciphering heterogeneous cellular networks with
embedded modules is a great challenge of current
systems biology. Experimental and computational
studies construct complex networks of molecules
that describe various aspects of the cell such as
transcriptional regulation, protein interactions and
metabolism. Groups of interacting genes and pro-
teins reflect network modules that potentially share
regulatory mechanisms and relate to common
function. Here, we present GraphWeb, a public
web server for biological network analysis and
module discovery. GraphWeb provides methods to:
(1) integrate heterogeneous and multispecies data
for constructing directed and undirected, weighted
and unweighted networks; (ii) discover network
modules using a variety of algorithms and topo-
logical filters and (iii) interpret modules using
functional knowledge of the Gene Ontology and
pathways, as well as regulatory features such as
binding motifs and microRNA targets. GraphWeb is
designed to analyse individual or multiple merged
networks, search for conserved features across
multiple species, mine large biological networks for
smaller modules, discover novel candidates and
connections for known pathways and compare
results of high-throughput datasets. The GraphWeb
is available at http://biit.cs.ut.ee/graphweb/.

INTRODUCTION AND BACKGROUND

One of the greatest challenges of biomedical research is to
understand the organization and function of living organ-
isms at the molecular level. Experimental and computa-
tional data reveal complex networks that consist of genes

and proteins as nodes and associations as edges (1-3).
While describing different aspects of the cell, these net-
works appear to share universal structural properties like
log-linear distribution of connections and small-world
reachability (4,5). Within networks, modules of tightly
interacting genes and proteins are believed to make up
functional units responsible for processes in the cell (6). For
instance, collections of protein—protein interactions (PPI)
form networks of physically binding proteins, where
modules reflect protein complexes or signalling pathways
(7,8). Gene expression measures, transcription regulator
binding data, cis-regulatory motif discovery and conserva-
tion information are combined to uncover transcription
regulatory networks with modules of transcription factors
(TFs) and target genes (9—12). From a slightly different
angle, text-mining methods extract knowledge-based webs
and co-occurring modules of genes and proteins from
scientific literature (13).

Biological network analysis proposes the following
computational challenges. The strategies need to take
into account the myriad of cellular interactions that may be
directed (e.g. TF—gene interaction) or undirected (e.g. PPI),
involve quantitative values (e.g. gene expression correla-
tion) or appear in multiple datasets (e.g. co-expression and
physical interaction) (14). Combining different cellular
domains requires data integration to deal with various
biomolecules and experimental measurements (15).
Module detection involves algorithms that identify nodes
with special topological features or search for densely
connected areas (16). Biological interpretation of modules
comprises functional analysis using resources such as the
Gene Ontology (GO) (17) and detection of significantly
enriched biological processes, functions and cellular loca-
tions (18).

The growing interest in networks and systems biology
has increased the need for computational and visual
methods for network analysis, and as a result, several

*To whom correspondence should be addressed. Tel: +372 50 49 365; Fax: 4372 737 5468; Email: vilo@ut.ee; vilo@quretec.com

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

© 2008 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published online 7 May 2008

2107 ‘0¢ AeIN UO AIRIqIT MR Uryse| eiog e /310 s[euinolpioyxo-reu//:d)y woiy papeo[umod]


http://nar.oxfordjournals.org/

Nucleic Acids Research, 2008, Vol. 36, Web Server issue

useful tools have been published. Notable software
libraries include AT&T Graphviz for visualization and
C++ Boost for graph structures and algorithms, pack-
aged into Bioconductor by Carey and collegues (19).
Cytoscape is a popular software for visual analysis of
biological networks (20). A number of plugins comple-
ment Cytoscape with analytical features such as micro-
array data integration, dense subgraph detection (21) and
GO-term enrichment analysis (22). Osprey focuses on
visualization (23), while VisANT also provides topological
analysis and functional annotation of nodes (24).
MATISSE is useful for mapping high-throughput datasets
onto network topologies and detecting gene modules using
a number of algorithms (25). BiologicalNetworks is a
network retrieval, construction and visualization tool with
an emphasis on microarray data (26). BioPIXIE provides
a gene-based query engine and GO analysis for a
precomputed heterogeneous network for Saccharomyces
cerevisiae (27). NetworkBLAST allows the user to align
and compare two networks of different species through
user-provided sequence similarity measures to discover
conserved protein complexes (28).

We have identified open questions in the field of
biological network analysis. There is a lack of simple
‘point-and-click’ web servers that allow biological data
integration and discovery of modules. Some of the available
tools involve no biological background information and
force the user to put great effort in integrating datasets,
linking molecules and retrieving functional annotations,
while others constrain the analysis to some pre-calculated
network of a specific model organism. Module detection is
frequently limited to neighbourhood search of gene lists or
topological analysis such as node connectivity. Both
Cytoscape and VisANT implement functionality for
analysing high-throughput networks, detecting modules
and enriched biological features. However, we believe that
there is a need for web-based resources that analyse hetero-
geneous datasets with mixed collections of genes and
proteins, detect various types of modules and and provide
a rich interface for functional annotation. Moreover, there
is little support for the analysis and integration of multi-
species data using automatic orthology mapping. With
the development of the GraphWeb server, we wish to
contribute to the network challenge and propose new
solutions to the above questions.

THE GraphWeb SERVER

GraphWeb (http://biit.cs.ut.ee/graphweb, Figure 1) is a
public web server for graph-based analysis of cellular
networks that:

(1) analyses directed and undirected, weighted and
unweighted heterogeneous networks of genes, proteins
and microarray probesets for 354 eukaryotic genomes;

(2) integrates multiple diverse datasets into global
networks;

(3) incorporates multispecies data using gene orthology
mapping;

(4) filters nodes and edges based on dataset support,
edge weight and node annotation;
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(5) detects gene modules from networks using a collec-
tion of algorithms;

(6) interprets discovered modules using GO, pathways
and cis-regulatory motifs.

Networks in GraphWeb

The primary input of GraphWeb is a combined biological
network of a selected species, consisting of genes, proteins
or microarray probesets as nodes and corresponding
associations as edges. The user may upload the input
data as a file or type it into the webform. Genes, proteins
and microarray probesets of various databases and
platforms are automatically mapped to gene IDs of the
Ensembl database (29) using the g:Profiler software (30).
Unrecognized and ambiguous IDs may be optionally
removed, but remain unchanged by default in order to
keep the input networks intact. Associations between
nodes may be represented as directed or undirected edges,
and weights may be assigned to edges to convey quan-
titative relations between corresponding nodes. A collec-
tion of pre-defined datasets is available for immediate
analysis, including PPI from IntAct (31) and HPRD (32),
and the S.cerevisiae transcription regulatory network by
Maclsaac et al. (33).

Data integration

GraphWeb allows the user to insert and combine different
data sources and align these into a global network. Besides
native plaintext format, Graphweb supports the import of
other network files such as SIF, GML, XGMML and
BioPAX through the Cytoscape BiNoM plugin (34).
Labels can be used to distinguish associations of different
sources, and a network score may be assigned to each label
to denote the predictive power of corresponding associa-
tions. For example, TF-binding networks from ChIP-chip
experiments may be combined and aligned with motif
discovery results, and scored with predictive values
learned from gene expression data.

The integration process first creates a global network
that permits several connecting edges between a pair of
nodes. This is followed by a label-wise weight normal-
ization that makes associations of different networks
comparable. Finally, a linear combination of edge weights
wy,i; and network scores s, for different labels /4 is used to
rank all connected nodes i, j:

Si,j: E ShoWhij-
h

The score S;; is designed to highlight associations with
strong evidence from several sources. The user may also
choose to create network scores automatically and assign
proportionally more power to smaller datasets. This
option provides a direct measure for preferring smaller,
assumably high-quality networks. GraphWeb only sup-
ports the alignment of unambiguous known IDs, since the
alignment of ambiguous entities may lead to erroneous
networks. Proteins or probes that map to several base
gene IDs are treated as independent nodes and corre-
sponding edges are not aligned.
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Multispecies networks

GraphWeb provides means to incorporate data from
different organisms in order to improve network con-
struction. When the user selects a target organism in the
GraphWeb interface the nodes and corresponding asso-
ciations of the input are automatically mapped to
orthologous genes in the target. The orthology mapping
information is retrieved from Ensembl via g:Profiler
software. Resulting ortholog networks can be combined
with other datasets of the target organism to highlight
conserved associations. Similarly to single-species data
integration, GraphWeb ignores ambiguous orthologs in
network alignments to avoid noise and misleading results.
Such a solution retains the cleanest possible network but
undoubtedly results in a certain loss of information.

Graph filtering

GraphWeb filters help the user detect network areas with
strong associations. Three types of filters may be used for
selecting edges: minimum number of supporting datasets
(i.e. labels), lower threshold on edge weights and selection
of top-ranking edges. Node filtering excludes unrecog-
nized or ambiguous genes and proteins, while module
filtering limits the result to larger modules or those with
significant functional enrichments. Filtering techniques
are especially useful when incorporating edges from
different datasets or species.

Gene module discovery

GraphWeb provides a number of methods and algorithms
for detecting gene modules in directed and undirected
networks. Resulting gene modules may easily be saved for
later use or redirected to input for further analysis.
GraphWeb identifies the following types of modules.

Connected ~ components. A connected  component
(Figure 2A) is a group of genes, where every pair of
genes, (g, g;) is connected either directly (g;—g;) or
indirectly via a path of length n, (g—g—...—
g, —gn+1)- GraphWeb also supports two extensions of
the above: a strongly connected component relates to
directed networks and requires connections in both
directions, and a biconnected component requires at least
two non-overlapping paths. Connected component detec-
tion is the first step in studying network structure.

Neighbourhood — modules. A neighbourhood module
(Figure 2D) is based on a user-defined list of genes and
proteins {G} and on a distance d. If d =0, GraphWeb
retrieves modules that consist of nodes G with internal
associations inside the list. If d > 1, modules consist of the
initial list {G} and nodes connected to the latter via paths of
maximum length d. Neighbourhood modules allow the user
to study her focus list in a network context, and retrieve
related nodes and associations to propose new hypotheses.

Hub-based modules. A hub-based module (Figure 2B)
consists of a central sub (a node with many connections)
and related genes and proteins within distance d.
GraphWeb extracts a list of hub-based modules ranked

by the central hub degree (number of connections). Hubs
in PPI networks have been described in the context of
lethality (35), and proteins linking to the same hub often
refer to similar function (36). Hub-based modules may
also reflect systems of TFs and target genes.

Cliques. A clique (Figure 2C) is a fully connected module
where every pair of nodes is directly connected. Cliques in
PPI networks have often been related to protein com-
plexes and common functions (36). Fully connected
modules also reflect clusters of co-expressed genes.

Cluster modules. A cluster module corresponds to a
tightly connected group of nodes. GraphWeb provides
two network clustering algorithms: the Markov Cluster
(MCL) algorithm (37) and Betweenness Centrality
Clustering (BCC) (38). These algorithms break networks
down into separate modules by removing certain edges,
and have been successfully applied in a number of studies,
such as protein family detection (39) and essentiality
assessment (40). MCL constructs modules of edges that
are frequently visited during random walks, while BCC
removes paths that act as bridges between separate tightly
connected modules. Graph clustering is successful in
integrative network analysis since it prefers associations
with evidence from multiple datasets, and allows the
detection of hybrid modules that combine the character-
istics of different module types.

Empirical comparisons show that the time complexity
of the above algorithms is generally linear to the number
of edges. The NP-complete clique detection algorithm is
the most computationally expensive method in GraphWeb
and is especially sensitive to dense networks, where a
network of 30 nodes and 300 edges requires a computation
of nearly 10 min. MCL clustering, on the other hand,
takes 10 min to handle a network of nearly 8000 nodes
and 300000 edges using GraphWeb default values. Hub-
based modules and connected components are detected
even faster.

Module interpretation and evaluation

Interpretation and evaluation is an integral process of
module detection in GraphWeb. Once a module has been
identified, GraphWeb automatically assesses its biological
importance through the known properties of its members
using the g:Profiler software. Functional profiling of the
module involves statistically enriched annotations of
biological processes (bp), cellular locations (cc) and
molecular functions (mf) from the GO (17), and related
pathways (pw) from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (41) and Reactome (42). Besides
functional annotations, the analysis takes into account cis-
regulatory motif enrichments from TRANSFAC (43) and
miRNA target site enrichments from miRBase (44).
First, g:Profiler applies the Fisher’s test to evaluate the
enrichments of all biological annotations in the module:

min(n,K) (K) (N—K)

Do = Z k) \n—k

= )
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GraphWeb is a public web server for graph-based analysis of biclogical networks that:

+ analyses directed and undirected, weighted and unweighted heterogeneous networks of
r genes, proteins and microarray probesets for many eukaryotic genomes;
integrates multiple diverse datasets into global networks;

*
+ incorporates multispecies data using gene orthology mapping;

+ filters nodes and edges based on dataset support, edge weight and node annotation;

+ detects gene modules from networks using a collection of algorithms;

+ interprets discovered modules using Gene Ontology. pathways, and cis-regulatory motifs.

GraphWeb home | Contact us | GraphWeb help

‘I Define network

DATASETS A 1

2 Choose a network i 3 Modify network

ALGORITHM B, || DSETTINGS Cj

121 [~ From direct input 11 ® Connected components Ef:lge settings -
N S m strongly connected components {1 Remove edges with |ess than 4 labels
171 I From a file in your computer o i
171 € Biconnected components 7] Keep IlOO % of heaviest edges
171 ¥ From afile in our server 171 © Whole graph 171 [ Assign more weight to smaller networks
Choose an example input or your saved input: 171 € Hub-based modules 171 I create global network (remove all labels)
|my_favourite_datasets.dat = |71 € Maximal cliques .
41 € MCLclustering Node settings )
Advanced input 2] (" Hetwerrness centraliny clisoring :ﬁ‘n;ti:gv:o%ines: (41 I unknown 71 I
Organism:
: 7] Keep IlOO % of most connected nodes
IHomO sapiens :I 111 I Network neighbourhood
Module settings
171 7" Merge different IDs of same gene 171 Hide modules with less than |30 nodes
171 ¥ convert orthologs 71 ShowllOO largest modules
Orthiolog organism: 171 I calculate functional scores using
[Mus musculus = giProfiler

171 I sort modules by functional score
171 I Hide insignificant modules

| Uit aDs D!

Create a private data folder and upload files. Submit |
These will appear in your input menu in the main
window,

Data folder actions: /| [Create new folder]
171 [Use my existing folder] [?] [Close foldar]
Dataset actions: || [Upload dataset to folder]

171 Active data folder: tutorial
11| :Uploaded datasets:: =

171 View dataset (7] Deletedataset]

Network information

Network type: Nodes: Edges: Edge density: Average node degree: Clustering coefficient: E
Undirected 15632 225 0.0 % 0.0 0.002
Module information F
Label Weight Edges
|cocrr 1 31173 e
S i
Algorithm running g goie - Algorithm Node names; | HPRD 1 36582 Modules Modules €alth 8 fode
time: ﬁaieTsl Connected Conversion |Hs 2 6877 found: shown:
00:41 53p! components table [INTACT 1 20266 15450 1 (largest) Find I
IINTACT_ORTH 1 6522
MM 2 19682
10.6 % MNodes Edges Send DNA repllcatmn compact
initiation . labeled
Input origin recogmtlon
complex ...
G H I protein binding
Cell cycle

1.21e04 MIRBASE  Mi:hsa-miR-30a-5p
EEEEE REACTOME Cell Cycle, Mitotic
2.37e-07 TRANSFAC NNNNRRCCAATSR:4

execute g:Profiler

Figure 1. GraphWeb user interface with data from the case study of human PPI and gene expression (see Results Section for a detailed description).
The first module of 33 nodes is shown in Figure 2. User interface legend: (A) data upload, (B) module detection algorithms, (C) options and filters,
(D) user data storage, (E) network information and labels, (F) module information and gene search, (G) module export, (H) module zoom-in
analysis, (I) module label distribution, (J) module annotation score, (K) best functional enrichments and link to g:Profiler, (L) links to module
visualization and (M) export to SIF format.
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Figure 2. The case study: a connected component (A) detected from the combined network for protein interactions and gene expression similarity.
The discovered module describes a fragment of the human cell cycle and consists of several smaller modules. Two cyclin-dependent kinases (CDC2,
CDK2) are hubs regulating different cyclins [e.g. CDC2 module (B)]. MCM2-7 proteins form a helicase and five of these connect into a clique (C).
The network neighbourhood module of ORC2L and ORCSL (D) contains origin recognition complex proteins.

The test computes the cumulative hypergeometric prob- genes having the annotation K. The g:Profiler uses a 5%
ability of randomly observing at least k genes with some multiple testing threshold g:SCS that applies a simulation
common annotation « out of the n genes in the module, procedure to retrieve only the significant enrichments

given the total number of genes N and the total number of from a hierarchical annotation structure like GO (45).
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Once all enrichments for the module are known,
GraphWeb computes an annotation score that sums the
total significance relative to module size n:

P > o —10g10(pa)

n
The score is designed to highlight modules with strong
size-independent enrichment of functions and regulatory
features.

GraphWeb executes on-the-fly functional profiling and
scoring of detected modules, displaying the names and
P-values of most important discovered features from all
the covered functional domains (GO:bp, GO:cc, GO:mf,
KEGG:pw, Reactome:pw, TRANSFAC, miRBase).
Hyperlinks to g:Profiler allow the user to access related
terms and pathways, ortholog mapping and expression
similarity search for related genes. In addition, a hyperlink
to g:Cocoa at the bottom of the GraphWeb interface
sends all discovered modules to comparative functional
enrichment analysis.

RESULTS: A CASE STUDY

We present an example case study that demonstrates a
possible data integration and module detection pipeline.
The analysis concentrates on human cellular networks and
involves six high-throughput datasets comprising gene
expression values and PPI from public databases. Human
PPI data originate from the study by (46) and the databases
HPRD (32) and IntAct (31), and are interpreted as three
separate networks. Human expression data are presented
as an expression similarity network, computed using Multi
Experiment Matrix (MEM) (Adler et al., manuscript in
preparation) across nearly 3700 tumour-related samples of
89 public datasets, originating from GEO (47) and
ArrayExpress (48). Besides human data, we use orthology
mapping to incorporate two datasets for mouse: a MEM
gene expression similarity network across 28 datasets and
1700 samples, and the PPI data from IntAct.

Unweighted PPI datasets and weighted expression
similarity datasets are aligned into a global-weighted
network. Integration of the above datasets reveals
frequently co-expressed protein complexes such as ribo-
some and proteasome. We applied a strong edge filter of
minimum dataset support 4, and queried for connected
components. The largest resulting component consists of
33 nodes and four notable submodules, is included in
known pathways of Reactome and KEGG, and involves
strong GO enrichments.

The module plays a significant role in cell cycle and is
well described with PPI as well as gene expression
similarity. The two hubs denote cyclin-dependent kinases
1 (CDC2/CDKI1) and 2 (CDK2), see Figure 2B for the
former module. These kinases control the cell cycle entry
to S-phase, while CDK1 also controls the entry to mitosis
(49). MCM2-7 proteins form a helicase and five of these
connect into a clique (Figure 2C). The neighbourhood of
ORC2L and ORCSL partly reveals the origin recognition
complex (ORC) (Figure 2D), that temporarily interacts
with CDT1 and CDC6 and binds to the helicase to initiate
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replication in S-phase. Other connected proteins include
cell cycle checkpoint controllers (e.g. CHEKI1 kinase),
inhibitors (GMNN, BIRCS) and cyclins (CCNEI1,
CCNE2, CCNBI).

The thorough common-knowledge description of the
detected module provides support for the techniques
proposed in GraphWeb. The rather strong filters applied
above naturally extracted a well-studied result out of a
large collection of public data. The GraphWeb case study
provides a simple example of the possibilities and
potential results of analysing novel data or combining it
with existing public repertoires.

DISCUSSION

The core data structures and algorithms in GraphWeb
render the myriad of molecular entities and corresponding
relations, physical connections and regulatory events into a
uniform collection of network nodes and connecting edges.
On the one hand, this simplification creates an intuitive
view of the cellular networks. GraphWeb analysis methods
allow the researcher to approach a number of interesting
tasks, for example proposing novel members of known
pathways by strong ‘guilt by association’ evidence,
comparing the results of multiple high-throughput data-
sets, or finding associations and modules of genes that are
conserved in diverse species. On the other hand, looking at
topological features, weighted edges and tightly connected
groups of nodes may admittedly fail to deliver crucial
aspects of biological systems, such as quantitative depen-
dencies and dynamics over time. The greatest advantage of
GraphWeb analysis is its relative simplicity and speed in
handling complex objects as networks. We therefore
believe that GraphWeb also proves useful in detailed
network studies, since it allows the user to reduce the
complexity of the whole network to the complexity of
modules. Such a reduction may then provide access to more
elaborate methods of mathematical modelling that are
inapplicable to systems larger than a handful of variables.

CONCLUSION

GraphWeb is a publicly available web server for analysing
and interpreting complex cellular networks. The server
provides methods for integrating heterogeneous datasets
into networks of interactions, means to incorporate
multispecies data using gene orthology information,
algorithms and methods for discovering network modules
and functional enrichment analysis for biological inter-
pretation. With the creation of the GraphWeb server, we
wish to contribute to the difficult task of deciphering and
understanding complex biological networks, and provide
a tool with an emphasis on ease of use.

IMPLEMENTATION

The GraphWeb web server is implemented in Perl as
a CGI application. Graph structures and algorithms are
written in C++ and Perl and are partly based on the
Boost Graph Library (http://www.boost.org/). GraphWeb
applies the MCL algorithm implementation by
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van Dongen (37) (http://micans.org/mcl/). Visualization is
provided by the AT&T Graphviz graph drawing package
(http://www.graphviz.org/) and the SWOG graphical
programming language (http://biit.cs.ut.ee/SWOG)/).
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