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SUMMARY

Chromatin immunoprecipitation (ChIP-chip and
ChIP-seq) assays identify where proteins bind
throughout a genome. However, DNA contamination
and DNA fragmentation heterogeneity produce false
positives (erroneous calls) and imprecision in
mapping. Consequently, stringent data filtering
produces false negatives (missed calls). Here we
describe ChIP-exo, where an exonuclease trims
ChIP DNA to a precise distance from the crosslinking
site. Bound locations are detectable as peak pairs by
deep sequencing. Contaminating DNA is degraded
or fails to form complementary peak pairs. With the
single bp accuracy provided by ChIP-exo, we show
an unprecedented view into genome-wide binding
of the yeast transcription factors Reb1, Gal4, Phd1,
Rap1, and human CTCF. Each of these factors was
chosen to address potential limitations of ChIP-
exo. We found that binding sites become unambig-
uous and reveal diverse tendencies governing in vivo
DNA-binding specificity that include sequence vari-
ants, functionally distinct motifs, motif clustering,
secondary interactions, and combinatorial modules
within a compound motif.
INTRODUCTION

Proteins bind to specific DNA sequences to regulate genes. A

fundamental and long-sought goal in understanding how these

interactions have evolved and their mechanism of regulation is

the precise determination of where they are bound in a genome.

Chromatin immunoprecipitation (ChIP) is the most widely used

method to identify genomic binding locations of sequence-

specific regulatory proteins (Solomon and Varshavsky, 1985). In

the ChIP assay, proteins are crosslinked to their DNA-binding

sites in vivo and then immunopurified from fragmentedchromatin.

Subsequently, the bound DNA is identified genome-wide by

microarray hybridization (ChIP-chip) or deep sequencing (ChIP-

seq) (Albert et al., 2007; Johnson et al., 2007; Ren et al., 2000).
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Because unbound DNA contaminates the immunoprecipitate,

ChIP only provides a set of statistically enriched high-occupancy

binding regions, rather than a complete and precise set of bound

locations (Peng et al., 2007; Rozowsky et al., 2009; Tuteja et al.,

2009). A sizeable fraction of this DNA may represent false posi-

tives (erroneous calls), and many other lower-affinity sites may

be missed (false negatives). Moreover, size heterogeneity of

randomly sheared ChIP DNA technically limits mapping resolu-

tion, and thus cannot distinguish binding among clusters of

neighboring sites.

Motif searches are insufficient to identify all in vivo binding

locations for a protein because proteins recognize a wide variety

of related sequences, of which only a small fraction are bound

(Badis et al., 2009; Walter and Biggin, 1996). Consequently,

although a consensus target motif may be extracted from data

as a whole, a large fraction of putatively bound locations either

lack an obvious motif or contain multiple degenerate versions

of the motif (Cawley et al., 2004; Yang et al., 2006) and thus

cannot be definitively assigned to a particular recognition

sequence.

Protein-binding microarrays have proven to be powerful in

defining a DNA-binding domain’s intrinsic specificity in vitro

(Badis et al., 2009). However, in vivo, such specificity may be

altered, prevented, or constrained in the context of the thou-

sands of other proteins that constitute the nuclear milieu. Digital

genomic footprinting can detect highly occupied binding sites at

high resolution (Hesselberth et al., 2009), but identifying the

source of protected genomic footprints requires a priori knowl-

edge of which protein binds to the identified sequence. Problem-

atically, different proteins may bind to the same sequence.

Importantly, low-occupancy binding is widespread in genomes

(Li et al., 2008), but its physiological importance and distinction

from noise have been difficult to discern by any assay thus far.

Here, we develop ChIP-exo, to precisely map a comprehen-

sive set of protein-binding locations genome-wide in any

organism and to greatly diminish both erroneous and missed

calls associated with mapping. Importantly, ChIP-exo achieves

near single-base resolution. The resultingmapsprovide a striking

display of genome-wide site utilization that vividly delineates the

variation in sequence recognition specificity and the underlying

principles that drive specificity in vivo. From these binding

events, potential mechanisms of site evolution, chromatin inter-

play, and genome-wide network regulation become clearer.
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Figure 1. Single Base-Pair Resolution of ChIP-exo

(A) Illustration of the ChIP-exomethod. ChIP DNA is treatedwith a 50 to 30 exonucleasewhile still present within the immunoprecipitate. The 50 ends of the digested
DNA are concentrated at a fixed distance from the sites of crosslinking and are detected by deep sequencing (see also Figure S1).

(B) Comparison of ChIP-exo to ChIP-chip and ChIP-seq for Reb1 at specific loci. The gray, green, and magenta filled plots, respectively, show the distribution of

raw signals, measured by ChIP-chip using Affymetrix microarrays having 5 bp probe spacing (Venters and Pugh, 2009), ChIP-seq, and ChIP-exo. Sequencing

tags on each strand were shifted toward the 30 direction by 14 bp so as maximize opposite-strand overlap.

(C) Aggregated raw Reb1 signal distribution around all 791 instances of TTACCCG in the yeast genome. The ChIP-seq and ChIP-exo datasets included

2,938,677, and 2,920,571 uniquely aligned tags, respectively.

See also Figure S1 and Table S1.
RESULTS

ChIP-exo Design
We considered the possibility that a protein covalently cross-

linked to DNA would block strand-specific 50-30 degradation by

lambda (l) exonuclease (Figure 1A), thereby creating a homoge-

neous 50 border at a fixed distance from the bound protein. DNA

sequences 30 to the exonuclease block remain intact and are

sufficiently long to uniquely map to a reference genome, after

identification by deep sequencing (Figure S1A available online).

Uncrosslinked nonspecific DNA is largely eliminated by exonu-

clease treatment, as evidenced by the repeated failure to

generate a ChIP-exo library from a negative control BY4741

strain.

ChIP-exo Improves Genome-wide Mapping Accuracy
and Sensitivity
We initially focused on the yeast Reb1 protein, which has a clear

DNA recognition site (TTACCCG) that can be used for indepen-

dent validation (Badis et al., 2008; Harbison et al., 2004). Reb1 is

involved in many aspects of transcriptional regulation by all three

yeast RNA polymerases and promotes formation of nucleo-

some-free regions (NFRs) (Hartley and Madhani, 2009; Raisner

et al., 2005). It is also found at telomeres. We compared ChIP-

exo to ChIP-chip and standard sonication-based ChIP-seq.

The unfiltered ChIP-exo signal was highly focused across the

genome at TTACCCG sequences (Figures 1B and 1C). ChIP-

chip and ChIP-seq displayed broader signals. When converted

to peak-pair calls (described below), ChIP-exo displayed a stan-

dard deviation (SD) of 0.3 bp (Figure S1B), which indicates that
ChIP-exo of Reb1 has single-base accuracy. In comparison,

ChIP-seq displayed more than 90-fold greater mapping vari-

ability (SD = 24 bp). ChIP-exo also displayed lower raw back-

ground. The raw signal-to-noise ranged from 300- to 2800-

fold (Table S1). Subsequent employment of noise filters

produced a comprehensive set of bound locations. In contrast,

ChIP-chip and ChIP-seq had 7- and 80-fold raw signal-to-

noise, respectively. ChIP-exo retained its quantitative proper-

ties, in that occupancy levels correlated with those from

ChIP-seq (Figure S1C), and peak-pair intensities correlated

(Figure 2A).

Reb1 Has Multiple Highly Organized Secondary
Interactions at Promoters
The 50 ends of ChIP-exo tags (as well as peaks) located on one

strand were largely at a fixed distance (�27 bp) from another

tag or peak on the other strand, corresponding to the two exonu-

clease barriers formed by Reb1 (Figures 2A, and S2A, and S2B).

A total of 1,776 Reb1 peak pairs were identified (Data S1). Impor-

tantly, these peak pairs were not preselected based upon the

presence of any DNA sequence motif, although a motif was

present in nearly all cases.

Of the peak pairs, 60% (1,058/1,776) were classified as

primary locations, and 40% (718/1,776) as secondary.

Secondary locations were defined as less-occupied locations

within 100 bp of a more-occupied location. Thus, most Reb1

locations were found in clusters. Nearly all (92%) primary loca-

tions contained the TTACCCG Reb1 recognition site or

a single-nucleotide variant centered between its borders

(Figures 2A, 2B, and S2C). Increased deviations from TTACCCG
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Figure 2. Genome-wide Identification of Reb1-

Bound Locations

(A) Raw sequencing tag distribution around 1,058 primary

Reb1-bound locations (rows). Blue and red indicate the 50

ends of forward (left border) and reverse strand tags (right

border), respectively, centered by the motif midpoint and

sorted by Reb1 occupancy level.

(B) Color chart representation of 27 bp of DNA sequence

located between each Reb1 peak pair and centered by the

motif midpoint. Each row represents a bound sequence

ordered as in (A). Red, green, yellow, and blue indicate A,

T, G, and C. The Reb1 consensus sequence is indicated

as VTTACCCGNH (V = A/C/G, H = A/T/C) (see also

Discussion).

(C) Distribution of non-nucleosomal primary (purple trace)

and secondary (cyan trace) Reb1-bound locations and

respective nucleosome dyads (gray fill) around the TSS.

Locations that were within 100 bp of a nucleosome

midpoint (Figure S2I) were removed and plotted in (D).

Distribution traces of all unbound (<2% of average occu-

pancy) TTACCCG sites and single-nucleotide variants are

shown by the red fill and black traces, respectively.

(D) Distribution of nucleosomal primary (purple trace) and

secondary (cyan trace) Reb1-bound locations and

respective nucleosome dyads (gray fill) around the TSS.

The distribution of previously determined Reb1-bound

nucleosome dyads is shown by the orange fill (Koerber

et al., 2009). Distributions of unbound single-nucleotide

variants for those genes are shown by the black trace.

See also Figure S2 and Tables S2 and S3.
were associated with lower-occupancy levels (Figure S2D),

which reflect low affinity. Such binding was clearly distinguish-

able from background. Surprisingly, Reb1 predominantly utilized

TTACCCT at telomeres, which indicates that functionally distinct

genomic regions may utilize particular site variants.

Compared to isolated sites, Reb1 had �10-fold higher occu-

pancy levels at clustered sites than would have been expected

based upon sequence information (Figure S2D). This might

reflect cooperative stabilization between primary and secondary

locations. Secondary binding likely represents the same type of

binding as primary binding, rather than incidental contact that is

captured by crosslinking, because secondary locations tended

to have canonical peak-pair distances, were reproducible from

multiple biological replicates, and had centrally positioned, albeit

degenerate, Reb1 motifs (Figure S2C). Remarkably, secondary

sites were concentrated about 40 bp from a primary site (Figures

2C, S2E, and S2F). Such resolution of individual binding loca-

tions within a cluster was not obtainable by standard ChIP-seq

or ChIP-chip. Such a concentration of binding at a fixed distance

from a primary bound location is unlikely to have arisen by

chance, which suggests that even lowly occupied secondary

locations have biological relevance.
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Depending on filtering criteria, only 34%–

72% of Reb1-bound regions identified in other

studies were confirmed by ChIP-exo (Fig-

ure S2G). Those not identified were not statisti-

cally enriched with Reb1 motifs and were not

identified in any of the other studies, which

indicates that they represent false positives in

those datasets. We examined the false-positive rate in our

ChIP-exo dataset by searching for 48 randomized versions of

the Reb1 motif located between peak pairs and found on

average <0.05% having a scrambledmotif or a single-nucleotide

variant (Table S2). Thus few, if any, of the ChIP-exo-detected

Reb1-bound locations were in error (false positives).

The higher resolution afforded by ChIP-exo substantially

increased the number and accuracy of Reb1-bound locations,

making genome-wide ontologies more comprehensive (Fig-

ure S2H) and binding patterns more evident. For example,

Reb1-bound locations were tightly positioned 95 bp upstream

of the transcriptional start sites (TSS) of 778 annotated genes

(14% of all genes, Figure 2C), well within the NFRs that they

have been implicated in maintaining. Unoccupied or lowly

occupied TTACCCG sites were enriched at the same location

(Figure 2C), indicating that they are likely to be functionally

important. These sites were nucleosome free (not shown), indi-

cating that a continued presence of Reb1 is not necessary to

maintain these NFRs.

Reb1 also interacts with nucleosomal DNA in vivo, where it

binds at the NFR edge of the ‘‘�1’’ nucleosome (Koerber et al.,

2009). ChIP-exo detected relatively strong Reb1 binding at
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Figure 3. Genome-wide Identification of Gal4-Bound Locations

The left panel shows a color chart representation of 18 bp of sequence located between eachGal4 peak pair. Sites are oriented such that the nearest TSS is on the

same strand. A MEME output logo is shown, along with a single-letter degenerate code of the surmised consensus (definition of the code is to the right). The bar

graph shows the occupancy levels at these sites. Also shown is a browser shot of Gal4 ChIP-exo tags around the contiguousGAL7, 10, and 1 and FUR4 regions.

Sequencing tags on each strand were shifted toward the 30 direction by 13 bp.

See also Figure S3 and Table S3.
such locations (Figure S2I). The ChIP-exo properties (peak-pair

distance and motif distance) of nucleosomal and non-nucleo-

somal Reb1 were identical (Figures 2D and S2J), indicating that

the presence of a nucleosome did not compromise Reb1 detec-

tion. Reb1-bound nucleosomes, however, did contain a higher

density of secondary Reb1 locations, and unlike non-nucleo-

somal Reb1, these secondary locations were almost entirely

located on the nucleosomal sides of primary Reb1 locations

(i.e., upstream relative to the TSS). This would place secondary

locations on the opposite side of the physical nucleosome from

where primary locations are found (Figure S2K). A provocative

possibility is that an intervening �1 nucleosome appositions

primary and secondary Reb1 sites in a way that promotes coop-

erative Reb1 binding. Conceivably this may provide one mecha-

nism of locking down the position of the�1 nucleosome. Note in

Figure 2D that the composite position of Reb1-bound �1 nucle-

osomes is shifted toward the NFR compared to the bulk �1

nucleosome population at the same loci, which might reflect

directed positioning of the �1 nucleosome by Reb1.

Evidence of Single-Nucleotide Exclusion in Gal4 Sites
Transcription factor Gal4 reportedly binds to and regulates only

ten genes related to the yeast galactose regulon (Ren et al.,

2000). We identified 15 Gal4 peak-pair binding locations at eight

of those genes in galactose-induced conditions, but not at the

previously reported FUR4 and PCL10 loci (Figures 3 and S3).

Prior low-resolution detection at FUR4 (uracil permease) may

have been due to contamination from adjacent GAL1, which

binds Gal4 strongly; PCL10 (Pho85 cyclin) had the weakest

signal of the ten regions in the prior study. Low levels of Gal4

were detected at two new loci:USV1, which encodes a transcrip-

tional regulator of genes involved in growth on nonfermentable

carbon sources, and RUP1-SFL1, which was also detected at

a low-confidence interval in another study (Harbison et al.,
2004).SFL1 encodes a stress-response transcriptional activator,

andRUP1 is involved in regulation of ubiquitin ligase. Thus, ChIP-

exo comprehensively detected a small set of bound locations,

resulting in a more accurate delineation of the Gal4 regulon.

Our analysis revealed an in vivo sequence preference of 11 bp

between each Gal4 half-site, consistent with in vitro studies

(Liang et al., 1996; Marmorstein et al., 1992). Many of these posi-

tions were limited or biased to three of the four possible nucleo-

tide choices. This might reflect a selective negative interaction of

the excluded nucleotide with Gal4, directly or indirectly, that

does not occur with the other three nucleotides. This type of

exclusion was also seen with other factors examined here.

Transcription Factor Phd1 Recognizes Distinct Motifs
In an effort to evaluate whether ChIP-exo could define the spec-

ificity of a protein whose consensus site has been reported to be

ambiguous (Badis et al., 2008; Harbison et al., 2004; MacIsaac

et al., 2006; Zhu et al., 2009), we examined Phd1. Phd1 is a tran-

scriptional activator of genes involved in yeast pseudohyphal

growth (Gimeno and Fink, 1994). Its consensus site varies widely

in different studies (Figure 4C, right). Figure 4A shows an

example of robust Phd1 binding, where five distinct Phd1-

binding locations within a 600 bp GID6-GAT2 intergenic region

were resolved. ChIP-exo identified 967 Phd1 peak pairs (Fig-

ure 4B). MEME analysis detected three motifs (Figures 4C and

S4A) (Bailey et al., 2009). Motifs 1 and 2 were distinct, although

not entirely, which may explain their site ambiguity. Motif 3 was

a degenerate version of motif 2. All motifs had the same 19 bp

region protected from exonuclease digestion centered precisely

over each motif (Figures 4B and 4D), which suggests that Phd1

binds these sites with the same interaction boundaries, despite

the sites having distinct sequences at many positions.

Themedian number of tags associatedwithmotifs 1 and 2was

the same (Figure S4B), indicating that Phd1 has similar affinity
Cell 147, 1408–1419, December 9, 2011 ª2011 Elsevier Inc. 1411
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Figure 4. Genome-wide Identification of Phd1-Bound Locations
(A) Example of Phd1 binding at theGID6-GAT2 locus. Green arrows indicate Phd1motifs. Vertical blue and red bars demarcate the 50 ends of forward and reverse

strand tags, respectively, shifted in the 30 direction by 10 bp.

(B) Raw sequencing tag distribution around 967 Phd1-bound locations. Blue and red indicate the 50 ends of forward and reverse strand tags, respectively,

centered by themotif midpoint. Rowswere divided into four groups based upon the type of motif shown in (C) and sorted by Phd1 occupancy level. The additional

tags distributed distal to the main peaks reflect multiple Phd1 peak pairs residing near each other. See Figure S4C for Gene Ontology analysis.

(C) Color chart representation of 19 bp of sequence located between each Phd1 peak pair and centered by the motif midpoint. Each row represents a bound

sequence ordered as in (B). MEME logos for each group are shown to the right. The upper four logos were reprinted from the indicated references.

(D) Frequency distribution of Phd1 peak-pair distances for groups defined by motifs 1–3.

(E) Multiple Phd1 peak pairs reside in clusters. Black bars indicate the number of Phd1 clusters found having the indicated number of peak pairs within 500 bp of

each other. Light bars indicate the total number of peak pairs present in those clusters.

(F) Frequency distribution of distances between adjacent peak pairs in clusters defined in (E).

See also Figure S4 and Table S3.
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See also Figure S5 and Table S3.
for both motifs in vivo. The more degenerate motif 3 was associ-

ated with only moderately less occupancy. This contrasts with

Reb1, where site divergence was associated with lower occu-

pancy. This relative insensitivity of Phd1 occupancy to the under-

lying sequence and the rather low complexity of the Phd1 motifs

suggest that Phd1 might rely more on additional interactions to

gain specificity and affinity. Indeed, most (548/967) Phd1-bound

locations were found in clusters having two to four sites (Fig-

ure 4E, dark bars), which might reflect such interactions. Loca-

tions within clusters were spaced �100 bp apart (Figure 4F),

suggesting that Phd1 binding has a restricted spatial organiza-

tion at promoters. This analysis of Phd1 illustrates two principles

of genome-wide protein-DNA specificity: (1) a protein may

recognize a variety of related motifs in vivo with similar affinity,

as demonstrated in vitro (Badis et al., 2009), and (2) binding

specificity and affinity may be distributed across multiple sites.

Selective Motif Usage by Rap1 at Ribosomal Protein
Genes and Telomeres
Rap1 is a yeast sequence-specific repressor and activator

protein that regulates telomeres and ribosomal protein (RP)

genes (Lieb et al., 2001; Moehle and Hinnebusch, 1991). ChIP-

exo identified 73 Rap1 peak pairs in telomeric regions and 503

peak pairs elsewhere (Figure 5A). MEME analysis reported four

motifs, which were not distinguished in prior large-scale studies

(Figure 5B). Rap1 at telomeric regions had a broader recognition

site (GTGTGTGGGTGTGG) with higher apparent occupancy

than the three other motifs (Figure S5A). Telomeric Rap1 had

a broader region of protection (by 4–7 bp) from exonuclease

digestion compared to the three other motifs (Figure S5B), which

may indicate that Rap1 is bound differently to telomeric DNA

compared to other places in the genome.
Rap1 motif patterns 1, 2, and 3 were 12–13 bp in length and

were centered between Rap1 peak pairs that were spaced by

24 bp. This calculates to an �5–6 bp ‘‘headroom’’ between the

exonuclease cleavage site and the edge of the Rap1motif, which

is a value thatwe frequently observe for otherproteins.Compared

to Reb1 and Phd1, Rap1-binding sites displayed substantially

more sequence heterogeneity. However, this heterogeneity was

spread over more nucleotide positions, indicating that Rap1

devotes less binding energy to each nucleotide positionwhile still

attaining an equivalent level of specificity. Increased sequence

divergence from the already degenerate pattern appeared to be

only modestly associated with lower occupancy (Figure S5A,

also compare between and within motifs in Figures 5A and 5B).

As with Reb1 and Phd1, Rap1 was found in clusters (Figures

S5C andS5D).WhereRap1 clusters occurred, they typically con-

sisted of two sites that were separated by 20–100 bp.

Most Rap1-bound genes are involved in protein synthesis

(Figure S5E). Rap1 bound to 92 of 121 RP genes (76%, p = 9.0

3 10�130) and 388 of 4,671 non-RP genes (8%). Although six of

the non-RP genes (ENO1, GPM1,2, TDH3, PFK2, andPGI1) were

associated with the main glycolysis pathway (Figure S5F), Rap1

was not broadly associated with other glycolysis-related genes.

Of the RP genes, 77% (71/92) employed motif 1 (Figure 5A).

Only three RP genes contained Rap1 in clusters, whereas 29

were expected by chance (p = 5 3 10�9). Thus, in rich media,

RP genes selectively utilize a single copy of motif 1, which is

the stronger consensus. In contrast, other Rap1-bound genes

had a greater tendency to use clusters of Rap1 motifs that had

a weaker consensus. This difference may reflect distinct mech-

anisms by which Rap1 regulates RP genes versus other genes,

for example, using a single strong consensus versus two weak

ones to achieve similar occupancy levels.
Cell 147, 1408–1419, December 9, 2011 ª2011 Elsevier Inc. 1413
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Figure 6. Genome-wide Identification of Human CTCF-Bound Locations

(A) Example of CTCF binding at the H19 locus. Vertical blue and red bars demarcate the 50 ends of forward and reverse strand tags, respectively.

(B) The left panel shows raw sequencing tags distributed around 8,578 CTCF-bound locations present on chromosomes 1, 2, and 3. Blue and red indicate the 50

ends of forward and reverse strand tags, respectively, centered by the motif midpoint. Rows were divided into six groups based upon the type of motif shown in

the right panel. Summed tag counts are shown on the bottom of the left panel. The right panel shows a color chart representation of a 52 bp sequence located

between themost 50 borders on each strand and centered by themotif midpoint. Each row represents a boundmotif ordered as in the left panel. Locations of four

CTCF site modules are drawn on the top of the right panel.
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Rap1 binds nucleosomal DNA in vivo and in vitro (Koerber

et al., 2009; Rossetti et al., 2001). Consistent with this, Rap1

locations were enriched near the edge of previously defined

Rap1-bound nucleosomes (Figures S5G and S5H). As with

Reb1, nucleosomal Rap1 displayed relatively high site occu-

pancy compared to non-nucleosomal Rap1 (Figure S5I), which

may be due to stronger consensus sites that are associated

with nucleosomal Rap1 (Figure S5J). Moreover, the presence

of nucleosomes did not alter the detection properties of Rap1

(Figure S5K), which further demonstrates that histones do not

interfere with detection by ChIP-exo. Conceivably, the wrap of

the Rap1 DNA site on the nucleosome surface may enhance

Rap1 affinity (to the extent that crosslinking provides an equiva-

lent measure of occupancy in the two putative types of interac-

tions). Ultimately, such binding may lead to nucleosome eviction

in that nucleosomes at Rap1-bound regions generally had low

occupancy (Figure S5G).

Human CTCF Mapping Supports the Notion
of a CTCF ‘‘Code’’
We applied ChIP-exo to human CTCF, as a more complex bio-

logical system. CTCF is a sequence-specific DNA-binding

protein that plays important roles in metazoan gene regulation

and three-dimensional chromatin organization in a wide variety

of cell types (Ohlsson et al., 2010; Phillips and Corces, 2009).

Where CTCF binds in a genome and its DNA recognition

sequence have been the subject of some dispute (Bao et al.,

2008; Barski et al., 2007; Cuddapah et al., 2009; Jothi et al.,

2008; Kim et al., 2007). Estimates range from 13,000 to 29,000

binding locations across mammalian genomes (Cuddapah

et al., 2009; Dion et al., 2007). We detected 35,161 CTCF-bound

locations in HeLa cells (Figures 6A, 6B, and S6A). Nearly all

CTCF-bound regions (93%), determined previously in HeLa cells

by ChIP-seq (Cuddapah et al., 2009), were verified by ChIP-exo

(Figure S6B), although another �17,000 locations were missed.

About 6% (2,106/35,161) of CTCF-bound locations were

enriched in core promoters, �85 bp upstream of a TSS, of

�10% (3,016/29,943) of all annotated genes (Figure S6C). This

precise positioning is reminiscent of the positioning seen by

yeast Reb1, both of which have been implicated in organizing

flanking nucleosomes (Cuddapah et al., 2009; Hartley and Mad-

hani, 2009).

Surprisingly, CTCF-bound locations tended to have four

exonuclease-derived borders, 12–14 and �52 bp apart, instead

of the two seen thus far in yeast (Figures 6B and S6D). We

surmise that they represent one binding event, in agreement

with footprinting studies (Boyle et al., 2011; Ohlsson et al.,

2001), but with two distinct sites of DNA crosslinking, each

having a border on both strands (Figure 6C). This can be

achieved if only a small fraction of either site becomes cross-

linked in a population of molecules. The exonuclease would
(C) Model explaining the presence of four exonuclease blockage sites (two peak

(purple) during the crosslinking. Two crosslinks are shown to represent a populat

rarely 2, crosslinks. CTCF is shown in its denatured state during the exonucleas

(D) Table colored to demarcate the combinatorial usage of the four CTCF site mod

number of modules are shown as a bar graph. MEME logos for each motif and c

See also Figure S6.
then proceed to either the first or second stop, depending on

the location of the crosslink. This would likely require that

CTCF be denatured (promoted by SDS during ChIP) such that

the digestion block occurs at the site of crosslinking rather

than where CTCF folds onto the DNA surface.

Strikingly, >99.5% of the CTCF locations contained parts of

a single compound consensus sequence that spanned �41 bp

(Figures 6B and S6E). We identified four combinatorial modules

within a compound consensus sequence (Figure 6D). Roughly

half of all CTCF-bound locations utilized only modules 2 and 3,

constituting the core consensus to which four of CTCF’s eleven

zinc fingers bind (Ohlsson et al., 2010). The other CTCF-bound

locations employed three to four modules (mainly 1–3, 2–4,

and 1–4). In �1% of the cases, only module #3 was used. Sites

employing more modules tended to have a higher CTCF occu-

pancy (Figure 6D, bar graph), suggesting that modules enhance

affinity. As the exonuclease barriers were similarly arranged

regardless of the modules present, modules do not alter the

boundaries to which CTCF binds DNA, although details of its

footprint differ (Boyle et al., 2011). A prevailing model is that

CTCF uses four of its eleven zinc fingers to bind modules 2

and 3 (Filippova et al., 1996; Ohlsson et al., 2010). It then uses

different combinations of its remaining fingers (‘‘multivalency’’)

to recognize alternative sequences, termed a ‘‘CTCF code.’’

Our finding of combinatorial use of modules supports this notion.

DISCUSSION

ChIP-exo provides a comprehensive and high-resolution (to

within a few bp) view of transcription factor-DNA interactions

across a genome. It detects low-level binding to the point where

typically 2- to 4-fold more binding locations are discovered. With

this precision, cognate DNA-binding sequences become unam-

biguous, thereby revealing the complexity of site-specific DNA

recognition. Detection by ChIP-exo is not compromised by the

presence of other bound proteins, including histones. Because

only a small fraction of proteins become crosslinked to DNA,

neighboring proteins are stripped away by stringent SDS deter-

gent washes in the ChIP procedure. ChIP-exo not only resolves

adjacent binding events that are indiscernible by other methods

but also resolves multiple crosslinking sites within a given bound

location.

ChIP-chip and ChIP-seq Have Substantial False
Discovery Rates
For the five proteins examined here, >98% of all peak-pair

binding locations determined by ChIP-exo contained a recogniz-

able DNA-binding motif. The remaining�2% had very low occu-

pancy and may contain highly degenerate motifs. If generally

true, then many sequence-specific DNA-binding proteins may

not make high-affinity primary contacts with nonspecific DNA
pairs) for each CTCF-bound location. CTCF is illustrated as a native protein

ion distribution. However, any one CTCF molecule is likely to contain 0–1, and

e treatment, with one crosslink occurring at either site.

ules. Corresponding median tag counts for the specifiedmotifs having different

orresponding CTCF site module are shown below.
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Figure 7. Themes in Genomic Binding Site Organization

Shown is an amalgamation of hypothetical DNA recognition sequences. Each

color represents one of four nucleotides (A, C, T, or G) that constitute

a recognition site. The core sequence is shown as a series of color boxes. For

simplicity, alternative nucleotides to the core sequence are represented as

additional boxes, with constant nucleotides represented as a gray shadow.

Frequently used alternatives form a consensus motif, as indicated. Collec-

tively, single-nucleotide variants are shown to be common, although any

particular variant occurs infrequently. Also shown are alternative motifs and

compound motifs that are built up combinatorially from modules. Multiple

motifs may exist in clusters (not shown). A position that excludes a certain

nucleotide is shown as a red circle with a line drawn through. Regions where

any nucleotide would suffice are drawn as gray horizontal bars. Variants having

>1 nucleotide variation from the core are designated as rare, but this should be

qualified to short, well-defined motifs. Long motifs tend to have many

degenerate positions.
as some studies have suggested. Instead such putative binding

events might represent false positives or have substantially

degenerate DNA recognition elements that cannot be readily dis-

cerned with the current resolution of standard ChIP-chip and

ChIP-seq technology. As such, standard methods may obscure

the true degeneracy intrinsic to site-specific DNA recognition

in vivo. Nevertheless, many regulatory proteins might gain

DNA-binding specificity through protein-protein bridging inter-

actions in lieu of sequence-specific binding (Welboren et al.,

2009; Zhao et al., 2010).

The false-positive and false-negative rates associated with

ChIP-chip and ChIP-seq vary depending upon chromatin frag-

mentationheterogeneity, ChIP efficiency, background contami-

nation, limitations imposed by the detection platform, and bio-

informatic filtering/thresholding of the data. From our analysis,

we suspect that asmuchas50%of factor-bound locationsdeter-

mined by ChIP-chip and 30% by ChIP-seq could be false posi-

tives. False negatives represent a much higher percentage.

Higher data thresholding produces fewer false positives but

more false negatives. Although these false discovery rates asso-

ciated with ChIP-chip and ChIP-seq appear high, they are suffi-

ciently low to draw robust statistical conclusions. However, the

validity of any one selected binding location may have substan-

tially more uncertainty, which may be diminished with ChIP-exo.

Diversity and Complexity in Site Recognition In Vivo
From the five proteins examined here, we observed diverse and

complex strategies for achieving sequence-specific DNA

binding (Figure 7). These proteins likely represent a small

sampling of this diversity. Several predominant well-known

themes arise. First, each nucleotide position within a binding

site has a characteristic biased usage of the four possible nucle-

otides. Certain positions may be essentially invariant, whereas

others accept any nucleotide with equal frequency. Between

these extremes, some positions are biased toward two or three

nucleotides. Usage of three of four possible nucleotides at

a position might indicate that the fourth causes a negative inter-

action, rather than the three providing a positive interaction.

These position-specific tolerance profiles form the basis of

a consensus. Variations from the consensus may serve to alter

binding affinity, the magnitude of which may be dependent on

the type of nucleotide present at other positions within the site,

and/or cooperative or competitive binding with other factors

(discussed below).

Because site variation may occur throughout a consensus

sequence, any particular deviation from the consensus may be

rare. Collectively, however, deviations from the consensus

appear to be quite common. As such, there may not be a clear

demarcation between a consensus sequence and site variants.

It may therefore be useful to think of each position in a site as

a four-setting nonlinear rheostat, of which some positions

provide coarse tuning of affinity, whereas others provide fine-

tuning.

A particular level of occupancy may be needed to regulate

a set of functionally related genes, in which case a single motif

version may be employed. For example, Rap1 regulates a large

set of RP genes, and these genes selectively utilize one version

of the Rap1 consensus. Rap1 is also found at telomeres where
1416 Cell 147, 1408–1419, December 9, 2011 ª2011 Elsevier Inc.
a different version of the consensus is employed. The same is

seen for Reb1. This phenomenon of selective motif version utili-

zation might explain some of the reported discrepancies in

consensus sequences defined in different studies that may

have been derived from different subsets of binding locations.

It almost seems paradoxical that a more comprehensive set of

bound locations would necessarily yield a more degenerate

consensus. However, this finding is consistent with the idea

that low-affinity binding sites are low affinity because their

sequences are farthest from the consensus. Therefore a tech-

nique with greater detection sensitivity would, by definition, yield

an abundance of low-affinity interactions occurring at degen-

erate motifs.

Physiological Importance of Lowly Occupied Sites
At what point does a sequence impart so little specificity/occu-

pancy that it ceases to be biologically meaningful? Biological

networks have been generally thought of as being discrete,

meaning that a factor either regulates or does not regulate partic-

ular genes in the network. However, an alternative view is of

a continuum, where a factor’s regulatory potential on a gene

scales with its occupancy level (Li et al., 2008). A continuum of

occupancy levels renders the concept of false negatives as

somewhat meaningless, except in an operational sense. Thus,

although protein binding might be detected at more than a thou-

sand locations in a genome, only the binding of the most highly

occupied sites might be rationalized. The rest may form

a continuum or increasingly more subtle regulation as site

occupancy decreases, which would make network definition



seemingly less vivid. Thus, even with perfect data, the set of

bound locations would not be definable in an absolute sense,

but only at a specified occupancy threshold.

The low-affinity/occupancy locations reported in this study

show evidence of being real (i.e., not false positives) and func-

tional. First, such locations are reproducibly detected in multiple

biological replicates. Second, with an uncertainty of less than

a few bp, such locations are almost always centered over

a sequence with similarity, albeit degenerate, to a high-affinity

site. Third, peak-pair distances are nearly identical to distances

of high-occupancy locations. Fourth, andmost importantly, such

locations are not random in the genome but instead are concen-

trated at fixed distances from genomic features. For example,

isolated low- and high-occupancy Reb1 locations are concen-

trated 95 bp upstream of the TSS, and clustered low- and

high-occupancy locations are concentrated �40 bp from each

other. When Reb1 is bound to the �1 nucleosome, the lowly

occupied secondary locations selectively reside in the upstream

flanking region bound by the nucleosome. In contrast, the

genome is awash with equivalent sites that are intrinsically low

affinity, but no binding is detected. Taken together, none of these

properties are consistent with the notion of physiological irrele-

vance or nearby incidental contact due to looping or chromatin

compaction. Such weak interactions might have little measur-

able regulatory potential on gene expression but may be suffi-

ciently important for fine-tuning to be evolutionarily maintained.

An alternative view of lowly occupied sites is a hit-and-run

mechanism (Biddie et al., 2011; Voss et al., 2011), whereby the

dwell time of a protein on a DNA site may be rather short but is

sufficiently long to catalyze downstream events (e.g., chromatin

remodeling) that may be more long lived and ultimately func-

tional. As such, low-occupancy sites may be functionally

important.

Multiple Mechanisms by which Transcription Factors
Bind Chromatin
The effective concentration of DNA-binding proteins and DNA

sites in the nucleus may far exceed the dissociation constant

(KD) of DNA binding, and as such factors may be DNA bound

(specifically or nonspecifically) most of the time (Lin and Riggs,

1975). This raises the question as to the exact pathway of site-

specific DNA binding in vivo: whether factors exist in an unbound

pool or are directly transferred from other DNA sites (von Hippel

et al., 1974). Our finding that isolated high-affinity sites may be

lowly occupied in vivo, whereas many intrinsically low-affinity

sites have higher occupancy, suggests that intrinsic affinity is

not the sole determinant of occupancy in vivo. Rather a combina-

tion of effects, including high local concentrations, direct and

indirect cooperativity, and competitive binding derived from

other factors including nucleosomes will likely impose additional

constraints. The contribution of any constraint may vary fromone

location to another.

For example, Reb1 not only binds in the middle of NFRs and

has been implicated in NFR formation, but it also binds quite

strongly and selectively to nucleosomes. Rap1 binds to nucleo-

somes as well, but such nucleosomes seem to have low

occupancy, which might reflect Rap1 binding followed by

nucleosome eviction, rather than simple competitive binding.
Certainly, many other sequence-specific binding proteins might

recognize their site only after nucleosome eviction and thus

would be mutually competitive.

Each of the yeast proteins examined here had clustered

binding locations. Clustered sites had substantially higher occu-

pancy than isolated sites, perhaps owing tomutually cooperative

binding through direct or indirect interactions or through cooper-

ative exclusion of competing proteins. Site clustering might also

give rise to the perception of nonorthologous site evolution. It is

well known that cis-regulatory elements have a conserved pres-

ence but not necessarily a conserved position in promoter

regions (Birney et al., 2007; Dermitzakis and Clark, 2002; Moses

et al., 2006). Conceivably, each site in a cluster of sites might

evolve back and forth from high affinity (recognizable) to low

affinity (unrecognizable). As such, two sites that appear at non-

orthologous locations might also have degenerate orthologous

equivalents that are undetectable by consensus matching.

Summary
ChIP-exo has the potential to reveal essentially a comprehensive

and unambiguous set of genomic binding locations for a protein

at near single bp accuracy. Moreover, improved mapping accu-

racy and background reduction substantially reduce the number

of tags needed to unambiguously identify a bound location and

provide a much greater range of occupancy levels that can be

detected. This allows for a more complete assessment of regu-

latory networks, the repertoire of binding sites, their evolutionary

turnover, and the context in which they interact with other

factors.

EXPERIMENTAL PROCEDURES

Standard ChIP was performed as previously described (Venters and Pugh,

2009). While still on the sepharose resin, the immunoprecipitated DNA was

polished, ligated with P2 adaptors, and digested with l exonuclease. l exonu-

clease-digested DNA was eluted from the resin. Crosslinks were reversed and

proteins degraded with Proteinase K at 65�C. DNA samples were precipitated

with ethanol and denatured at 95�C. DNA samples were primer-extended

using a P2 primer. P1 adaptors were ligated to the l exonuclease-digested

end. The resulting DNA was PCR-amplified, gel purified, and sequenced using

the SOLiD genome sequencer (AppliedBiosystems). The genomic distribution

of sequence tags was used to identify peaks on the forward and reverse strand

separately using the peak-calling algorithm in GeneTrack (Albert et al., 2008).

Full methods are available in the Extended Experimental Procedures. Final

binding locations are reported in Data S1. Direct binding to defined motifs

was confirmed by protein binding microarray data (Table S3).

ACCESSION NUMBERS

Raw sequencing data are available at the NCBI Sequence Read Archive

(accession number: SRA044886).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, three tables, and one data file and can be found with this article online

at doi:10.1016/j.cell.2011.11.013.
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