1. We claim that if $C \subset \mathbb{R}^n$ is closed then $\operatorname{int}(\operatorname{Bd}(C)) = \phi$.

Recall that $\operatorname{Bd}(C) = \overline{C} - \operatorname{int}(C)$. Since C is closed $\overline{C} = C$. Then $\operatorname{Bd}(C) = C - \operatorname{int}(C)$. Then if $x \in \operatorname{int}(\operatorname{Bd}(C))$, then there would have to be an open U that contains x and is contained in $\operatorname{Bd}(C)$. But then this U would be contained in C so $x \in \operatorname{int}(C)$ leading to a contradiction.

Then Bd(Bd(Bd(A))) = Bd(Bd(A)) - int(Bd(Bd(A))). Since the boundary of a set is always closed, we use the above fact.

- 2. This problem immediately reduces down to finding what conditions for A guarantee that $int(Bd(A)) = \phi$. I really want to say that this is true exactly when $Bd(A) \neq \mathbb{R}^n$ (i.e. when A is not dense) but have not been able to prove this yet.
- 3. We know that if $|D_i f_j(a)| \leq M$, then $|f(x) f(y)| \leq nmM|x y|$. We just take M = 0.
- 4. We define $h : \mathbb{R} \to \mathbb{R}^2$, given by h(x) = (f(x), g(x)) and $p : \mathbb{R}^2 \to \mathbb{R}, p(x, y) = xy$. Then

$$(p \circ h)'(x) = p'(h(x))h'(x)$$
$$= (g(x) \quad f(x)) \cdot \begin{pmatrix} f'(x) \\ g'(x) \end{pmatrix}$$
$$= f'(x)g(x) + f(x)g'(x)$$

5. By assumption if f is tiny then given any $\epsilon > 0$, we can find some $\delta' > 0$ such that $|h| < \delta$ implies that $|f(h)| < \epsilon |h|$. We can then take our δ from the $\delta - \epsilon$ definition of continuity to be $\delta = \min\{\delta, 1\}$. This implies that $|f(h)| < \epsilon |h| \le \epsilon$.

The identity map on \mathbb{R}^n is such a map. This question is just meant to illustrate that being 'tiny' is a stronger condition than being continuous.

6. We simply note that

$$\min(a,b) = \frac{a+b-|a-b|}{2}$$

The minimum function on higher dimensions is simply the composition min with itself, hence is continuous. I am fairly sure that min : $\mathbb{R}^2 \to \mathbb{R}$ is differentiable everywhere except the diagonal.