MAT257 RSG 9 Sketch Solutions

Rishibh Prakash

22 November, 2021

- 1. No idea
- 2. Using Fubini's

$$\int_{x=0}^{x=1} \left(\int_{y=0}^{y=1} x \cos(xy) dy \right) dx = \int_{x=0}^{x=1} \sin(xy) |_{y=0}^{y=1} dx$$
$$= \int_{x=0}^{x=1} \sin(x) dx$$
$$= (-\cos(x)) |_{x=0}^{x=1}$$
$$= 1 - \cos(1)$$

3. Let Q be some rectangle containing S. We define $f_S : Q \to \mathbb{R}$ by

$$f_S(x) = \begin{cases} f(x), x \in S \\ 0, \text{ otherwise} \end{cases}$$

Similarly define $f_{S'}$.

Suppose f_S is continuous at x. If $x \in int(S)$ then $f_S = f_{S'}$ on a neighbourhood of x hence $f_{S'}$ is also continuous at x. The same holds true if $x \in (S)$ (in particular both functions are 0 in some neighbourhood). Now suppose $x \in Bd(S)$. As f_S is continuous at x and every neighbourhood x contains points not in S, it must be true that $f_S(x) = 0$. For any y in some neighbourhood of x, we have that either $f_{S'}(y) = f_S(y)$ or $f_{S'}(y) = 0$. Therefore the $f_{S'}(y) \to 0$ as $y \to x$ and since $x \notin S'$ we know $f_{S'} = 0$ so $f_{S'}$ is continuous at x. Then we consider $f_S - f_{S'}$ which is 0 nearly everywhere hence we are done.