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Abstract

Next-generation service providers will offer an array of
services and applications that is media-rich, personalized,
and context-aware. In this future environment, new ser-
vices and applications will be introduced, provisioned, op-
erated, maintained, and retired at a pace that tracks chang-
ing customer requirements and demands. In order to be
cost-effective, these services and applications need to be de-
livered over an all-IP infrastructure, which is autonomically
managed to ensure their delivery at a satisfactory level for
subscribed customers. In this paper, we propose a blueprint
for a generic Autonomic Service Architecture (ASA) to ad-
dress these challenges.

1. Introduction

Traditional Service Providers (SPs) are in the midst of
a transition from circuit-switched networks, to IP-based
packet networks. This transition allows the introduction of a
broad range of media-rich, context-aware, and personalized
services. However, with the increasing demands for Qual-
ity of Service (QoS) by customers, SPs are faced with the
challenge of provisioning and managing their service de-
livery infrastructure in an efficient, cost-effective, and flex-
ible way. Currently, such techniques are mainly manual,
leading to slow response times, customer dissatisfaction,
and increasing costs. With the changing landscape presag-
ing further complexity of service capabilities, the problem
is further compounded. Therefore, SPs need solutions to
dynamically marshal their service delivery infrastructure to
support the required service mix at a given point in time.
In this paper, we propose an Autonomic Service Architec-
ture (ASA), which aims to reduce costs incurred by SPs for
service delivery, to improve the customers’ experience by
guaranteeing pre-defined QoS levels, and to optimize the
use of resources at the SP’s disposal.

Service delivery follows a lifecycle [1], mainly consist-
ing of the following phases: Creation, Activation, Provi-

sioning, Management, and Termination. ASA proposes a
generic architecture to deal with service delivery autonom-
ically. For ASA to operate correctly, SPs will first have
to (mostly manually) setup their infrastructure according
to the guidelines governing ASA’s operation. Then, they
can offer services to customers, and use ASA to allow au-
tonomic activation, provisioning, management and termina-
tion, without SP’s intervention.

Several approaches have recently emerged that relate to
ASA, but none is generic enough so it can be applicable to
all services, with only minor changes in the setup. The first
work in the new wave of autonomics has been the Auto-
nomic Computing proposal by IBM [2]. However, IBM’s
approach exclusively focuses on computing resources for
IT services delivery. Our work aims to expand this basic
view to include telecommunications services, which con-
sist of both computing and networking resources. An-
other proposal, Autonomic Communication [3], has simi-
lar aims to IBM’s Autonomic Computing proposal, except
that it focuses on individual network elements, and studies
how the desired element’s behavior is learned, influenced
or changed, and how it affects other elements. Our work is
focused on services, and therefore is a top-down approach
as compared to this bottom-up approach. Furthermore, we
consider the interplay of both networking and computing
resources to offer services.

In addition, projects such as Autonomia [4], Auto-
Mate [5], and Oceano [6] are using the autonomic con-
cept in various ways. Autonomia provides dynamically
programmable control and management to support devel-
opment and deployment of smart applications. AutoMate
enables development of autonomic Grid applications [7]
that are context-aware, and capable of self-configuring, self-
composing, and self-optimizing. Oceano is developing
a prototype for a scalable infrastructure to enable multi-
enterprise hosting on a virtualized collection of hardware
resources with dynamic adaptability. HP [8] proposes a
service-oriented control system that constantly re-evaluates
system conditions and re-adjusts service placements and ca-
pacities, organized as an overlay topology with monitoring



and actuation interfaces to underlying services. Work in-
volved with policy-based provisioning of computer systems
was presented in [9], and in [10]. In the former, policies
in a shared computing infrastructure are used to ensure cus-
tomers receive services with pre-defined levels. In the latter,
BPEL workflows [11] are used to provision application ser-
vices and to automate changes made to this initial provision-
ing. The difference between ASA and all these approaches
is that they consider particular services to which their de-
sign is appropriate. In addition, each approach tackles only
one phase of the service delivery process.

The main contribution of this paper is that it proposes
an architecture to ensure automated delivery of services in-
volving both computing and networking resources. To our
knowledge this is one of the earliest works in that direc-
tion. In addition, ASA is concerned with several phases
of the service delivery process, to present an integral ap-
proach to SPs wishing to deliver services over their infras-
tructure. Our previous work [12] on ASA introduced a high-
level overview of the architecture. In this paper, we explain
ASA’s concepts and design in more details. Due to space
limitations, this paper will mainly focus on the architecture.
In future publications, we hope to further detail ASA’s op-
eration and the algorithms it uses.

2 Autonomic Service Architecture Concepts

In this section, we present the major concepts behind
ASA’s design, namely considering that “everything is a
service”, allowing autonomic service delivery, using vir-
tualization, and proposing Autonomic Resource Brokers
(ARBs) to regulate ASA’s operation.

2.1 Everything is a service

ASA is mainly driven by the view that, for a SP, “every-
thing is a service”. Some services can be offered to cus-
tomers, such as Voice over IP (VoIP), while others are used
as components to build other services, such as IP packet
transport. This approach is not new, and dates back to tele-
phony services and the Intelligent Network [13] platform.
More recently, in the IT world, service oriented architec-
tures have emerged to deliver IT services [14]. ASA is built
around the same concept: A service delivered to a customer
by a SP is usually formed from a composition of component
services. Some services are “atomic”, i.e. cannot be broken
down into component services anymore, and usually act on
the underlying resources. We refer to them as basic ser-
vices. Other services, composed of several components, are
referred to as composite services. Every service consists of
an allocation of resource amounts to perform a function.

2.2 Autonomic Service Delivery

Automating the delivery of services involves orchestrat-
ing the SP’s computing and networking resources to de-
liver services according to pre-defined service level agree-
ments (SLAs). This goal is achieved through a control loop
which monitors the underlying resources, analyzes the situ-
ation, plans future actions, and executes them [2]. This au-
tonomic control loop needs to provide autonomic systems
with the self-management characteristics: self-configuring,
self-optimizing, self-healing, and self-protecting. In ASA,
the building blocks of this autonomic control loop are kept
as generic as possible to be easily adjustable for all services.

In a real-world environment, it is highly unlikely that a
single SP is capable of offering End-to-End (E2E) service
delivery, since multiple SPs would usually be involved in
the E2E delivery path. Recent work has addressed the issue,
using Infranets [15] to provide E2E QoS guarantees. ASA
is designed to simplify this E2E service delivery.

2.3 Virtualization

Virtualization is a commonly used approach to decou-
ple the user-perceived behavior of hardware and software
resources from their actual implementations. With the in-
creasing number of heterogeneous resources involved in the
delivery of a service, ASA uses virtualization to abstract un-
derlying resources (such as servers, routers). A virtualiza-
tion layer makes this abstraction possible. In ASA, under-
lying resources appear as a substrate to which requests are
sent, and from which responses are received.

All services in ASA could be seen as “Virtual Services”,
a concept we previously introduced [16], based on the itera-
tive composition of services, as well as an iterative approach
for the provisioning, operation, management, and termina-
tion of these services. Fig. 1 shows ASA’s layered view
(top part), as well as the notion of Virtual Services and their
layered management (lower part). In the rest of this paper,
we refer to Virtual Services as services for simplicity. In
ASA, composite services are a QoS-based composition of
basic services, hence ASA can be seen as a service oriented
architecture (SOA) for telecommunication services.

Physical resources refer to hardware (router, server,
switch, link), or software (content) resources at the SP’s
disposal. Each physical resource can be virtualized into sev-
eral Virtual Resources (VRs), which can be seen as differ-
ent capabilities of that same resource. Virtualization facil-
itates ASA’s operation, because it abstracts the underlying
resources, and simplifies interaction with them. Regardless
of the underlying resources’ topology, the virtual resources
layer exhibits a single adapter to ASA, as explained in [12].
The interaction between ASA and this adapter follows well-
defined formats detailed next, while the interaction between
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the adapter and the underlying resources depends on the
topology at hand. For instance, in Grids, ASA interfaces to
the Grid Resource Allocation Manager (GRAM) [7]. Fig-
ure 2 shows the virtualization procedure for different under-
lying resources’ topologies.

We define the Common Resource Format (CRF), an
XML-based representation, to represent the different types
of virtual resources needed for service delivery. CRF needs
a mapping function between the absolute metrics and the
CRF metrics. We propose to benchmark absolute metrics
(CPU speed, RAM) against well-known service needs, in
order to obtain service-oriented CRF metrics. For instance,
for a VoIP service, it is more useful to know that a server
can handle Y voice streams using G.723 codecs.

As well, we define the Common Command Format
(CCF), an XML-based representation, to provide a com-
mon representation of the actions that need to be performed

on the underlying resources. Some commands have argu-
ments, as well as a mapping function between CCF, and
the “backend” commands performed on the underlying re-
sources. For instance, for a VoIP service, commands such
as “Set” can be destined to an edge router, and the argument
could be a DiffServ class, and the criteria for an incoming
IP packet to be considered in that class by the edge router.

2.4 Autonomic Resource Broker

As mentioned previously, the main task of ASA con-
sists of automating the delivery of services offered by a
SP to customers. This goal is achieved in ASA through a
self-managing entity, called the Autonomic Resource Bro-
ker (ARB), whose role is to ensure automated delivery of
the services by SPs. ARBs handle provisioning, manage-
ment, and termination of services autonomically, by inter-
acting with underlying resources and component services.
The format of the messages sent and received by ARBs are
based on the aforementioned CRF and CCF representations
for resource quantification and configuration respectively,
hence are independent of the actual resources involved in
the service delivery. This allows the SP to have an ARB
“template”, which we detail in the next section, that only
needs to be slightly modified for each specific service.

When customers activate service instances they have
bought from SPs, these service instances are managed
at the SPs by Service Instance ARBs (SIARBs), with a
pre-defined aggregation level. This aggregation level cor-
responds to the grouping of individual service instances
(ISIs). The multiple service instances of a particular ser-
vice offered by a SP (managed by SIARBs) are man-
aged by Composite ARBs (CARBs). In addition, some
CARBs, called basic CARBs, manage the basic services
which sometimes only consist of virtual resources. Other
CARBs, called composite CARBs, manage composite ser-
vices. The different services offered by a SP (managed by
CARBs) are managed by a Global ARB (GARB), which
handles all the resources available at this SP’s disposal. A
layered structure of ARBs is proposed, as shown in Fig. 3.

3 Autonomic Service Delivery using ASA

In this section, we describe ASA, and show how it en-
sures automated delivery of services. The scenario we con-
sider is that of a SP offering a range of services with dif-
ferent Classes of Service, advertised to customers. CARBs
are built per-“Class of Service”, and per-“Customer Type”.
In ASA, SPs specify two main documents to regulate a
CARB’s operation: SLA Templates and Service Templates,
which are stored in the SP’s GARB, with local copies avail-
able at the appropriate CARBs. As mentioned previously,
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service delivery is ensured by the interaction of ARBs form-
ing ASA. The ARB architecture is shown in Fig. 4.

3.1 Templates and Information Bases for
Automated Delivery

3.1.1 SLA Templates

Defines SLA Templates for the services offered over ASA.
ASA adopts the TMF’s classification of customer types [1]:
Individuals, Enterprises, and Other SPs. We believe that
the expertise level for the three customer types are differ-
ent, hence it is possible to define three SLA Templates per
service offered to customers based on these types.

3.1.2 Service Templates

Defines Service Templates for the services offered over
ASA, which are needed to allow ASA to operate autonom-

ically and to ensure delivery of services. Some fields in the
Service Templates are fixed, while others are set at runtime,
as a result of the SLA negotiated between customers and
SPs. Service Templates will provide guidelines for the op-
eration of ASA, and since several Classes of Service are de-
fined for each service offered, a different Service Template
is needed for each such Class of Service.

3.1.3 Information Bases

Information Bases are needed to store the information
needed by ARBs. Information Bases (IBs) can be classified
several logical groupings. Five major information bases are
needed: Policy IB (PIB), Customer IB (CIB), Service IB
(SIB), Resource IB (RIB), and Knowledge IB (KIB).

3.2 Policy Control

Several policies are created initially by SPs manually, or
at runtime as a result of customers buying services. Existing
policies can be updated as a result of service demand and
load variations. The role of this part is to ensure policies
are valid, written in the appropriate format, and distributed
to the appropriate component when needed.

3.2.1 Policy Translation

All policies are stored in the PIB according to a pre-defined
format [17]. In order to be easily used in the ARB’s opera-
tion, the role of this part is to check new policies and ensure
they are in the appropriate format prior to being validated,
and distributed or stored in the PIB.

3.2.2 Policy Validation

Several policies exist in the PIB at any time, and the creation
or update of policies could lead to conflicts, redundancy, in-
consistency, and infeasibility. The role of this part is to en-
sure no such problems occur and to remedy to them, using
appropriate algorithms [18], prior to storing the validated
policies in PIB.

3.2.3 Policy Distribution

When needed, the appropriate policies are distributed to the
ARB components or to other ARBs, becoming sentinels
that ensure valid ASA operation.

3.3 Customer Control

Customer Control is involved in the interaction between
SPs and customers. It consists of the Customer Reporting,
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SLA Agreement, and SLA Translator components. It is im-
portant to differentiate between the SLA Agreement com-
ponent of Customer Control and the Service Initiation com-
ponent of Provisioning Engine. SLA Agreement is a one-
time operation that occurs prior to using the service by the
customer. The Service Initiation, on the other hand, occurs
each time the customer activates a service instance to use
the service he had previously subscribed to.

3.3.1 SLA Agreement

To reach an agreement over the SLA, a simple negotiation
procedure is needed. Note that the format and the seman-
tics of the SLA are transparent to the negotiation procedure.
In ASA, we propose a simple SLA Negotiation procedure,
shown in Fig. 5. SPs keep different SLA Templates for each
service offered, depending on the customer types. These
SLA Templates will be used to create SLA forms that are
filled by customers.

We now briefly explain the operation of the SLA Nego-
tiation procedure. Initially, the SP is offering a range of ser-
vices to its customers through an interface with “implicit”
Classes of Service. At this point, the customer is in the
“Ready” state. In the first phase of the negotiation, the cus-
tomer chooses the service (with the Class of Service) that
it would like to subscribe to, sends the request <Customer
Type, Service Wanted, CoS> to the SLA Agreement com-
ponent. The request is matched to the appropriate SLA
Template, and an SLA form with empty fields to fill is sent
back to the customer, who moves to the “Start” state. In the
second phase of the negotiation, the customer fills in this
SLA form with the missing information <Customer Per-
sonal Information, Service Schedule, Customer Reporting
Information,. . . >. This information, along with the cur-
rent number of negotiation attempts (referred to as nego-
tiation info.), is sent back to the SLA Agreement compo-

nent, which verifies that the negotiation info. is valid, based
on pre-defined algorithms specified by SPs. These algo-
rithms could be as simple as verifying completeness of the
Customer Personal Information, the possibility to offer the
service as per the Service Schedule specified, and to en-
sure that the frequency of Customer Reporting Information
does not exceed an overhead threshold. If the negotiation
info. is valid and does not violate any policies, the SP in-
forms the customer that the negotiation is successfully com-
pleted and that an agreement has been reached. The SP
creates a unique identifier for the customer. At this point,
the customer is in the “End” state. The negotiation info.
validated, along with other fields, now referred to as SLA
info., are sent to the SLA Translator component. If the ne-
gotiation info. is invalid , the SP refuses the agreement,
and sends a Problem notification to the customer, informing
him of the fields which cause problems. Alternative values,
or bounds on values allowed, could also be proposed. In
general, the Problem message consists of: <Problem Iden-
tifier, Time that the problem was detected, Gravity of the
situation (Relates to attempts), Problematic Fields, Sugges-
tions on values for the problematic fields (Optional)>. This
procedure is recursive, and continues until an agreement is
reached. However, several ways for SPs to reduce the length
of the negotiation are possible. For instance, a limit N on
the number of attempts can be used, and when (N − 1) at-
tempts are made so far, the SP can then issue a “Last Offer”
reply, indicated by the “Gravity of the situation” field in the
Problem message. The customer responds either positively
(with valid entries in the SLA form), or negatively. In ad-
dition, this procedure allows the customer to interrupt the
negotiation at any point by sending a “Reject” message as a
response to the SP’s Problem message. Note also that both
the SP and the customer can interrupt the negotiation at any
time in the negotiation procedure, by sending a “Stop” mes-
sage to the other party.

3.3.2 SLA Translator

Once the negotiation procedure between the customer and
the SP is completed, SLA info. is sent by SLA Agree-
ment to SLA Translator. SLA info. is parsed in the SLA
Translator, and based on the fields parsed as well as the pre-
defined policies regulating the SLA Translator, new policies
are generated (if needed) and sent as Policy Info. to the Pol-
icy Control for validation prior to being stored in the PIB.
The SLA Translator sends the SLA info. to the CIB to store
the information based on the Customer Identifier field in
SLA info., which is unique. In addition, the SLA Translator
fills the updated bill for the current cycle for the particular
customer with the flat charge in SLA info. The Billing En-
gine, based on the billing policies, will generate the billing
update info. at a frequency specified in SLA info.
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3.3.3 Customer Reporting

Customers wish to have access to monitoring results, in or-
der to allow them to switch SPs if performance is not satis-
factory. Customer Reporting sends the performance results
back to the customers, at frequencies / circumstances re-
sulting from the customer’s SLA Agreement with the SP.
This performance info. is sent by the SIB when polled
by Customer Reporting based on policies created at run-
time when SLAs were agreed upon between customers and
SPs. When Customer Reporting Information conditions /
circumstances are met, the performance info. is polled from
SIB based on the unique Customer Identifier, and put in the
appropriate format to be displayed to customers.

3.4 Provisioning Engine

Customers activate services bought by contacting the
Service Initiation component in the CARB handling the de-
sired service, as shown in Fig. 6.

3.4.1 Service Initiation

The activation info. received contains: <Customer Identi-
fier (Unique), Service Identifier (Unique)>. The initiation
request sent by the customer goes through a Call Admis-
sion Control (CAC) algorithm, which accepts or not this
initiation request. This allows unique matching in the CIB
contents, to retrieve the SLA info. In addition, the Service
Template contains information that can be retrieved for the
service. The SLA info. and the Service Template lead to the
service info. sent to the Service Provisioning component for
appropriate service provisioning.

3.4.2 Service Provisioning

ASA is built based upon the premise that ”everything is a
service”. Using this approach, composite services are com-
posed out of component services, and provisioning com-
posite services consists of choosing the appropriate virtual

resources amounts to allocate to each service component,
and the basic services which perform the actions needed to
“program” the resources in the order needed.

The Service and QoS analysis component parses service
info., to determine the type of component services needed,
the order in which these services need to be executed, their
QoS requirements, and the constraints on them. For E2E
service delivery, the Service and QoS analysis component
uses the mapping information in service info. to map the
QoS characteristics of individual service components to the
E2E delivery QoS requirements. For instance, the com-
pounded E2E bandwidth that can be guaranteed is the min-
imum of that provided by each component service refer-
ring to IP transport that is involved in this E2E path, while
the compounded delay that can be guaranteed is the sum
of that incurred in each component service referring to any
resource which introduced delay in this E2E path.

The Components Services Selection component opti-
mizes the selection process of basic services from all the
services at the disposal of the SP, some of which are owned,
others were bought from other SPs.

The Resource Allocation component decides on the
amount of virtual resources of each type needed for the ser-
vice instance, based on algorithms providing optimal allo-
cation amounts [19]. These amounts are expressed using
CRF. For instance, amount X of VR1, and amount Y of
VR2 are needed for this service instance. These values are
stored in the ARB’s SIB based on the service instance iden-
tifier, and the ARB’s RIB is updated to reflect the allocation
amounts decided by the Service Provisioning component,
so that available resource quantities are up-to-date.

The Resource Configuration component decides on the
actions to be taken for the provisioning of the service in-
stance, based on algorithms providing optimal scheduling
of actions [20], and expressed using CCF. For instance,
“Select” server X for this service instance. Some of the
possible configuration commands in CCF involve physical
resources configuration, changes to call admission control
mechanisms at a physical resource, redirection of traffic en-
tering a physical resource, using a particular server / gate-
way to achieve load balancing. These commands are stored
in the ARB’s SIB based on the service instance identifier.

The Service Provisioning components use the service
info. resulting from the Service Initiation component, and
make their decisions based on policies stored in PIB, as well
as the status of the resources at the disposal of the SP for
this service, stored in the CARB’s RIB. The output of this
component, called provisioning info., contains information
sent to the Resource Manager component for provisioning
the underlying resources.
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3.4.3 Service Termination

When customers want to stop using a service, or when SPs
want to retire a service, they send termination info. to the
Service Termination component. The termination info. con-
sists of the Service Instance Identifier, which is unique in
the ARB’s SIB. The Service Termination component re-
trieves the provisioning info. from the SIB, parses, modi-
fies, and transforms it into the reverse of the actions taken
when the service instance was activated and the resources
were allocated / configured. For instance, “Allocate” has
“Release” as a converse. The output of this component is
release info., which has a similar structure to provisioning
info., except that it performs reverse actions. The values in
the ARB’s RIB for resource amounts are updated by adding
the amounts of released resources to the updated resource
quantities available.

3.5 Resource Manager

The resource manager is the component communicating
with the underlying ARBs/physical resources needed, and
taking the actions needed to provision the resources needed
by the service instance, as shown in Fig. 7.

3.5.1 Workflow Engine

Given that the Service Provisioning decided on the amounts
of resources needed as well as on the actions to be per-
formed on the underlying ARBs / resources, the Workflow
Engine supervises the execution of this workflow by send-
ing the actions needed to the Distribution Engine.

3.5.2 Distribution Engine

The actions are distributed to the appropriate underlying
ARBs / resources, according to the sequence dictated and
controlled by the Worklfow Engine. These actions are sent
according to the aforementioned CRF and CCF formats,
and an adapter is needed to translate from CCF / CRF to

the proprietary formats needed to interface with the physi-
cal resources directly (SNMP, CLI, TL1 . . . ).

3.5.3 Spawning Engine

The ARBs needed to manage the service instances activated
are spawned by the Spawning Engine, following the con-
cept presented for Virtual Networks (VNs) [21]. Due to
space limitations, we will omit details of the spawning pro-
cess, which is inspired by the initial VN design. Spawning
provides the child ARB with the information it needs to start
delivering the service instance it handles.

After the autonomic provisioning is completed, the un-
derlying ARBs will monitor the operation of the provi-
sioned service instances. Problem are handled at the cur-
rent ARB level, unless no solution is found, then the parent
ARBs will attempt to remedy the situation.

3.6 Monitoring Engine

The Monitoring Engine operation is regulated by poli-
cies retrieved from the current ARB’s PIB, based on
the matching criteria. A monitoring policy indicates:
<Measurements Needed, Frequency of polls (per unit
time), Need for Notifications (Boolean value)>.

3.6.1 Measurement Collector

Resource measurements are collected by the Measurement
Collector component, which is the interface to the under-
lying measurement infrastructure and receives raw perfor-
mance data, which it passes to the Filter Engine. Based on
the frequency of polls defined by the monitoring policies,
the Measurement Collector polls the underlying resources
to obtain the required measurements.

3.6.2 Filter Engine

Resource measurements are filtered by the Filter Engine
component, and sent to both the Metric Mapping compo-
nent in Monitoring Engine and to the Operation Manager
component. Measurements can be obtained either through
polling, notification, or periodically. The algorithms to fil-
ter unwanted data are specified. At the ARB components,
the tradeoff is between precision and overhead of measure-
ments. The more precise the results are needed to be, the
more measurements we need to perform. The filtering pro-
cedure is a feedback loop, where the frequency of the filter-
ing measurements and the filtering criteria can be changed
based on changing conditions, or after catastrophic events,
in order to ensure that the operation is back to normal by
changing monitoring policies in the PIB.



3.6.3 Mapping Engine

ASA views resources as virtual, consisting of an abstrac-
tion of physical resources. The measurement infrastruc-
ture collects raw performance data. Some are network-
level metrics, such as CPU utilization, bandwidth, queue
lengths, memory utilization. Others are application level
metrics such as application response time, number of ses-
sions, transaction rate. Hence, there is a need to map net-
work and application measurements (raw measurements)
to performance metrics (QoS parameters), as illustrated in
the Service Template, for the Operation Manager compo-
nent to analyze them. QoS parameters can be obtained
by mappings ranging from simple operations such as sum-
mation, average, maximum, or minimum of a group of
measurements collected, to more elaborate mapping algo-
rithms [22].

3.6.4 Correlation Engine

Prior to sending the performance metrics to the Operation
Manager component, we detect some situations that might
help reduce the overhead and the information exchanged in
the ARB. For instance, some measurements may be redun-
dant, some may be received late and may obsolete previous
measurements on the same resource, which are not obvious
to detect. Algorithms are defined with different intelligence
levels to handle this problem using techniques such as spa-
tial or temporal correlation [23]. The QoS Measure sent to
the Operation Manager contains measured QoS parameters
related to the service managed by the current ARB.

3.7 Operation Manager

3.7.1 Problem Detection

Several problems occur in the SP domain. Faults can oc-
cur when computing or networking components fail. Over-
loads can occur when the demand on a particular compo-
nent (computing or networking) exceeds the capacity of the
component. Congestion can occur when the performance
of some components (computing or networking) degrades
because of excessive load. For instance, the Problem De-
tection could be as simple as comparing load measures for
underlying resources vs. thresholds allowed by policies.

The result of the operation performed by this component
is sent to the Planning Engine as problem info., containing
the Virtual Resource Identifier, along with the problem type
(Fault / Overload / Congestion) detected.

3.7.2 SLA Evaluation

Based on the QoS measure obtained from the Monitoring
Engine, SLAs are evaluated following mapping of QoS pa-

rameters to the SLA for that service instance. An SLA vi-
olation detection test is performed by comparing this eval-
uated SLA with the agreed upon SLA between customers
and SPs. Violations that are detected are sent to the Plan-
ning Engine for appropriate plan elaboration, as a violation
info. message. The violation info. needs to indicate the
time of occurrence of the violation, and the SLA parame-
ters violated.

Note that the operation manager stores information on
occurring events in the KIB. This information will become
useful in future decisions, as it can provide guidance in
case similar occurrences are noticed. This knowledge info.
stores the Service Instance Identifier in case the informa-
tion is needed in the current service instance lifecycle, the
Service Identifier in case the information is needed after the
current service instance lifecycle is completed, the knowl-
edge information to provide a unique match in order to rec-
ognize the conditions under which previous solutions were
applied, and the time at which the entry was generated.

3.8 Planning Engine

Fig. 8 shows ARB’s Planning Engine. The inputs to the
Planning Engine are:

-Customer entry, i.e. customer information related to ser-
vices where problems have occurred, and the SLA corre-
sponding to these services, obtained from the CIB.

-Service entry, i.e. performance requirements for the ser-
vice (SLAs), obtained from the SIB.

-Policy entry that constrains solutions, i.e. policies that
restrict resource allocation, obtained from the PIB.

-Resource entry extracted from the existing resource
pool keeping track of available virtual resources at the SP’s
disposal obtained from the RIB.

-Knowledge entry containing previous comparable situ-
ations, where the advocated solutions could be used instead
of elaborating new ones, obtained from the KIB.

-Problem info., and Violation info. from the Opera-
tion Manager component to indicate problems detected, and
SLA violations.

If the problem cannot be handled at the current ARB
level, the Planning Engine in the parent ARB is notified. As
well, the child ARBs might need to be modified so the Plan-
ning Engine notifies the appropriate components in these
child ARBs. If the Problem info. and Violation info. sent
by the Operation Manager component could be matched
to a previous occurrence from the KIB, the solution is re-
trieved and sent to the Service Provisioning component for
re-provisioning.

Here is a list of the components that the Planning Engine
consists of, as well as their output:

-A Policy Update Engine that decides whether changes
to the policies regulating the ARB components is needed,
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and sends suggested changes to the Policy Control compo-
nent in the form of policy info. For instance, changes to
the Monitoring Engine, such as frequency of measurements
and type of resources measured for instance asking for ad-
ditional monitoring data by increasing the frequency of raw
performance data collection.

-A Billing Update Engine which sends the adjustments
needed as Adjustment info. to the Billing Engine compo-
nent which updates the billing records. These adjustments
are mainly based on the violations detected by the Operation
Manager. In addition, these adjustments could also include
changes to the Billing Engine’s operation.

-A Re-Provisioning Engine which periodically analyzes
the performance. Even when no problems or violations are
signaled by the Operation Manager, the Planning Engine
ensures resources are optimally allocated by calculating the
optimal resource allocations. The Performance Evaluation
sub-component in the Re-Provisioning Engine is not trig-
gered by any other component in ASA. Instead, it period-
ically runs an optimization algorithm based on the current
status of the resources available (obtained from the RIB),
and the current resource allocation and configuration (ob-
tained from the SIB). If the current resource distribution is
not optimal, a new allocation is found using this optimiza-
tion algorithm. The result from this component needs to
be input to the Resource Manager as Provisioning info. to
reallocate the resources accordingly.

-A Forecast Engine, which, based on the inputs, gener-
ates a “Traffic Matrix” type of output. This output is in fact
a demand for new services, which are either owned by the
SP owning the ARB that generated the “Traffic Matrix” de-
mand or not. In both cases, we follow a Customer-SP type
of approach and request this new service, through the “Ser-
vice Provisioning” component, in other words, generating a
new Service Info.

-A Pricing Engine which dynamically determines the
price of resources offered by ASA based on pricing policies
and algorithms. We relate the Pricing Engine to the Call
Admission Control (CAC) in the Service Initiation compo-
nent, to allow a dynamic and adaptive pricing as a natural
means for admission control.

-An Admission Control Engine which indirectly modi-
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fies the operation of the Call Admission Control (CAC) in
the Service Initiation component, by changing the policies
related to it in the Policy Control component.

3.9 Billing Engine

Fig. 9 shows ARB’s Billing Engine. The charge to the
customer consists of three parts: A flat charge, a usage
charge, and a content charge. A usage analyzer and a con-
tent analyzer in the Monitoring Engine are used to allow
flexibility in using the appropriate billing solution. The
Billing Engine contains a Pre-paid Billing component to
allow an additional type of billing plan. When customers
negotiate the SLA with the Customer Control, billing poli-
cies are generated that regulate how the particular customer
is going to be billed. The exact details of the “billing plan”
will be determined when the customer initially signs up for
the service, and the contract contains fields which generate
billing policies on the fly.

4 Conclusion

The road towards fully autonomic service architectures
is still long. However, we hope that in this paper, we were
able to present an autonomic service architecture (ASA) to
automate the activation, provisioning, management, and ter-
mination of services. ASA is based around concepts of ser-
vice oriented architectures, virtualization, and E2E service
delivery. As current and future work, we are studying the
CRF and CCF representations for virtualizing underlying
resources, and designing elaborate algorithms to provide the
degree of self-management needed in every autonomic sys-
tem. We are also examining possible approaches to resource
allocation, correlation of monitoring measurements, prob-
lem detection, planning, as well as completing a prototype
implementation of ASA in the Network Architecture Labs
at the University of Toronto, based on open standards such
as Web Services.
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