MAT257 RSG 1

Rishibh Prakash

26 September, 2021

- 1. Recall from last year (and the homework) that there seems to be a certain equivalence between inner products and norms. We will show that this equivalence is actually a bit weaker than it appears.
 - (a) For $p \ge 1$, define $\|\cdot\|_p : \mathbb{R}^n \to \mathbb{R}^+$ as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Show that $\|\cdot\|_p$ is a norm.* Note: $\|\cdot\|_p$ are known as the ℓ^p norm.

- (b) Show that this does not hold when 0 .
- (c) Let $\|\cdot\|_{\infty}$ denote $\lim_{p\to\infty} \|\cdot\|_p$. Show that this is equal to the sup norm (i.e. when $|x| = \sup\{x_i\}$).
- (d) (Axler 6A.18) Prove that $\|\cdot\|_p$ has an associated inner product if and only if p = 2 (Hint: there is a certain equality that holds for norms from inner products that does not hold for norms in general).
- 2. Using the fact that the longest side of a right-angled triangle is the hypoteneuse, prove Cauchy-Schwarz (Hint: Recall, in our proof of Cauchy-Schwarz we considered $|y|^2 x - \langle x, y \rangle y$.
- 3. Let $\mathcal{L}(\mathbb{R}^n)$ denote the space of linear operators on \mathbb{R}^n .
 - (a) Prove that $S = \{|T(h)| : h \in \mathbb{R}^n, |h| \leq 1\}$ is bounded for all $T \in \mathcal{L}(\mathbb{R}^n).$
 - (b) Define ||T|| to be sup S (as defined above) for $T \in \mathcal{L}(\mathbb{R}^n)$ which is called the operator norm. Prove that this is indeed a norm on the space of linear operators on \mathbb{R}^n .

- 4. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on \mathbb{R}^2 . We say that two norms are equivalent if there exist positive A and B such that $A \|v\|_1 \le \|v\|_2 \le B \|v\|_1$ for all $v \in \mathbb{R}^2$. Show that all norms on \mathbb{R}^2 are equivalent.*
- 5. Here we prove that every subset of a compact set is compact. "Let $T \subset \mathbb{R}^n$ be compact and $S \subset T$ be arbitrary. Let $\{U_\alpha\}$ be an open cover of S. We extend this to an open cover of T by adding in an open set that contains T. By compactness of T, we know there is a finite subcover of T and since S is a subset of T, we also get a finite subcover of S, proving that S is compact." What is wrong with the above proof?
- 6. In tutorial, we proved that $A \subset \mathbb{R}^n$ being compact implies that A is closed and bounded. However, we were given what I feel is a rather unsatisfactory proof for the closedness as we used an unfamiliar definition for closedness. So let us do it ourselves:

Show that A being compact implies that A^c is open. (*Hint:* To each $x \in A^c$ associate a family of open sets that cover A and then use compactness of A to show there is an open set containing x that is contained within A^c .)

- 7. Show that $A \subset \mathbb{R}^n$ is closed if and only if $\operatorname{Bd} A \subset A$. Do you think the opposite holds for open sets? That is, is it true that $A \subset \mathbb{R}^n$ is open if and only if $\operatorname{Bd} A \subset A^c$?
- 8. Let $\Delta = \{(x, y) \in \mathbb{R}^2 | x y = 0\}$. Find the interior, exterior and boundary of Δ .
- 9. Suppose $A \subset \mathbb{R}^n$ is such that A = BdA. What can we say about A?
- 10. Suppose $A \subset \mathbb{R}^n$ is such that BdA is open. What can we say about A?

 $[\]ast$ indicates questions I either have no solution or partial solutions for