
1. (a) Not sure how to show subadditivity, pretty sure I’m just missing
something minor.

(b) Subadditivity fails, e.g. |(1, 0)| = |(0, 1)| = 1 but |(1, 1)| = (1 +
1)2 = 4

(c) MAT157 HW16 Q3
(d) It’s the parallelogram equality that fails.

∥(1, 0) + (0, 1)∥2 + ∥(1, 0)− (0, 1)∥2 = 2(∥(1, 0)∥2 + ∥(0, 1)∥2)
∥(1, 1)∥2 + ∥(1,−1)∥2 = 2(∥(1, 0)∥2 + ∥(0, 1)∥2)
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Thus p = 2.

2. It’s sufficient to show this holds when x, y are of unit length. This
leaves us with x− ⟨x, y⟩ y gives us an orthogonal decomposition for x.
We have a right angle triangle with ⟨x, y⟩ y as one the sides and x at
the hypotenuse. Note ∥⟨x, y⟩ y∥ = | ⟨x, y⟩ | which has to smaller than
the length of the hypotenuse which is 1.

3. (a) We know from homework that |T (h)| ≤ M |h| for some sufficiently
large M . Assuming |h| ≤ 1, we directly get that |T (h)| ≤ M as
desired.

(b) MAT247 A4 Q3, simply note that |(S + T )(x)| ≤ |S(x)|+ |T (x)|
and then taking supremum over both sides for |x| ≤ 1

4. I only have a partial solution for this one so far. I think the easiest
way to go about this is to show that every norm is equivalent to the
supremum norm. It is clear that the right hand side of the inequality
holds.
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So we just take B =
∑n

i=1 ∥ei∥. Not sure how to do the other direction.

5. This, I would argue, is one of the two good questions in this worksheet
(the other one being Q9). The key is that the finite subcover we have
at the end might contain the additional open set we threw in to cover
T . Hence it tells us nothing about the open cover we started with to
cover S and whether finitely many of those cover S.

6. Let x ∈ Ac. Consider the collection {ext(B 1
n
(x))}n∈N which covers

all of Rn\{x} so in particular covers A. Using compactness we only
need finitely many ext(B 1

n
(x)) to cover A. Since each ball exterior is

contained within the next one, we can find a smallest ball around x
who exterior contains A. Taking complements tells us that the closure
of this ball is contained within Ac. We then just take the interior of the
closure (which is of course the open ball itself) as the neighbourhood
of x that is contained within Ac.

7. Suppose A is closed and let x ∈ BdA. Suppose x ∈ Ac. But Ac being
open contradicts x being in the boundary since there is an open set
that lies entirely within Ac.
Now suppose BdA ⊂ A. Then every x ∈ Ac has an open neighbour-
hood that never intersects A, hence lies entirely within Ac.
Yes, the opposite does in fact hold. Suppose A is open. Then certainly
it cannot contain it’s boundary by definition of boundary and open.
Then suppose BdA ⊂ Ac. Then as before we argue that for every
x ∈ A, we can find an open neighbourhood that never intersects Ac

hence is entirely within A.

8. Interior is empty, the boundary is itself and exterior is the complement
of ∆.

9. The most I have been able to say is that A is closed (see Q6) and
that int(A) = ϕ. The latter follows from recalling that Rn = int(A) ⊔
Bd(A) ⊔ ext(A) for any A ⊂ Rn. (⊔ is disjoin union). If A = Bd(A)
then Ac = int(A) ⊔ ext(A). Clearly Ac cannot contain int(A) so it
must be empty.

10. This I would argue is the only other good question in this list as there’s
at least some work to be done and it takes to some rather interesting
places. We will show that A is such that every open set in Rn intersects
A or A is empty.
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First we note that the boundary of a set is always closed since its
complement is the union of the interior and exterior which are both
open. Thus Bd(A) is clopen implying that BdA = Rn or BdA = ϕ.
I claim that the only sets with empty boundary are Rn and ϕ. This
is because this implies that Rn = int(A) ⊔ ext(A). This means that
int(A)c = ext(A) but int(A) and ext(A) are open by definition. Thus
we once again have clopen sets. If int(A) = Rn then clearly A = Rn

and if ext(A) = Rn then Ac = Rn so A = ϕ.
Now suppose that Bd(A) = Rn. Let U ⊂ Rn be any open set. For any
x ∈ U , we know that x ∈ Bd(A) so we cannot have U ⊂ A or U ⊂ Ac.
Thus U intersects A (and Ac).
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