MAT257 RSG 5

Rishibh Prakash

24 October, 2021

3. (Our Lord and saviour Saied) Consider the following system of equations:

$$wxyz + x^2e^y + y\cos(wz) = 0$$
$$4\sin(w) + 3\cos(x) - 2e^y - z = 1$$

- (a) Show that there exists a neighbourhood B of (0,0) with a unique function $g: B \to \mathbb{R}^2$ of class C^{∞} such that:
 - g(0,0) = (0,0) and
 - if $(w, x) \in B$ and (y, z) = g(w, x) then (w, x, y, z) satisfies the system of equations above.

(b) Determine Dg(0,0).

- 3. Show that the Implicit Function Theorem implies the Inverse Function Theorem.
- 3. (Our Lord and saviour Saied) Let n > 1 and $f, g : \mathbb{R}^n \to \mathbb{R}$ be of class C^{∞} . Define

$$C = \{x \in \mathbb{R}^n : g(x) = 0\}$$

We say $x \in \mathbb{R}^n$ is a constrained local extremum of f if x is a local extremum of $f|_C$. Let c be such a point.

- (a) Suppose $\frac{\partial g}{\partial x_n}(c) \neq 0$. If c = (a, b) with $a \in \mathbb{R}^{n-1}$ and $b \in \mathbb{R}$, show that there exists $B \subset \mathbb{R}^{n-1}$ open containing a and $h : B \to \mathbb{R}$ of class C^{∞} such that
 - h(a) = b and
 - g(x, h(x)) = 0 for all $x \in B$
- (b) Define $F: B \to \mathbb{R}, F(x) = f(x, h(x))$. Use F to show that there exists some $\lambda \in \mathbb{R}$ such that $Df(c) = \lambda Dg(c)$.

For the nerds

3. Let \mathcal{H} be a (possibly infinite dimensional) real inner product space, such that that a sequence converges in \mathcal{H} if and only if it is Cauchy.

Let K be a closed linear subspace of \mathcal{H} . Let $v \in \mathcal{H}$ be arbitrary.

- (a) Let $(k_n)_{n \in \mathbb{N}}$ be a sequence in K such that $||k_n||$ converges to some $d \in \mathbb{R}$. Show that $(k_n)_{n \in \mathbb{N}}$ is Cauchy. (*Hint*: Consider $\left\|\frac{k_n k_m}{2}\right\|$ and use the Parallelogram equality)
- (b) Show there exists some $u \in K$ such that

$$||v - u|| = \inf\{||v - w|| : w \in K\}$$

- (c) Let $w \in K$ be arbitrary. We know from above that $||v u|| \le ||v u tw||$ for all t. Use this to show that $\langle v u, w \rangle = 0$.
- (d) Conclude that $\mathcal{H} = K \oplus K^{\perp}$.