
58

Towards an Autonomic Service Architecture

Ramy Farha1, Myung Sup Kim1,
Alberto Leon-Garcia1, and James Won-Ki Hong2

1 Dept. of Electrical and Computer Eng’g, University of Toronto, Toronto, Canada
{ramy.farha,myungsup.kim,alberto.leongarcia}@utoronto.ca

2 Dept. of Computer Science and Eng’g, POSTECH, Pohang, Korea
jwkhong@postech.ac.kr

Abstract. Traditional telecommunications service providers are under-
going a transition to a shared infrastructure in which multiple services
will be offered to customers. These services will be introduced, modified,
and retired at a pace that tracks changing requirements and demands. In
order to be cost-effective, these services will need to be delivered over a
shared infrastructure that is managed to support delivery requirements
at a given point in time. In this paper, we present an Autonomic Service
Architecture (ASA) for the automated management of networking and
computing resources. ASA ensures the delivery of services according to
specific agreements between customers and service providers.

1 Introduction

The transition from circuit-based telephone networks to IP-based packet net-
works presages the replacement of traditional voice telephony service by a broad
array of media-rich, personalized and context-aware services that need to pro-
vide immediacy, reliability, and consistency of quality levels. Service providers
(SPs) will need to be able to deploy, maintain, and retire services quickly ac-
cording to demand. This future service environment requires a new service de-
livery framework that can exploit the capabilities of IP networks and provide
required service richness, agility, and flexibility. From the information technol-
ogy (IT) world, autonomic computing [1] is touted as the means to providing a
rich set of IT services over a common computing infrastructure. A key feature
of autonomic computing is the automated management of computing resources.
The application of autonomic management principles to ensure the delivery of
telecommunications services is largely unexplored. In this paper, we introduce
an Autonomic Service Architecture (ASA) to address this need.

As mentioned before, the first work in the autonomics wave has been the
Autonomic Computing proposal by IBM. However, IBM’s approach exclusively
focuses on computing resources for IT services delivery. Our work aims to ex-
pand this basic view to include telecommunications services, which consist of
both computing and networking resources. Another proposal called Autonomic
Communication [2] has similar aims to IBM’s Autonomic Computing, except
that it focuses on individual network elements, and studies how the desired

T. Magedanz, E.R.M. Madeira, and P. Dini (Eds.): IPOM 2005, LNCS 3751, pp. 58–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [439.37 666.142] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Cancel Job
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

Towards an Autonomic Service Architecture 59

element’s behavior is learned, influenced or changed, and how it affects other
elements. Our work is focused on services, and therefore is a top-down approach
as compared to this bottom-up approach. In addition, research projects such
as Autonomia [3], AutoMate [4], and Oceano [5] are using the autonomic con-
cept in various ways. Autonomia provides dynamically programmable control
and management to support development and deployment of smart applica-
tions. AutoMate enables development of autonomic Grid applications that are
context-aware, self-configuring, self-composing, and self-optimizing. Oceano is
developing a prototype for a scaleable infrastructure to enable multi-enterprise
hosting on a virtualized collection of hardware resources. The closest work to
ours is that of HP [6], which proposes an architecture and some algorithms for
a service-oriented control system that constantly re-evaluates system conditions
and re-adjusts service placements and capacities. The control system is organized
as an overlay topology with monitoring and actuation interfaces to underlying
services. The difference between our work and these approaches is that they con-
sider specific services to which their design is appropriate. We propose a generic
architecture which applies to all services.

The main contribution of our paper is that it proposes ASA as a generic
architecture for autonomic service delivery by SPs. ASA is service-independent,
and defines a resource management model based on virtualization. The rest of
this paper is structured as follows. Section 2 describes ASA. Section 3 illustrates
the operation of the Autonomic Resource Broker (ARB), the key component of
ASA. Section 4 concludes this paper.

2 Autonomic Service Architecture

The players involved in the delivery of a service are the customers and the SPs.
We define a service as the engagement of resources for a period of time according
to a contractual relationship between the customers and the SPs. Resources
are physical and logical components used to construct services. Service Level
Agreements (SLAs) are contracts between SPs and customers [7], which are
critical in guaranteeing service delivery. Service management ensures that SLAs
are met, and that the necessary resources for the service delivery are provided.

After customers and SPs negotiate the SLA, ASA will manage the service in
order to meet SLAs without SP’s intervention. In this section, we will present
ASA according to a layered view, where services are built on underlying virtual
and physical resources. If the problems incurred are too complex to be han-
dled autonomically, manual adjustments are needed. When customers purchase
a service from a SP, they can themselves offer this service to other customers,
becoming SPs to those customers. ASA ensures End-to-End (E2E) service deliv-
ery, where SPs negotiate with other SPs involved in the E2E delivery, to which
they become customers.

The autonomic service architecture (ASA) is driven by our view that “ev-
erything is a service”. We identify two types of services, however: Basic services,
which cannot be broken down anymore into other services, and which mainly
consist of the underlying resources, and Composite services, which are composed
from basic services as well as from other composite services.

60 Ramy Farha et al.

Networking Service

Control

Data

Composite Service

Composite Service

Composite Service

Virtual Resources

Physical ResourcesComputing Resources Networking Resources

Resource

Abstraction

Basic

Service

Management

Composite

Service

Management

Composite

Service

Management

Composite

Service

Management

R
e

s
o

u
rc

e
 M

a
n
a

g
e

m
e

n
t

S
L

A
 M

a
n
a

g
e

m
e

n
t

B
illin

g
 M

a
n
a

g
e

m
e

n
t

Operation View Management View

Control

Data

Control

Data

Computing Service
Control

Data

Basic Service Basic Service

Management

Functions

Fig. 1. Autonomic Service Architecture Layered View

Fig. 1 shows ASA’s layered view of services. The lowest layer consists of phys-
ical resources engaged in the delivery of the service. The middle layer consists
of an abstraction of the physical resources into virtual resources according to
metrics specifying the characteristics of the physical resources. The upper layers
consist of services composed using these underlying resources. Vertically, services
are broken into two views: Operation and Management. The Operation view con-
sists of the control and data planes at different layers, while the Management
view consists of the management structure needed to manage these services.

2.1 Operation View

The operation view consists of a layering of resources.

Physical Resources Layer. This layer consists of the physical resources that
the SP has at its disposal. These resources are either computing (Servers, Work-
stations, Storage, Clusters), and/or networking (Routers, Switches, Links).

Virtual Resources Layer. This layer abstracts physical resources into virtual
resources. Virtualization allows the SP to deal with resources at its disposal to
create services independent of the actual physical resources. Every service views
its needed resources as an array of metrics from a unified language we will define,
called the Common Resource Format (CRF). The motivation for CRF is similar
to the motivation that drove IBM to propose the Common Base Event (CBE)
model [8] to translate proprietary application logs into standard CBE format.
From physical to virtual resources, translation is needed from proprietary for-
mats to CRF using an adapter. Virtualization depends on the types of resources
involved. Fig. 2 shows three different types of virtual resources:

Towards an Autonomic Service Architecture 61

ClusteredSingle

Distributed

Resource Manager

ASA

Adapter: Proprietary to CRF

VR VR
VR VR VR

VRVR VR

CRF

VR

VR

VR

VR

Fig. 2. Virtualization of Resources

1 Single resources: Consist of a single physical resource (router, server).
2 Clustered resources: Consist of multiple physical resources at a certain

geographical location (cluster).
3 Distributed resources: Consist of multiple physical resources, geographi-

cally dispersed, virtualized to look as an aggregate resource (grid [9]).

Basic Services Layer. Some virtual resources, such as Virtual Networks [10],
can be offered directly to customers by SPs as basic networking services, con-
sisting of guaranteed IP transport. In other situations, basic services, which are
bought from other SPs according to SLAs, become virtual resources at the dis-
posal of the purchasing SP’s composite services.

Composite Services Layer. Composite services consist of several basic ser-
vices and/or composite services. The composite services can be offered directly
to customers. Otherwise, the composite services are virtual resources to other
composite services. The process of service composition is hierarchical and recur-
sive, and continues until the composite service is offered to customers.

2.2 Management View

The main task of ASA consists of managing the resources available to the SP in
order to meet changes in service demands and user requirements. All manage-
ment functions (Resource, SLA, Billing) are performed by the Autonomic Re-
source Broker (ARB), a self-managing entity whose role is to ensure automated
delivery of services. A key concept in the IBM autonomic computing architecture
is the autonomic element, a component that is responsible for managing its own
behavior in accordance with high-level policies, and for interacting with other
autonomic elements. In ASA, the Autonomic Resource Brokers (ARBs) are the
analogy of autonomic elements. We define the ARB as the component respon-
sible for managing a service instance in accordance with policies, by interacting
with underlying resources, and with other ARBs to provide or consume services.
ARBs follow policies to ensure SLAs between customers and SPs are met.

62 Ramy Farha et al.

SIARB3SIARB2

VR1

CARB3
CARB2

SIARB1

Clusters

VR2

Routers

VR3

Switches

VR4

Servers

VR5

Storage

VR6

Routers

VR7

Links

Computing

Networking

CRF

Policy
GARB

SLACARB1

CARB4

SIARB4

SIARB3

Customers

SPs

Customers

Physical

Resource

Virtual

Resource

Service Instance

activated by customer

Diverse Services

in SP domain

Global Resource

Manager

service

Fig. 3. Hierarchical Management View

When customers activate service instances, these instances are managed by
SIARBs (Service Instance ARBs). The multiple service instances of a particu-
lar service offered by a SP are managed by CARBs (Composite ARBs). Some
CARBs, called basic CARBs, manage the basic services consisting of virtual re-
sources. Other CARBs, called composite CARBs, manage composite services.
The different services offered by a SP are managed by a GARB (Global ARB),
which handles all the resources available at this SP’s disposal. The hierarchical
structure of ARBs is shown in Fig. 3. Note that ASA is based on service-oriented
architectures [11] for interactions between ARBs, and with underlying resources.

3 Autonomic Resource Broker Architecture

These ARBs are self-managed according to high-level policies. ARBs handle the
autonomic operation of ASA. Fig. 4 shows the ARB’s internal architecture and
the flow of information between the different ARB components.

3.1 Information Bases

Information Bases store the information needed for ASA to autonomically deliver
services, in a self-configuring, self-optimizing, self-healing, and self-protecting
way. Information Bases can be classified into five logical groupings:

Customer Information Base (CIB): Contains information about customers,
such as personal data, list of services subscribed to with their SLA, and bill.

Service Information Base (SIB): Contains information about the service
instances activated by the customers, such as parties involved (customer and

Towards an Autonomic Service Architecture 63

Service

IB

Service

IB

Knowledge

IB

Knowledge

IB

Resource

IB

Resource

IB

Policy

IB

Policy

IB

Customer

IB

Customer

IB

Planning

Engine

Planning

Engine

Policy Translation

Policy Validation

Policy Distribution

Filter Engine Correlation Engine

Metric Manager Aggregation Engine

Monitoring Engine

Resource Manager

Operation Manager

Policy Controller

Problem DetectionProblem Detection

Resources

ARB Internal Architecture

raw performance data

resource measure

violation

info.

performance info.

service info.

SLA EvaluationSLA Evaluation

Performance EvaluationPerformance Evaluation

policy info.

policy info.

Billing EngineBilling Engine

adjustment info.

operation

info.

knowledge

info.

resource info.

customer info.

billing

update info.

activation info.

Service ActivatorService Activator

resource info.

Customer Controller

performance

report

negotiation

info.

SLA info.

SLA AgreementSLA Agreement

Customer ReportingCustomer Reporting

SLA Translator SLA Translator

Service Initiation Service Initiation

service info.

Service Provisioning Service Provisioning

Customer

Workflow Engine Workflow Engine

sequence info.

Distribution Engine Distribution Engine

resource config.

problem

info.

optimization

info.

Rating EngineRating Engine

Billing AdjustmentBilling Adjustment

billing info.

Fig. 4. Autonomic Resource Broker Architecture

SP), SLA agreed upon, types of resources needed, amount of each resource type
needed, billing plan, and operation history.

Resource Information Base (RIB): Contains information about the re-
sources available, such as types of resources and quantity.

Policy Information Base (PIB): Contains policies created at runtime, or
entered manually. These policies are service-based. There are policies regulating
the operation of each ARB component, as well as providing SLA Templates for
services offered and specifying types of resources needed for services offered.

Knowledge Information Base (KIB): Contains information for use in case
problems arise and remedy actions can be taken based on a previous occurrence
of the problem, such as problem description, problem cause, time of occurrence,
parties involved, elaborated solutions, and effect of solutions.

3.2 Policy Controller

Policies are created initially by SPs, or at runtime as a result of customers
activating services. Existing policies are updated as a result of service demand
and load variations. The Policy Controller entails the following actions:

Policy Validation. The creation or update of policies could lead to conflicts,
redundancy, inconsistency, and infeasibility. This component ensures no such
problems occur and remedies to them.

64 Ramy Farha et al.

Policy Translation. This component interprets policies and translates them to
an understandable format for use by ARB components.

Policy Distribution. This component distributes policies to ARB components,
to the PIB, or to other ARBs.

3.3 Customer Controller

This component constitutes the only interface between the customers and the
SPs. This is part of the self-configuring aspect of ASA. Note that it is essential to
differentiate between the SLA Agreement and the Service Initiation procedures.
The SLA Agreement is a one-time operation that occurs when customers buy
the service from SPs. Of course, the customer, using this same procedure, could
later modify the service bought, but this operation does not occur for each
service instance activation by the customer, as the Service Initiation does. The
Customer Controller entails the following actions:

Customer Reporting. Customers have access to some monitoring results, in
order to allow them to switch SPs if performance is not satisfactory.

SLA Agreement. The SLA is negotiated between customers and SPs, following
a negotiation protocol we define.

SLA Translator. Once the SLA negotiation between the customer and SPs is
completed, the SLA Translator creates/updates policies on the fly to regulate
the purchased service’s delivery. In addition, the SP fills the CIB with customer
and billing information. Note that the SLA Translator itself is policy-based, i.e.
its operations are regulated by manual policies entered by the SPs which guide
its operations, based on services involved, customer types, or other criteria.

3.4 Service Activator

This component is invoked upon service activation by customers. This is part of
the self-configuring and self-optimizing aspects of ASA. The Service Activator
entails the following actions:

Service Initiation. Customers activate services they already bought. Informa-
tion, related to the service activated and to the customers, is retrieved and used
for Service Provisioning.

Service Provisioning. As mentioned previously, ASA was built based upon
the basic premise that “everything is a service”. Using this approach to services,
composite services are composed out of basic services and of other composite ser-
vices, and provisioning composite services consists of choosing the appropriate
amounts of resources to allocate to each service component. The basic services
needed are identified, and the objective function for this service is used to opti-
mize provisioning. The amount of resources needed of each type are calculated,
and this information is sent to the Resource Manager.

Towards an Autonomic Service Architecture 65

3.5 Resource Manager

This component allocates/provisions resources available as needed by the ser-
vice instance that was activated. The appropriate ARBs and/or the underlying
resources have to be contacted. This is part of the self-configuring and self-
optimizing aspects of ASA. The Resource Manager entails the following actions:

Workflow Engine. The resource allocation process is converted to a workflow
of actions executed on underlying resources and/or appropriate ARBs.

Distribution Engine. The actions decided by the Workflow Engine are dis-
tributed to underlying resources and/or appropriate ARBs.

3.6 Monitoring Engine

This component monitors the raw performance data sent from underlying re-
sources and/or appropriate ARBs. This is part of the self-healing and self-
protecting aspects of ASA. The Monitoring Engine entails the following actions:

Metric Manager. There is a need to quantify raw performance data in a com-
mon format (CRF) understandable by ARB components to make decisions.

Filter Engine. The mechanisms to filter unwanted data for all ARBs need to
be specified. At the ARB components, the tradeoff is between precision and
overhead of measurements. The more precise the results need to be, the more
measurements we need to perform.

Aggregation Engine. The measurements received after filtering could be ag-
gregated if a new metric such as a summation, average, maximum, or minimum
of the measurements collected is needed.

Correlation Engine. The filtered and aggregated measurements are correlated
and complex situations are detected, using techniques such as spatial/temporal
correlation, and prediction.

3.7 Operation Manager

This component analyzes ARB operations, and detects any abnormal behavior
that results from faults, SLA violation, or sub-optimal performance. This is
part of the self-optimizing, self-healing, and self-protecting aspects of ASA. The
Operation Manager entails the following actions:

Problem Detection. Faults occur when computing or networking components
fail. Overloads occur when the demand on a component exceeds the capacity of
that component. Congestions occur when the performance of some components
degrades due to excessive load. If problems are detected, the Planning Engine is
notified. This is part of the self-healing aspect of ASA.

SLA Evaluation. SLAs are evaluated, and violations detected are sent to the
Planning Engine, and to the Billing Engine for proper adjustments to the cus-
tomer bill in the CIB. This is part of the self-optimizing aspect of ASA.

66 Ramy Farha et al.

Performance Evaluation. When the operation is satisfactory (no problems or
violations), ARB ensures resources are optimally allocated, and if not, notifies
the Planning Engine. This is part of the self-optimizing aspect of ASA.

3.8 Planning Engine

This component is considered to be the brain of the ARB. This is part of the
self-optimizing, self-protecting, and self-healing aspects of ASA. The inputs to
the Planning Engine are:

– Customer entry, i.e. the customer information related to the services where
problems have occurred, and their SLAs. These can be obtained from the
Customer Information Base (CIB).

– Service entry, i.e. performance requirements for services (SLAs). These can
be obtained from the Service Information Base (SIB).

– Policy entry, i.e. policies that restrict allocation of resources and constrain
solutions. These can be obtained from the Policy Information Base (PIB).

– Resource entry, i.e. resources at the SP’s disposal extracted from the resource
pool. These can be obtained from the Resource Information Base (RIB).

– Knowledge entry, i.e. previous comparable situations, where the advocated
solutions could be used instead of elaborating new ones. These can be ob-
tained from the Knowledge Information Base (KIB).

– Notifications from the Operation Manager component to indicate problems
detected, SLA violations, and sub-optimal performance.

The outputs that can be generated by the Planning Engine are:

– Changes to the Service Provisioning, for instance resources needed to meet
service requirements, re-allocation plans to improve service performance.

– Changes to the Resource Manager when the problems are not drastic enough
to require re-provisioning of the service instance.

– Changes to the policies regulating the operation of ARB components.

3.9 Billing Engine

This component bills customers using three charges: A flat charge, a usage
charge, and a content charge. This allows more flexibility in using the appro-
priate billing solution appropriate for each service, class of service, or even in-
dividual customer. The pricing is adjusted based on congestion and on billing
policies to reflect SLA violations, and to allow pricing to be used as a congestion
control technique by increasing the prices of the resources when the network is
congested. Note that the exact details of the billing plan are determined when
the customer buys the service. This is part of the self-healing aspect of ASA.

Towards an Autonomic Service Architecture 67

4 Conclusion

The journey to a fully autonomic service architecture is still in its early stages.
This paper illustrates our proposed generic approach towards this goal, using
ASA. ASA allows service providers to reduce service delivery costs to customers.
ASA is based on two main concepts: virtualization of physical resources using
a common language (CRF), and autonomic service delivery using a hierarchy
of Autonomic Resource Brokers (ARBs). The hierarchical service view allows
ASA to easily expand to next-generation services by allowing flexible, scalable,
and recursive service management. ASA is still a conceptual architecture, but
its realization for real services is underway. First, we are defining XML formats
for the information bases, for policies, for service and SLA templates, as well
as elaborating CRF. Second, we are defining interfaces among ARBs, explor-
ing several ARB topologies (Peer-to-Peer, Hierarchical, Hybrid) and assessing
them. Third, we are developing algorithms for each ARB functional block (e.g.
Service Activator, Operation Manager, Planning Engine etc.). Finally, we are
implementing ASA in our Network Architecture Laboratory at the University of
Toronto, for specific services such as Voice over IP (VoIP).

References

1. IBM Corporation: An architectural blueprint for autonomic computing. White
Paper, (2003)

2. Autonomic Communication: http://www.autonomic-communication.org
3. Xiangdong, D. et. al.: Autonomia: an autonomic computing environment. Pro-

ceedings of the IEEE International Performance, Computing, and Communications
Conference (2003) 61–68

4. Agarwal, M. et. al.: AutoMate: enabling autonomic applications on the grid. Au-
tonomic Computing Workshop (2003) 48–57

5. Appleby, K. et. al.: Oceano: SLA based management of a computing utility. Pro-
ceedings of the IEEE/IFIP International Symposium on Integrated Network Man-
agement Proceedings (2001) 855–868

6. Andrzejak, A., Graupner, S., Kotov, V., Trinks, H.: Adaptive Control Overlay for
Service Management. Workshop on the Design of Self-Managing Systems, Interna-
tional Conference on Dependable Systems and Networks (DSN) (2003)

7. Leon-Garcia, A., Widjaja, I.: Communication Networks. Mc Graw Hill (2004)
8. Bridgewater, D.: Standardize messages with the Common Base Event model. IBM

DeveloperWorks (2004)
9. Talia, D.: The Open Grid Services Architecture: where the grid meets the Web.

IEEE Internet Computing Magazine (2002) 67–71
10. Leon-Garcia, A. L. Mason, L.: Virtual Network Resource Management for Next-

Generation Networks. IEEE Communications Magazine (2003) 102–109
11. Kreger, H.: Web Services Conceptual Architecture. White Paper, IBM Software

Group (2001)

	Towards an Autonomic Service Architecture
	1 Introduction
	2 Autonomic Service Architecture
	2.1 Operation View
	2.2 Management View

	3 Autonomic Resource Broker Architecture
	3.1 Information Bases
	3.2 Policy Controller
	3.3 Customer Controller
	3.4 Service Activator
	3.5 Resource Manager
	3.6 Monitoring Engine
	3.7 Operation Manager
	3.8 Planning Engine
	3.9 Billing Engine

	4 Conclusion
	References

