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1 Abstract Data Types

Definition 1.1 (Abstract Data Type). An abstract data type (ADT) is a set of objects with some operation(s).

Example 1.1. A Stack is an ADT. The set of objects can be anything and the (standard) operations are
push(x), pop() and isEmpty(). ■

Definition 1.2 (Data Structure). A data structure is an implementation of an ADT. It gives a way of repre-
senting the objects in an ADT and an algorithm for every operation.

One can implement a Stack using a linked list or an array (where by array we mean the Java use of
array). These two implementations have different algorithms for each of the operations and hence have
different time/space complexity. We may choose one implementation over the other (i.e. one data struc-
ture over the other) depending on what operations we need to be efficient.

2 Runtime Complexity

The complexity of an algorithm is the amount of resources required by it as a function of the input size.
We are deliberately vague on what we mean by resources. This could be space (in memory), the amount
of time taken or some other metric (although the first two are the most common). Also note that the
definition of ‘input size’ will vary based on the problem. For lists, input size might be the length of the list,
for graphs it might be the number of nodes/vertices or the number of edges.

2.1 Analysing Runtime Complexity

When analysing the runtime of an algorithm, there a few cases we tend to consider: worst case (this is
maximum amount of time/space/resources the algorithm could take. Useful for obvious reasons), best
case (this is the minimum amount of time/space/resources the algorithm needs to take. Not used incred-
ibly often but does provide useful information in certain cases) and the average case (as suggested by the
name, this is the statistically expected runtime of an algorithm. If the worst case happens only rarely, it
seems silly to give it much weight).

Computer scientists tend not to work with the exact values when analysing runtime (which can vary
based on minor things like the hardware, the device, the temperature, etc.) but are rather more interested
in how the runtime behaves as a function of the input size and in particular they only care about large
input sizes. All of this is made more precise with the use of asymptotic notation.

2.2 Asymptotic Notation

We have the following definitions:

O(g (n)) = { f (n) : ∃c ∈R∃n0 ∈ N such that 0 ≤ f (n) ≤ cg (n) for all n ≥ n0}

Ω(g (n)) = { f (n) : ∃c ∈R∃n0 ∈ N such that 0 ≤ cg (n) ≤ f (n) for all n ≥ n0}

Θ(g (n)) = { f (n) : ∃c1,c2 ∈R∃n0 ∈ N such that 0 ≤ c1g (n) ≤ f (n) ≤ c2g (n) for all n ≥ n0}

Intuitively, one thinks of O(g (n)) being the set of functions that grow at most as fast as g (n) (or some
multiple thereof). Hence g (n) provides a kind of upper bound for all functions in O(g (n)).

Example 2.1. If f (n) = 2n2 +n, then f (n) ∈O(n2),O(n100),O(nn), etc. ■

ConverselyΩ(g (n)) is the set of functions that grow at least as fast as g (n), making g (n) a kind of lower
bound for all the functions inΩ(g (n)).

Example 2.2. If f (n) = 2n2 +n then f (n) ∈Ω(n2),Ω(1),Ω(n) etc. ■

Finally, as one might expect,Θ(g (n)) is the set of functions that grow at the same rate as g (n).

Example 2.3. If f (n) = 2n2 +n, then f (n) ∈Θ(n2). ■
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Notice that in the examples above f (n) ∈ O(n2) and f (n) ∈Ω(n2) which is how we were able to con-
clude that f (n) ∈ Θ(n2). This is how we almost always show that f (n) ∈ Θ(g (n)). The question then be-
comes how would we show that the runtime complexity of an algorithm is in Big-Oh or Big-Omega for
some g (n).

Suppose f (n) is the worst case time complexity of an algorithm. Recall that Big-Oh provides an upper
bound. So if we want to show that f (n) ∈ O(g (n)) then we must show that every input of size n takes at
most cg (n) steps. If we want to show that f (n) ∈Ω(g (n)) then we only need to find a suitable example for
every n where the runtime on the example is at least cg (n).

3 Worst Case Analysis

Suppose t (x) describes the time taken by an algorithm on some input x. Then the worst case time com-
plexity T (n) is given by

T (n) = max{t (x) : x is an input of size n}

3.1 Example

Here is a simple example for us to consider: a function that takes in list and determines whether or not it
contains the integer 21.

1 d e f hasTwentyOne(L):
2 j = L.head
3 w h i l e j!= None and j.key != 21:
4 j = j. n e x t
5 r e t u r n

Let f (n) denote the maximum number of comparisons made by the algorithm on a list of length n
(the number of comparisons is how we are choosing to measure the complexity of this algorithm since it’s
a relatively expensive operation). We first claim that f (n) ∈Ω(n). Let Ln denote a list of length n that does
not contain 21. In this case 2 comparisons are made in line 3 for every element in the list and one final
comparison when we reach the end of the list. This means that 2n +1 comparisons are made in this case.
Thus f (n) ∈Ω(n).

Now we claim that f (n) ∈O(n). We will show that any input of size of n will take at least 2n+1 compar-
isons. Note that every time line 3 is executed, we either quite the while loop or run line 4. Every time line
4 is run, j is the next element in the list. Hence line 4 can be executed at most n times after which point
j will be None. Then line 3 is run one more time to compare j and None. In this case the while condition
will evaluate to False hence we must exit the loop. Hence at most 2n +1 comparisons can be done on an
input of size n.

We can quickly do the analysis for the best case scenario which occurs when the first element of the
list is 21. In this case only 2 comparisons will be done regardless of the list size implying that the best case
O(1). Clearly no fewer than 2 comparisons can be made so in the best case this algorithm isΘ(1).

4 Average Case Analysis

As described above and as one might expect, we find the average runtime by finding the expected value
of the runtime over all possible inputs. This requires us to know the distribution of the inputs. Usually we
make some reasonable assumptions about the input which allows us to come up with a decent distribu-
tion. If we have more knowledge about the inputs, we can use that to find a more accurate distribution.

4.1 Example 1

We use the same algorithm as before for our example.

1 d e f hasTwentyOne(L):
2 j = L.head
3 w h i l e j!= None and j.key != 21:
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4 j = j. n e x t
5 r e t u r n

For input size n, we define our sample space Sn = ⋃n
i=0 xi , where x0 is the set of all of inputs that do not

contain the number 21 and xi (for 1 ≤ i ≤ n) is the set of inputs that contain 21 in the i−the position. From
before we know that the number of comparisons made for xi for 1 ≤ i ≤ n is 2i and for x0 it is 2n +1. We
define T to be the random variable denoting runtime on any input of size n. Then

Tav g := E [T ] = ∑
s∈Sn

t (s)P (T = s)

(where t , as before, denotes the runtime on any given input).
For our example, we will assume that the probability of 21 appearing in the first position of a list is p

(where course 0 < p ≤ 1, we can assume p to be non-zero since if it is 0, we go back to the worst case) and
the probability of 21 appearing at index i is independent of it appearing at index j . This means that the
probability of 21 appearing at index i is (1−p)i−1p. Then

E [T ] =
n∑

i=0
t (xi ) ·P (T = xi )

= t (x0) ·P (T = x0)+
n∑

i=1
t (xi ) ·P (T = xi )

= (2n +1)(1−p)n +
n∑

i=1
(2i )(1−p)i−1p

= ...

= (1−p)n
(
1− 2

p

)
+ 2

p

We see that as n →∞, the expected runtime approaches 2
p which is a constant. Therefore Tav g ∈Θ(1).

4.2 Example 2

We consider a second example

1 d e f evens_are_bad(lst):
2 i f every number i n lst i s even:
3 repeat lst.length times:
4 calculate and p r i n t the sum of the lst
5 r e t u r n 1
6 e l s e :
7 r e t u r n 0

The operation we will consider is accessing a list element. In this case we can divide our sample space Sn

into two classes of lists, a list of length n with all even numbers and a list of length n with at least one odd
number. In the first case we n+n2 steps, n for iterating over the list to determine whether all the numbers
are even. Then we have n iterations to find the sum which is repeated n times. In the the other case we
only have n iterations in order to determine whether every number is even.

We will assume that there is a p = 0.5 probability of any element of the list being even. Then

E [T ] = pn · (n2 +n)+ (1−pn) ·n

= n2pn +npn +n −np2n

= n2pn +n

As n →∞, then this approaches n since the first term goes to 0. Therefore the average runtime com-
plexity of this algorithm is asymptotically linear.

5



5 Heaps

5.1 Motivation

Heaps are a way storing ordered data so that both querying and insertion of data can be fast. In particular
they allow us to implement the Priority Queue ADT.

Let us briefly discuss the priority queue ADT. The data for this ADT is a collection of items (often
labelled “PQ" for reasons that the reader may guess) where each item has an associated priority (an ele-
ment from a totally ordered set, often the integers). A priority queue has three operations: insert(PQ,
x, priority), FindMax(PQ), ExtractMax(PQ). As you might guess insert adds x into PQ with the as-
sociated priority. FindMax returns the item with the highest priority. If there are multiple items with the
highest priority then any one of them can be returned (the ADT does not specify which one). ExtractMax
returns the item with the highest priority and removes it from PQ.

There are several ways we can try and implement this ADT. A rather naive way would be to use a
linked list. Insertion adds an element to the head of list, making it Θ(1), which seems promising, but in
order to find/extract the max we would have to iterate over every element in the list making both of those
operations Θ(n). Things are slightly better if we order the list since this makes finding and extracting the
maximum Θ(1) but now insertion is Θ(n) in the worst case (for example, if the item being added being
added is bigger/smaller than all the items in the list then we need to iterate over every element of the
list, depending on how the list is ordered). Another alternative is to use a Binary tree. In this case, all the
operations areΘ(n) in the absolute worst case if the tree is unbalanced (effectively becoming a linked list)
since finding the maximum requires us to to iterate all the way down. However if the tree is balanced the
operations would Θ(logn). Of course balancing a tree or keeping it balanced incurs its own cost. This
is what inspires heaps: sort the data a bit so that querying of data is easy but not too sorted so that the
structure can be maintained efficiently.

5.2 Implementation

We first need to talk about what a nearly complete binary tree is. This is a binary tree where every row is
completely filled, except possibly the last one (if the last is filled then it would be a complete binary tree)
and the last row we begin filling in from the left. Note this means that for every N ∈N, there is a unique
configuration of N nodes making a nearly complete binary tree (this is an important property which we
use many times).

A heap, then, is nearly complete binary tree that satisfies the heap property. For a maxheap, the heap
property is that every node is greater than or equal to its immediate children (which, by recursion, implies
that the root is the largest node). As one can guess, for a minheap, the heap property is when every node
is less than or equal to its immediate children.

(a) Heap Example (b) Heap Non-example

The question then becomes how do the different operations work with this structure. The easiest, of
course, is FindMax where it only needs return the root of the tree. The other two are a bit more tricky. The
general principle when modifying heaps is that we first maintain its shape as a nearly complete binary
tree and then modify the values within so that they satisfy the heap property.

Let us first begin with insertion. Given any tree, we know exactly where an additional node should go
since every heap of N items has a unique configuration. After a node is added and the value place inside,
we compare this added node to its parent to verify whether the heap property is satisfied. If it is, then we
are done. If not, we swap the parent and child and ask again whether the newly modified parent (which
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will contain the inserted value) satisfies the heap property or not. If not, we swap it with its parent again.
We continue doing this until the heap property is satisfied or the inserted value reaches the top of the tree.
This process is known as “bubbling up” or “max heapifying”. This can occur at most as many times as the
height of the tree, so this operation isΘ(logn) in the worst case.

(a) Starting heap to which we will
add 17

(b) Step1: Add node to maintain
heap structure

(c) Step 2: Swap 17 and 16 to satisfy
the max heap property

Extraction of max is a bit more tricky. After we return the maximum value, we remove the very last
item of the heap (recall there is only one possible configuartion for any number of nodes, so we know
that the last node needs to be removed anyway) and place it as the root. In this case, the heap property
is almost certainly not satisfied (although if it is, we are done!). If we need to, we then swap the root with
the larger of its children and continue this process of “bubbling down” until the heap property is satisfied.
Once again this process isΘ(logn) in the worst case.

5.3 Array Implementation

The wonderful thing about heaps is that they can be stored as arrays. This is because, as we’ve said multi-
ple times, there is unique configuration of a heap for any number of nodes, hence given a list of numbers,
we know exactly what heap it would correspond to. The benefit of storing this data as an array is that it
becomes very easy to access the children or parent of a node: if a node is at index i , its left child will be at
index 2i , its right child is at index 2i +1 and the parent is ⌊ i

2 ⌋ (Note: this assumes we start indexing from 1
not from 0).

Figure 3: Heap Example in a tree

Figure 4: Same heap in an array

6 Heapsort

As mentioned heaps are partially sorted. One might wonder how much effort it would take to get it com-
pletely sorted, i.e. turn it into a sorted list. We recall that the largest element of the heap is always at the
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root. So by repeatedly calling ExtractMax on a heap, we should be able to get a sorted list. Remembering
that heaps are almost always implemented as arrays, we might get another brilliant insight: do the sorting
in place.

For example, we first swap the first and last element in the heap, do the bubbling down and then
decrement the heapsize. By decrementing the heapsize, the root which was at the end of the heap is
moved out of it. This means that it’s already in the position it should be! (assuming we are sorting the list
in non-decreasing order).

Figure 5: Extract max in a tree

Figure 6: Extract max in array (note placement of 18). Grey edge indicates removed edge.

As the 18 is past heapsize, we need not worry about it anymore (from the perspective of the heap, it is
no longer in it). It is easy to see that as we continue this we will continue placing the largest elements at
the end, thereby getting a non-decreasing list at the end.

Let’s see what the bubbling-down, also known as MaxHeapify, would look like in code.

1 d e f maxHeapify(L, i):
2 l = left(i) # if 1-based indexing left(i) = 2i
3 r = right(i) # if 1-based indexing right(i) = 2i + 1
4 i f l <= L.heapsize and L[l] > L[i]:
5 largest = l # stores index of the largest number
6 e l s e :
7 largest = i
8

9 i f r <= L.heapsize and L[r] > L[largest ]:
10 largest = r
11

12 i f largest != i:
13 exchange L[i] with L[largest]
14 maxHeapify(L, largest)

Of course we don’t quite have a sorting algorithm yet. We first need to see how to turn an unsorted list
into a heap (starting with a heap means if you’ve already most of the work!).

The most obvious way of turning an unsorted list into a heap would be to start with an empty heap
and repeatedly call Insert on the items of the sorted list to add them to the heap. Since Insert preserves
the heap property, after all the items have been inserted, we will have a valid heap. Unfortunately, as is so
often the case with computer science (and quite frankly life) the most obvious solution is often not very
good.

It is easy to see that in the worst case, this algorithm is O(n logn) since each insert takes at most logn
time and we do n insertions. With a bit more though we can also conclude that this algorithm is also
Ω(n logn). Recall from above that this requires us to find a family of inputs where the runtime is actually
n logn. Suppose we apply this algorithm on an increasing list. Then every insertion will take logh time
where h is the height of the tree when the particular insert is called. Note that in any nearly complete
binary tree, at least half of the nodes are leaves (induction might be the simplest way of convincing oneself
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of this fact). These leaves are at a depth of logn or logn −1 (if the tree is a complete binary tree then all
leaves are at depth logn, otherwise there are some leaves at depth logn −1). For each of those ⌈n

2 ⌉ leaves,
at least logn−1 swaps are done. Thus the algorithm is inΩ(⌈n

2 ⌉ log(n)−1) which, via asymptotic notation,
means that the algorithm isΩ(n logn).

Let’s see if we can do any better. The problem with the above algorithm is that the most expensive
operation is at the leaves which are also the most common node in a heap. Ideally what we would want is
an algorithm that is cheap for leaves and maybe a bit more expensive for other nodes.

One might remember that heaps are recursive in nature. That is, in a heap the left and right child of
any node are themselves heaps. Leaves can then be thought of one-node heaps. Inspired by this, and by
the previous discussion of MaxHeapify, we might consider the following: put the unsorted array into a
nearly complete binary tree and work backwards by calling MaxHeapify on every node. Nodes that are
near the bottom of the tree (which are the most frequent ones) have shorter subtrees therefore are cheaper
to correct. Indeed this change allows the algorithm to be O(n) rather than O(n logn).

Let us work this out mathematically. There are n
2 leaves (for now we assume n to be a power of 2) hence

they are trees of height 0. There are n
4 nodes which are rooted at trees of height 1 (these are of course the

parents of all the leaves). We continue similarly to conclude that there are n
2k nodes which have trees of

height k −1 for k between 1 and logn. Thus the total time of this algorithm is

⌊logn⌋∑
h=0

h ·
⌈

n

2h+1

⌉
=O

(
n

2

⌊logn⌋∑
h=0

h

2h

)
=O (n)

where we use the fact that
∑∞

k=1 kr k = r
(1−r )2 provided that 0 < r < 1 (this is known as Gabriel’s staircase

series).

7 Dictionary ADT

The Dictionary ADT is similar to python’s dictionaries. Formally, the data for a dictionary is a set of el-
ements S where each x ∈ S has a field x.key where keys are elements of some totally ordered set (often
taken to be the integers). The keys in a dictionary are unique. This means that for every x, y ∈ S we have
that x.key ̸= y.key. The ADT defines 3 operations on this set: Insert, Search and Delete.

• Insert(S, x): Insert x into S. If there is some y in S with y.key = x.key, then replace y with x.

• Search(S,k): Return x in S for which x.key = k. Return null if no such x exists

• Delete(S, x): Delete x from S (note they parameter is x, not the key)

Quite often we think of x as consisting of two parts: the key and everything that is not the key. This
remaining part can be called the value of x, turning x into the more familiar (key, value) pairing.

There are a number of different ways of implementing this ADT, we see some examples below.

7.1 Direct-Access Table

Perhaps the simplest way is to create a location in memory for every possible key. For example suppose
the only possible keys are numbers 0 – 99. In this case we can create an array of size 100 and store an
inserted value in the appropriate index. In this case, Search, Insert and Delete are all constant time. Of
course what we gain in time, we lose in space (if instead the index was given by 32-bit numbers, we would
need 232 locations in memory!). So we end up reserving an enormous amount of space for (ke y, value)
pairs that may never be used.

7.2 Hash Table

We can perhaps make things a bit easier by using a hash function. A hash function allows us to map the
entire universe of possible keys to a smaller collection and we use this smaller collection to access the
table.
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Figure 7: Direct-access Table

Of course by its very nature, there will be conflicts in this mapping – the hash function cannot be
injective. This means that we need to deal with two different keys being mapped to the same value by the
hash function. We discuss this in detail in Section 11 but a common way of dealing with this is storing the
values corresponding to a hashed key as a linked list. In other words each entry in the direct access table
for the hashed keys actually points to the head of a linked list. In this worst case, we simply have the items
being stored in a linked list which (as we see below) take Θ(n) time for searching (however the average
case can be madeΘ(1) as we will see later, so this is certainly not a bad alternative). Insertion and deleting
takeΘ(1) time (assuming we have already searched for the item).

Figure 8: Hashing keys

7.3 Array

Another way we might try to remedy the situation with Direct Access tables is to simply add things to the
array when needed, instead of allocating space at the beginning. In this case, when searching we need
to iterate over every value in the array in order to determine whether it contains the specified key or not
making thisΘ(n). Insertion and deleting however areΘ(1) (assuming we keep track of the dictionary size,
we simply add new items to the corresponding position and after we remove an item we can use the last
item to fill the gap. Both of these operations are constant time).

In the above we assume arrays to be unsorted. If we sort the array, then searching becomes Θ(logn)
(we use binary search) but now insertion and deleting become Θ(n) since we need to shift items in order
to preserve the ordering.
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7.4 Linked List

With an unsorted linked list the situation is much the same as before, searching isΘ(n) while insertion and
deleting are quite cheap, being constant time (as always, we assume the insertion and deletion happen
after a search is performed, so we don’t account for the time spent on searching). The situation remains
exactly the same if we sort the linked list instead since we cannot access the central element of the list in
order to perform binary search.

7.5 Binary Search Tree

The above seems to very strongly suggest using a binary search tree since we point directly to the central
element! Unfortunately in the worst case a binary search tree could be completely one-sided an simply
be a linked list. If only there were some way of ensuring that a binary tree were balanced...

7.6 Balanced Search Trees

This is of course what inspires the category of what are called balanced search trees that try to minimise
the height of a tree as much as possible. There are many different kinds such as red-black trees, AVL trees,
B trees, etc. We will look at AVL trees.

8 Binary (Search) Trees

We take a brief refresher with binary trees before delving into how to balance them.
A binary tree is simply a tree where each node has at most 2 children. As usual, if a node has no child

it is called a leaf. The height of a tree is the size of the longest path between the root and its leaves (where
the size of the path is given by the number of edges traversed, in particular then a single node tree is of
height 0). The depth of a node is the size of the path from the root to that node. We can then equivalently
define the height of the tree as the maximum depth of any node in the tree.

A binary tree is called a binary search tree if every node satisfies the binary search tree property: ev-
erything on the left subtree of a node is smaller than or equal to the node and everything on the right is
greater than or equal to the node.

Figure 9: Example of non-BST

8.1 Insert

Now we consider how we might implement the Dictionary ADT using a binary search tree. First we recall
that the keys of a dictionary are unique, so we know that everything on the left subtree is going to strictly
smaller than the root which in turn is going to strictly smaller than everything on the right subtree. The
insertion algorithm for a BST might look something like so
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Figure 10: Example of BST

1 INSERT(S, x):
2 # Helper may need to modify the root itself: have it return value.
3 S.root <- TREE -INSERT(S.root , X)
4

5 TREE -INSERT(root , x):
6 i f root i s NIL: # x.key not already in S
7 # Found insertion point: create new node with empty children
8 root <- TreeNode(x)
9 e l s e i f x.key < root.item.key:

10 root.left <- TREE -INSERT(root.left , x)
11 e l s e i f x.key > root.item.key:
12 root.right <- TREE -INSERT(root.right , x)
13 e l s e : # x.key == root.item.key
14 root.item <- x # replace root with x
15 r e t u r n root

Remark 8.1. Note that S doesn’t technically store the whole tree. It only stores (a pointer to) the root and
we can recursively go through the tree using .left and .right.

It is then clear that the runtime for Insert depends on the the height of the tree. Also note that the
same set of numbers could give us completely different trees, depending on the order in which they are
inserted (see Figure 11). We will see that this is a primary concern with binary trees.

8.2 Search

An algorithm for Search can be described like so

1 SEARCH(S, k):
2 r e t u r n TREE -SEARCH(S.root , k)
3

4 TREE -SEARCH(root , k):
5 # Compare root.key with k to determine if k is to the left or right
6 # return when root.key == k
7 i f root i s NIL: # k not in S
8 p a s s
9 e l s e i f k < root.key:

10 root <- TREE -SEARCH(root.left , k)
11 e l s e i f k > root.key:
12 root <- TREE -SEARCH(root.right , k)
13 e l s e : # we have found the key
14 # root.key == k
15 p a s s
16 r e t u r n root

Once again the runtime is dependent on the height of the tree, which in the worst case is simply the
number of items.
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Figure 11: Dependence of BST on insertion order

For illustrative purposes, we can analyse the expected number of calls to search among the two trees
above in Figure 11, assuming that k is chosen uniformly from {0, . . . ,10}\{9}. We note that there are d +1
calls to TREE-SEARCH to find a node a depth d . The probability of choosing any node is simply 1

10 . Thus
for the first binary tree, the expected number of calls is

E(T1) =∑
n

P (k = n)(number of TREE-SEARCH calls to find node n)

= 1

10
(1 ·1+2 ·2+3 ·3+4 ·3+5 ·1) = 3.1

For the second binary tree, as every node is at a different depth, we simply have

E(T2) =
10∑

k=1

1

10
·k

= 1

10
· 10 ·11

2
= 5.5

As one would expect, the taller tree on the right will require more function calls on average.

8.3 Delete

There are three distinct cases to consider when deleting from a BST. The easiest case is when we are asked
to delete a leaf– we simply delete. If the node has only one child, then the task is also quite straightforward,
we promote the sole child to the place of the deleted node. The difficult case is when deleting a node
that has two children. In this case, we can replace the node we want to delete with the predecessor (the
rightmost node on the left subtree) or the successor (the leftmost node on the right subtree).

Remark 8.2. In this course, we always replace the deleted node with the successor.
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We have the following algorithm for this

1 TREE -DELETE(root , x):
2 i f root i s NIL: # x.key not in S, should not happen
3 p a s s
4 e l s e i f x.key < root.item.key:
5 root.left = TREE -DELETE(root.left , x)
6 e l s e i f x.key > root.item.key:
7 root.right = TREE -DELETE(root.right , x)
8 e l s e : # x.key == root.item.key so we remove root.item
9 i f root.left i s NIL:

10 root = root.right # NIL if both children missing
11 e l s e i f root.right i s NIL:
12 root = root.left
13 e l s e :
14 # Means root has two children
15 # Want to remove min item in right subtree
16 # Assumption: DELETE -MIN returns two values:
17 # - element removed from right subtree
18 # - root of resulting subtree
19 root.item , root.right = DELETE -MIN(root.right)
20

21 DELETE -MIN(root):
22 # Remove element with smallest key in root’s subtree
23 # return element that was removed and root of resulting subtree
24 i f root.left i s NIL:
25 # Root stores item with smallest key; replace with right child.
26 r e t u r n root.item , root.right
27 e l s e :
28 # Left subtree not empty; root not the smallest
29 item , root.left = DELETE -MIN(root.left)
30 r e t u r n item , root

As usual the runtime of this is dependent on the height of the tree which we can minimise by balancing
the tree.

8.4 Duplicate Keys

We take a brief segue to discussing the problem of how one may implement a Dictionary ADT that allows
for duplicate keys to occur using a BST. There are various strategies for how one may deal with duplicate
values. In this case we will analyse the different strategies by considering what happens in the case when
we try to insert n identical items.

The simplest strategy we could have for handling duplicate keys is to always put duplicates in the right
subtree. We can easily modify the code for TREE-INSERT in order to achieve this.

1 INSERT(S, x):
2 # Helper may need to modify the root itself: have it return value.
3 S.root <- TREE -INSERT(S.root , X)
4

5 TREE -INSERT(root , x):
6 i f root i s NIL: # x.key not already in S
7 # Found insertion point: create new node with empty children
8 root <- TreeNode(x)
9 e l s e i f x.key < root.item.key:

10 root.left <- TREE -INSERT(root.left , x)
11 e l s e :
12 root.right <- TREE -INSERT(root.right , x)
13 r e t u r n root

Now we consider our test case of inserting n duplicates into an empty tree and ask how much time
this takes. Assume that one call to TREE-INSERT takes time c. At depth k, we need to make k +1 calls to
TREE-INSERT. Therefore the time taken to insert n duplicate items is

n∑
k=1

k = n(n +1)

2
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Thus the operation isΘ(n2) for this case.
An alternative we might consider is to alternate going left and right. In particular, we add a boolean

flag to each node, which dictates whether duplicates should go to the left or the right. Then each time a
duplicate is inserted, the flag is inverted so that the next duplicate will be inserted in the opposite direc-
tion.

Let us try our test case again. We see that the height of the final tree (after all n items are inserted) is
logn. In fact if the tree has m items at a stage it will take Θ(logm) time to insert another item. Therefore
the total time taken is

n∑
m=1

c logm = c
n∑

m=1
logm < c

n∑
m=1

logn = cn logn

Hence the insertion is now O(n logn), a considerable improvement! Let us show that we are in fact in
Θ(n logn).

n∑
m=1

c logm >
n∑

m= n
2

c logm > c
n∑

m= n
2

log
(n

2

)
= c

n

2
log

(n

2

)
= c

2
(n logn −1)

Remark 8.3. Note the ‘trick’ above of only considering half the sum. This is a useful technique for finding
lower bounds.

Thus with this approach we are in Ω(n logn) as well implying that we are indeed taking Θ(n logn)
time.

9 AVL Trees

Everything we have done so far suggests that we want our trees balanced so that searching (and therefore
inserting and deleting) can be optimised. However keeping a tree balanced also uses up resources as we
also need to maintain the BST property (what this means before we move nodes and subtrees around we
need to find appropriate places for them). Much like with heaps, the solution is a compromise: we allow
the trees to be slightly imbalanced so that searching can be fairly fast (the tree is mostly balanced) but
we don’t need too much maintenance every time we insert or delete (the tree is mostly balanced). This is
what AVL trees do.

We need first define how we are going to be decide whether a tree is (sufficiently) balanced. We do this
using the balance factor. The balance factor (BF ) of a node m is

BF (m) = hR −hL

where hR is the height of the right subtree and hL is the height of the left subtree.

Remark 9.1. We say that the height of the empty tree is −1 so that we may distinguish it from a one node
tree.

If BF (m) = 0 then the tree (rooted at m) is balanced. If BF (m) = 1 then the tree is right heavy but still
AVL balanced. Similarly if BF (m) =−1 then the tree is left heavy but also remains AVL balanced. However
if the balance factor is any other value, it is no longer AVL balanced. A binary tree is an AVL tree if and only
if the balance factor of all of the nodes is between −1 and 1 (inclusive). This final property is known as the
AVL invariant.

Searching in an AVL tree is easy since it’s still a binary search tree. Thus the interesting operations
are Insert and Delete as these may cause the tree to no longer be AVL anymore. Thus we need ways of
correcting trees that have been knocked out of balance.
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Figure 12: Example of an AVL Tree (balance factors in yellow)

9.1 Insert

We first consider the case with insertion. It often helps to name things, so let T denote our AVL tree and
let x be the item we are inserting. Note that when we insert x, the only balance factors that could possibly
change are the ancestors of the newly inserted node (see Figure 13). This is because by definition the
balance factor at a node is hR −hL . The height of the right or left subtree at any node can only change if
the node is an ancestor of x (that’s exactly what it means to be an ancestor!). Hence the balance factors
for non-ancestral nodes remain the same.

Figure 13: Inserting into an AVL tree (compare with Figure 12 to note the balance factors that changed)

The only way inserting x can knock T out of balance is if we insert into the right subtree of a right
heavy tree or the left subtree of a left heavy tree. The symmetry of the situations means we only need
consider one of those cases; we choose the former.

Even within this there are 2 (unfortunately asymmetric) cases to consider. But first we need more
names: let m be the ‘lowest ancestor’ (i.e. with the ancestor with the greatest depth) of x that is no longer
AVL-balanced after the insertion of x. As we will see it suffices to fix the subtree rooted at m, so we will
assume m to be the root. Let T1 be the left subtree of m, let mR be m’s right child with left and right
subtrees T2 and T3 respectively. Suppose T1 is of height h. We assumed T to be right heavy implying that
m’s right subtree (i.e. the tree rooted at mR ) is of height h +1.

Our first claim is the following.
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Figure 14: Inserting makes AVL tree out of balance

Lemma 9.2 T2 and T3 are both of the same height and in particular are of height h.

Proof. We know that before the insertion of x, the balance factor of m was 1 (recall we are assuming that
we insert into the right subtree of a right heavy tree). Since the height of m’s left subtree was h, the height
of its right subtree must be h +1. This means that at least one of mR ’s subtrees, i.e. one of T2 and T3, is
of height h. Without loss of generality we can assume it to be T2 (this is one of those symmetric cases).
Suppose T3 is not of height h, then it must be of height h − 1 (by the AVL property we know the only
possible heights for T3 are h,h+1 and h−1. We assume it is not h and if it was of height h+1 then the tree
rooted at m would not have been AVL at the beginning). Since the insertion of x, knocks m out of balance,
we know it must be inserted in to T2 (if it was inserted into T3, BF (mR ) would remain unchanged). This
causes the height of T2 to increase to h+1 (if this height did not change then BF (mR ) would again remain
unchanged). But then mR is out of balance since its balance factor is now (h −1)− (h +1) =−2. However
we assumed that m was the lowest ancestor to be knocked out of balance, leading to a contradiction.

Now that we have that sorted (ha!), we need to consider how to correct the tree after inserting x. As
mentioned we split this into two cases, inserting into T2 and inserting into T3. The simpler case is inserting
into T3 so let us start with that. In this case, we can fix the tree with what’s called a single (left) rotation (if
we were inserting into the left subtree of m’s left child we would do a single right rotation instead). This is
most easily illustrated via diagrams.

Figure 15: AVL (single) rotations

There are some important properties that the single rotation has:

• The tree rooted at m is now balanced
• The BST property is maintined
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• The rotation takes constant time (in fact only 3 pointers are changed)
• The height of the tree (rooted at m) is the same after the insertion + rotation as it was before the

insertion

The last one is a particularly important property. It means that after we have performed a single rotation
to fix the balance, the rest of tree (above m) is also balanced now. Thus no more work needs to be done!

There is, however, work needing to be done for finishing the remainder of the algorithm. The only
case that remains to be considered is if we insert x into T2. In this case (as you can check) a single rotation
is not enough to fix the problem. However, if we stare long and hard, we might realise that performing a
single right rotation on mR gets us to the previous case (where the insertion was on the right subtree of
the right child of m). Therefore, to fix this case, we first rotate right on mR (to get a right-right heavy tree)
and then rotate left on m to get a balanced tree. This is called a double rotation, with this specific process
being called a double right left rotation (if we had inserted into mL ’s right subtree we would do a double
left right rotation instead). Note that double rotations share the same properties that single rotations do
(admitted a few more pointers need to changed but the operation remains constant time).

Let us then see what this algorithm looks like.

1 INSERT(T, x):
2 Insert x into T as you would in a BST
3
4 Set BF of x to 0 and retrace path from x to root. For every node m:
5 i) if x was in m’s right subtree , increment BF(m) by 1, if x was in m’s left subtree ,

decrement BF(m) by 1.
6 ii) If BF(m) == 1 or BF(m) == -1, continue
7 iii) If BF(m) == 0, stop (an unbalanced tree is now balanced , no change needs to be

made to ancestors)
8 iv) If BF(m) == 2 and BF(m_R) == 1, do a left rotation on m and stop
9 v) If BF(m) == 2 and BF(m_R) == -1, do a double right left rotation on m and stop

10 vi) If BF(m) == -2 and BF(m_L) == 1, do a double left right rotation on m and stop
11 vii) If BF(m) == -2 and BF(m_L) == -1, do a single right rotation on m and stop
12 viii) If m is the root , stop

9.2 Delete

The first thing to note with delete is that all cases boil down to deleting a leaf. Recall that there are 3 cases
to consider when deleting from a BST: deleting a node with 0 children (i.e. a leaf), deleting a node with 1
child and deleting a node with 2 children. The first case remains the same. For the second case, with AVL
trees, this necessitates that the sole child of the node is a leaf (otherwise we would be out of AVL balance).
Thus we way swap this node with its child and then delete the leaf. For the last case, we swap the node
with its successor, which is either a leaf or has one (right) child, getting us to previous cases in either case.
Thus we only consider the case of deleting a leaf. For the remainder of this (sub)section any deletion can
be assume to be of a leaf.

Once again there are two symmetric cases that cause an imbalance: deleting from the left subtree of
a right heavy tree or deleting from the right subtree of a left heavy tree. As before we will only consider
one case, the former one. The setup is the same as before: m is the lowest ancestor of x that is now out of
balance. We denote its right subtree T3 and it’s left child mL . The left and right subtrees at mL are called T1

and T2 respectively. We will again assume T3 to be of height h after the deletion of x (so the height of m’s
right subtree would have been h +1 before deletion). Since m is now too left heavy, we know its balance
factor is −2. This means that the height of m’s left subtree is h + 2 hence at least one of T1 and T2 is of
height h+1. Let us first consider the case with T1 being of height h+1 (and T2 can be of height h or height
h +1). See Figure 16 for the diagram. In this case we see that a single right rotation on m rebalances the
tree. One important thing to note, however, is that if T2 is of height h, the height of tree after the rotation
is is not the same as it was before deletion but has been decremented by 1. We will return to this point later.
For now we deal with the case where T1 is of height h.

In the other case (with T2 being of height h +1 and T1 of height h), as one might guess, we will need
a double rotation (specifically a left right rotation). This being a bit more delicate operation, we should
provide some more details. So first, names: let mLR be the right child of mL with left and right subtrees
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Figure 16: AVL Deletion case 1

T21 and T22 respectively. Since we assume T2 to be of height h+1, we know that at least one of T21 and T22

is of height h. See Figure 17 for the diagram. After the double rotation (a left rotation on mL followed by a
right rotation on m), we see that mL ’s right child is now T21 (the left child of course remains the same: T1).
mLR is now at the root with m as its right child (mL remains as the left child to the root). We see that m’s
left child is now T22 and the right child is now T3. In particular this means that the height of mLR ’s left and
right subtree (which remember is the root now) is h +1 therefore the height of the tree rooted at mLR is
h+2. Since the tree was of height h+3 before the deletion, in this scenario we are guaranteed to decrease
the height of the tree.

Figure 17: AVL Deletion case 2

The fact that trees may change height means that the balance factor of their parents may change and
may cause these nodes higher up to be out of AVL balance. Thus after these rotations, we need to check
that m’s parent is still in AVL balance and fix it via rotations again if not. How far do we need to continue
this? If the height of the tree rooted at m hasn’t changed then we don’t need to do anything of course. So
suppose the height of m has decreased. If m was a left child, the balance factor of its parent increases by 1
and if it was a right child, the balance factor decreases by 1. If the parent p was originally balanced then its
going to be left or right heavy now but the height of tree rooted at p has not changed (m’s sibling remains
of the same height) therefore we don’t need to do anything further up. If instead BF (p) was originally
−1 or 1 is now 0 then we’ve definitely made the tree shorter so we need check that the balance factor of
its parent is fine. If the balance factor went from −1/1 to −2/2 then we do some rotations. If the tree is
restored to its original height then no more works needs to be done. As usual though if the height has
been shortened then we must check its parent and repeat the whole process. We summarise all this into
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the algorithm below.
In the worst case, we could end up making corrections all the way up to the root, totalling O(logn) ro-

tations. Luckily with the rotations being constant time, this means this deletion algorithm is still O(logn).
We end with the deletion algorithm written in full.

1 DELETE(T, x):
2 Find node (leaf) x to delete
3
4 Trace the path back to the root. For every node m:
5 If BF(m) was previously 0:
6 Update BF and exit. No further work needs to be done since the height of the tree

rooted at m has not changed.
7 If BF(m) was previously -1 or 1 and is now 0:
8 The tree rooted at m is now shorter. This may affect m’s ancestors so we continue

moving up the tree.
9 If BF(m) was previously -1 or 1 and is now -2 or 2:

10 Perform the appropriate rotation. If the height of the tree rooted at m is the
same , we can quit. If it has changed we continue moving up the tree

9.3 Key Ideas

There is often a competition that occurs between operations: optimising one operation to its maximal
point often comes at the cost of making other operations more expensive (ideally we would like to main-
tain a perfect BST for above but this makes insertion and deletion too expensive). Hence we strike a com-
promise between these to make all operations relatively fast. This is a key (and as you can see recurring)
idea when designing algorithms.

Another important note is that by storing extra information on existing data structures, we can im-
prove those data structures (after all AVL trees are simply BSTs with the additional BF data!). This is known
as augmenting data structures (see the following section). This lightly highlights another tension in com-
puter science: we can often save on runtime by sacrificing space (i.e. memory) and vice versa. Our goal is
to find an optimal balance between the two.

10 Augmented Data Structures

As mentioned, augmenting data structures is the idea of storing additional information in our data struc-
tures to allow us to do additional operations reasonably fast, while still maintaining the efficiency of our
previous operations. This latter part is often the difficult bit. We will study this via an example.

Given an ordered set, we say that the rank of an element is its position in the set (for example the rank
of the first element would be 1). With this definition, we would like to augment an AVL tree to have the
following operations:

• RANK(k): Return the rank of key k
• SELECT(r ): Return the key with rank r

As these still remain AVL trees, we still want to maintain the operations of INSERT, SEARCH and DELETE.
Without any modification to AVL trees, the new operations are Θ(n) (we effectively have to do an in

order traversal through the tree to determine what position a particular node is in). A better suggestion
appears to be to have each node store its rank. Now the new operations become Θ(logn) (RANK simply
requires searching for k while for SELECT we run binary search on the rank itself) which seems rather
promising but then we realise that the operations of INSERT and DELETE become Θ(n) as any changes to
the tree may require us to update the ranks of all the nodes.

As before we need some kind of compromise. Something that allows us to find the rank of a node
(relatively) easily and is also (relatively) easy to maintain. With a bit of stumbling around or by asking
someone smarter than us, we may come across the following idea: have each node store its size, which
is defined to be the number of nodes in the subtree rooted at that node (so the size of a leaf would be 1,
the size of a complete binary tree of height 1 would be 3, etc). For one this allows us to use binary search
to find a node of some particular rank. For example suppose we are looking for rank 4 and root.size
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is 7. If root.left.size is also 4 then we immediately know that the node we seek is in the left subtree
and we need not bother at all with the right subtree. At this point we can repeat the process by looking
at the left and right children again. If we were looking for rank 6 instead, then we would know that the
desired node is in the right subtree. Additionally we can work out that 5 elements appear before the right
child R (4 in left subtree + 1 for the root itself). Thus we seek for the 1st element, or the node of rank
1, in the right subtree. The recursive structure of this algorithm now becomes clear. As a remark, we
mention that node.left.size + 1 is a very common calculation we will be doing and has a very natural
interpretation: it is the rank of the root of the subtree rooted at that node. We call this quantity the local
rank. As a further remark to the remark, recall that trees themselves have a recursive structure. Although
this may seem obvious, this is a useful thing to remember when constructing algorithms for trees. In
particular we might be able to make statements about the whole tree (i.e. a global statement) by working
things out on/from the left and right subtrees (local statements).

The algorithm for SELECT may, then, look something like this

1 SELECT(T,r):
2 i f T.left != NIL:
3 local_rank = T.left.size + 1
4 e l s e :
5 local_rank = 1 # if left tree is empty then the root is first element hence

has rank 1
6

7 i f local_rank == r:
8 r e t u r n T.root
9 i f k < local_rank:

10 r e t u r n SELECT(T.left , r)
11 e l s e :
12 r e t u r n SELECT(T.right , r - local_rank)

Now we look at RANK. This means given a key k, we need to find how many elements less than k are
in the tree. Consider how we might do so while traversing the tree in order to find k. If k is in node m’s
right subtree then we know that at least local_rank(m) elements come before it. If k is in the left subtree
instead, we can make no further inferences (well, the the size of the left tree gives us an upper bound for
the rank of k. So we are still cutting down the space of possibilities. However there is little we can do to
use this information directly). This suggests keeping a running total as travel down the tree.

1 RANK(T, k):
2 r e t u r n TREE -RANK(T, k, 0)
3

4 TREE -RANK(T, k, current_rank):
5 i f root i s NIL: # k not in T
6 p a s s
7 # determine local_rank
8 i f root.left i s NIL:
9 local_rank = 1

10 e l s e :
11 local_rank = root.left.size + 1
12

13 i f k < root.item.key:
14 # moving left so can’t deduce anything
15 r e t u r n TREE -RANK(T, k, current_rank)
16 i f k > root.item.key:
17 # add the number of items we have skipped
18 r e t u r n TREE -RANK(T, k, current_rank + local_rank)
19 i f k == root.item.key:
20 r e t u r n current_rank + local_rank

The time for this implementation of SELECT and RANK areΘ(logn) (we are effectively doing some ver-
sion of binary search in both cases while keeping track of some additional information. Once again a
common technique to use with trees to cut the space of possibilities in half each time). However, impor-
tantly, the old operation of INSERT, SEARCH and DELETE are still Θ(logn)! This is because when inserting
or deleting we only need change the size attribute of the node being inserted/deleted and its ancestors.

Unfortunately, we can’t pat our backs quite yet. Recall theses are AVL trees and there is another oper-
ation that can be performed on such trees (and indeed often is). I speak, of course, of rotations. We need
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ensure that rotations are still constant time when maintaining the size attribute. However this is easily
verified since rotations only change the sizes of two nodes (the root and one of its children depending
on the direction of the rotation) and new sizes are easy to calculate since its just subtrees being moved
around. Now we pat our backs!

11 Hashing

One of the things we briefly considered when considering the Dictionary ADT was a hash table. We now
take a closer look at this implementation.

11.1 Definition

A hash table T is an array with m positions. We call each position a slot or a bucket. We also have a hash
function h that maps the entire universe of possible keys U to {0, . . . ,m−1} which are the slots in our hash
table (or more precisely the indices of the slots). The idea is that we can hash a key and store an item in
the hashed slot so that we don’t need space for every possible key in U . By its very nature then, we are
interested in the case when m is smaller (in theory much smaller) than the size of U . But this means that
we will necessarily get collisions, i.e. two distinct keys x, y such that h(x) = h(y) (in fact if |U | > m(n −1)
we can guarantee that at least one of the buckets will contain n or more items. This follows from the
pigeonhole principle). Therefore we need a strategy for how to handle collisions. Two such strategies we
can look at are closed addressing and open addressing.

Example 11.1. A common example of a hash function is taking the mod with respect to some fixed num-
ber. For example we might define h(x) = x mod 12. Clearly we will have collisions since h(0) = h(12) =
h(24) = ... and h(1) = h(13) = h(25) = .... ■

11.2 Closed Addressing

With the closed addressing strategy, also known as chaining, the slots in the hash table don’t store values
themselves but rather have pointers to linked lists which store the actual values. When there is a collision
we simply add to this linked list (either at the beginning or at the end).

Remark 11.1. It might seem that we should insert at the beginning rather than at the end of linked list
since the former is constant time while the latter is not (it’s proportional to the length of the list). However
recall that dictionaries only allow for unique keys. So every time we insert, we have to go through the entire
linked list anyway to check whether or not we already have the key. Therefore inserting at the beginning
and at the end have the same runtime. For now we will use the convention of inserting at the beginning.

The worst case scenario for this is when every item gets hashed to the same bucket at which point we
effectively have a linked list implementation of the Dictionary ADT. However, we might also expect this to
be a fairly unlikely scenario, especially if we pick our buckets and hash function cleverly. To formalise this
intuition, let’s consider the average case runtime of search.

11.3 Average case analysis

An average case analysis requires us to make certain assumptions about our problem. We will make what
is called the simple uniform hashing assumption: a key picked at random is equally likely to hash into any
bucket. A consequence of this is that the expected number of items in any bucket is n

m (where n is the
total number of items and m is the number of slots). This is such an important quantity that we give it a
name both in Greek and in English; we write α= n

m and call it the load factor. We will also assume that we
are equally likely to search for any key in the universe U .

Suppose we have a hash table T into which we have inserted the items x1, . . . , xn in that order so that
T now has n items (it started empty). Suppose now we are searching for a key k in T . The astute reader
may realise that there are two cases: either k is in T or it is not. Each of these scenarios also has a certain
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probability of occurring but we will ignore that for now (as we will see, we won’t need them!). The oper-
ation we will be counting is the number of comparisons made but we will also count applying the hash
function as an operation.

The easier/est case to consider is when k is not in the T . We know that k is equally likely to hash to any
bucket and the expected number of items/expected length of the linked list in each bucket is n

m . Therefore

E [T ] = 1+ n

m
= 1+α

where the 1 term comes from applying the hash function itself. Therefore in this case we get that search
isΘ(1+α)

If k is in T then it is in particular one of the xi . The question then is how much work do we expect to
do to reach any xi . Note that there are n− i items that are inserted after xi and we are assuming that each
item can be hashed to any bucket in a uniform manner. Therefore we expect n−i

m items to appear before
xi in its corresponding linked list (recall our convention of inserting new items to the head of the linked
list). This means n−i

m +1 comparisons will be made to reach xi (the final +1 comes from comparing with
xi itself). Then

E [T ] = 1+
n∑

i=1
P (Xi ) ·T (Xi )

= 1+
n∑

i=1

1

n

(
n − i

m
+1

)

= 1+1+ 1

n

(
n∑

i=1

n

m
−

n∑
i=1

i

m

)

= 2+ n

m
− n(n +1)

2nm

= 2+ n

m
− n +1

2m

= 2+ n

2m
− 1

2m

= 2+ α

2
− α

2n

As n →∞, the final term goes to 0, thus once again we find that the operation isΘ(1+α).
Since the average runtime is the same in both cases, it must be that the average runtime overall is

Θ(1+α)

11.4 Open Addressing

An alternative to closed addressing is open addressing. With this strategy we keep all the data within the
table itself. If the bucket in which an item is to be placed is already taken, we place the item in another
(predetermined) bucket. In particular, we form a sequence of buckets which we iterate over in order to
find an empty bucket within which we can place the item. This means that the hash function is now a
function of 2 inputs: the key k and the position in the sequence i . The bucket for i = 0 (or whatever the
first term of the sequence is) is known as the home bucket and the sequence itself is known as the probe
sequence. We almost always want the probe sequences to be a permutation of {0, . . . ,m − 1}. Having a
probe sequence like this means we go through every bucket in the table to determine whether or not an
item can be placed inside.

Remark 11.2. We might ask what happens if we wished to place more than m items in this table. The
answer is we don’t. We simply don’t insert more items than the table can hold with this strategy (in fact
typically we stop way before m to maintain good performance). If a large number of items do need to
be inserted, we might consider enlarging the table, switching the hash function, switching our collision
strategy, etc.

23



A simple example of a hash function for this strategy is h(k, i ) = (h′(k)+ i ) mod m where h′(k) = k
mod m. This is known as linear probing (the probe sequence grows linearly). However there is a sig-
nificant problem with linear probing: it leads to clustering. In other words once we hash into a probe
sequence, another insertion, anywhere along the probe sequence, has the potential to make it longer,
making search an increasingly difficult task. Moreover, larger clusters are more likely to grow (since they
correspond to longer probe sequences, they contain a larger proportion of the buckets). We can improve
things with quadratic probing (making the hash function depend on i 2 rather than just i ) however there
is still the problem that two keys hashed to the same bucket will have the same probe sequence. Thus we
often do something called double hashing where the coefficient of i is made a function of the key k itself.
Since the keys are distinct, this means that even if two keys have the same home bucket, they will have
different probe sequences. However the same constraints on our hash function remain: the sequence
over all i ’s should still get us a permutation of {0, . . . ,m −1}.

Finally we need to consider how deletion should work with open addressing. We can’t simply remove
the element from the table (or more precisely replace it with the null pointer) for the following reason:
suppose a key k has a home bucket h1 which is filled so we place it in another bucket h2. Suppose after-
wards the item in h1 is removed. Now when we search for k we will reach h1 and seeing the null pointer
in h1, we conclude that k is not in our table. For this reason, when an item is to be deleted, we replace
it with a marker to indicate that the item has been removed but the bucket once held something. This
means that if we reach this bucket while searching, we should continue because the key we are looking
for may be further down the line. This marker is known as the tombstone. As you can imagine, the more
tombstones we have in our table the worse searching is going to be. Hence why open addressing is rarely
used in cases where deletion is going to be common.

11.5 Hash Functions

We showed that the average running time for the operations in a hash table was Θ(1+α). However this
relied on simple uniform hashing assumption, where we assume that a given key is equally likely to hash
to any bucket. Whether or not this is actually true depends on the hash function. Thus a ‘good’ hashing
function will spread out the values appropriately. Another important characteristic of a good hash func-
tion is that it is efficient to compute (ideally constant time). Finally a good hash function should use every
part of the input (i.e. the key) in its calculations, even for complex objects. This allows us to minimise col-
lisions from occurring at all. This final feature hints at the fact that we are looking at more general cases
than before where the keys need not be integers anymore. In practice it is difficult to find a hash function
that satisfies all of the given conditions. Indeed you can see how particularly the last two features would
compete with one another (using every part of the input (in general) means that more work will need to
be done for longer inputs. For example if we have a hash function that hashes strings by doing something
with every character, then the function may be inefficient to compute. If instead we make it more efficient
by only working with select characters then collisions become more likely).

There still remains the general question of how we might work with non-integer keys. As one may
guess, we first map the key to a (non-negative) integer then hash this integer. Let us look at strings for
example. We already have a map from characters (at least those in the English language) to natural num-
bers given by their ASCII codes. Thus one suggestion may be to map every character to its ASCII code and
sum them up to find the associated integer. The issue with this is that any reordering of the characters
will produce the same number. We want to minimise the number of collisions so it would be ideal if we
could avoid this. In particular then, we need some way of incorporating the order of the characters into
our output. What we do in this case is think of the string as a number in base 128 (there are 128 characters
in ASCII). Thus for example

key→ 107 ·1282 +101 ·128+121 = BIG NUMBER

where 107, 101 and 121 are the ASCII codes for k, e and y respectively.
Regardless of how we choose the particular map into the natural numbers, once we have it how should

we map this number into our buckets {0, . . . ,m−1}? We first need to decide what m should be. Recall that
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the average performance of the hash table is dependent on the load factor, so typically we choose an m
that is reasonably big to make the load factor small but not so big as to take up a lot of space.

We have already seen one way of mapping from a number to the buckets: modulo with m. This is
known as the division method. There are a few things to keep in mind with the choice of m. For example,
if we are using the above method for the assignment of numbers to strings, then certainly m should not be
a power of 2. This is because taking the modulo would largely be equivalent to looking at only the last few
characters (think of modding a number in base 10 with any power of 10, only the last few digits remain).
Typically we choose m to be a prime number (close to the ideal m that we decide before, based on the
load factor and space constraints) to ensure something like this doesn’t happen inadvertently. There is
another method called the multiplication method. For this we first multiply the key k with some number
A where A is (strictly) between 0 and 1. This ensure that k has a fractional part. We can find this fractional
component by k A−⌊k A⌋. We know have a real number that is between 0 and 1. Multiplying this by m gets
us a real number between 0 and m. Finally we floor the result to ensure we get an integer in {0, . . . ,m −1}.
To put it all together, the mapping is as follows:

k 7→ ⌊m(k A−⌊k A⌋)⌋

There exist many heuristics for choosing an appropriate A so we get suitably wide distribution.

11.6 Hashing vs Balanced Trees

If we make the load factor sufficiently small, then the operations for a hash table are Θ(1). This is much
better than the Θ(logn) performance given by balanced trees. What advantages, then, do balanced trees
provide?

For one thing, the worst case performance with a hash table is still Θ(n), which may be a cause for
concern, depending on the use case. Additionally, recall how easy it was to augment our balanced tree to
have it handle additional operations. This will be much more difficult, near impossible, with hash tables.
Hence if we need (or may need) any operations besides the three asserted by the ADT, we may opt for
balanced trees.

12 Quicksort

A quick summary of quicksort: suppose we want to sort an array A. We choose the first element to be the
so-called pivot. We compare all elements to the pivot and create two new arrays: one for every element
smaller than (or equal to) the pivot and one for everything greater than. This means that we never need
to compare elements in the first array to elements in the second array again. We now repeat the same
process with the 2 new arrays and keep going until our arrays are of length at most 1 which we already
know to be sorted. Then its a simple matter combining everything appropriately. The code is provided
below

1 d e f quickSort(array):
2 i f l e n (array) < 2:
3 r e t u r n array [:] # make a copy
4 e l s e :
5 pivot = array [0]
6 smaller , bigger = partition(array [1:], pivot)
7 smaller = quickSort(smaller)
8 bigger = quickSort(bigger)
9 r e t u r n smaller + [pivot] + bigger

10

11 d e f partition(array , pivot):
12 smaller = []
13 bigger = []
14

15 f o r item i n array:
16 i f item <= pivot:
17 smaller.append(item)
18 e l s e :
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19 bigger.append(item)
20

21 r e t u r n smaller , bigger

Immediately, we wish to consider what the worst case behaviour of this algorithm is. We will use the
number of comparisons performed (i.e. the number of times line 16 is run) to measure the worst case
behaviour. First we see that each item is a pivot, at most once (note how in line 6 we skip over the pivot
when partitioning). Then at most all other elements are compared to the pivot (typically, fewer compar-
isons will be performed. If smaller or bigger are not empty then the pivot of one won’t be compared to
any of the elements of the other. This was the whole point of quick sort!). This means that in the worst
case quick sort is O(n2) (at most n pivots with at most n−1 comparisons each. This is a drastic overcount
since any pair of elements is compared at most once. Therefore the number of item comparisons is at
most the number of possible pairs which is

(n
2

)
. The asymptotic behaviour remains the same however).

Now we wish to argue that in the worst case quicksort isΩ(n2) as well. The family of inputs we will use
[n,n−1,n−2, . . . ,2,1]. Let C (n) denote the number of comparisons made on this family of inputs. We call
partition in line 6 which creates the lists smaller and bigger which are empty and [n−1,n−2, . . . ,2,1]
respectively. The function partition performs n −1 comparisons in line 16 in order to create these lists.
No further comparisons are made on line 7 when we call quicksort on smaller and C (n−1) comparisons
are made on line 8 when we call quicksort on bigger. Therefore C satisfies the following recurrence
relation

C (n) = (n −1)+C (n −1)

for n > 1 and for n = 1 we have C (1) = 0. Therefore

C (n) =
n−1∑
i=1

i = n(n −1)

2

Therefore quicksort isΘ(n2) in the worst case.
Although quicksort doesn’t appear to be very ‘quick’ in the worst case, things are much better in the

average case. This of course requires a probability distribution over the inputs. We will assume our inputs
to be some permutation of {1, . . . ,n} where each permutation is equally likely (one might argue that this
doesn’t represent the space of all possible inputs. While this is true, the only thing that is important for
the sorting is the relative sizes of the elements so other cases are equivalent to the case being considered.
There is perhaps a slight wrinkle where we aren’t considering lists that may have repeated elements. But a
quick inspection of the algorithm tells us that allowing for repeated elements won’t affect the number of
comparisons made).

Let T be the random variable denoting the number of comparisons made on an input. We wish to find
E [T ]. For i , j ∈ {1, . . . ,n} with i < j , we define Xi j to be 1 if i and j are compared (on a particular input)
and 0 otherwise. Then

T =
n−1∑
i=1

n∑
j=i+1

Xi j

and

E [T ] =
n−1∑
i=1

n∑
j=i+1

E [Xi j ]

In particular we need to find the probability that i and j are compared. This comparison occurs if and
only if one of i or j are picked to be pivots before they are split into the separate smaller and bigger
lists. Therefore i and j are compared if and only if the first pivot to be chosen from {i , i +1, . . . , j } is one of
i or j . Thus we get

P (i or j are chosen to be pivots
∣∣a pivot is chosen from {i , . . . , j }) = 2

n
· n

i + j −1
= 2

i + j −1
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This lines up with intuition. If i and j are close together (in value) then they are more likely to be com-
pared since there are fewer numbers between them that could act as pivots to separate them. Therefore

E [T ] =
n−1∑
i=1

n∑
j=i+1

2

j − i +1

=
n−1∑
i=1

n−i∑
k=1

2

k +1

< 2(n −1)
n∑

k=1

1

k

The final sum is the harmonic series which we know to be Θ(logn). Thus we conclude that in the average
case, quicksort is O(n logn) (note the inequality in the last line). We have an upper bound for the average
case, but what we would really like is a tight bound (although the upper bound is enough to show that the
algorithm performs much better on average). What we will do is work out the sum a bit more exactly.

E [T ] =
n−1∑
i=1

n−i∑
k=1

2

k +1

= 2
n−1∑
i=1

n−1∑
k=1

1

k +1

= 2
n−1∑
k=1

1

k +1
(n −k)

= 2
n−1∑
k=1

n +1− (k +1)

k +1

= 2(n +1)
n−1∑
k=1

(
1

k +1

)
−2(n −1)

The reduction of the double summation to the single summation in the third line comes from noting the
fact that for each k, 1

k+1 appears n −k times. Now we can be certain that sorting done by quicksort is on
averageΘ(n logn).

12.1 Randomised Quicksort

Now that we know that quicksort performs well if the input is randomly sorted but poorly if the input is
sorted, or nearly sorted. We would like some way of ensuring we get the former case (or at least improve
our chances of getting the former case) as opposed to the latter one. The problem, we may realise, is
that the pivot is always picked from a fixed spot in the array. Thus we can always construct a family of
inputs on which the algorithm will behave poorly (for example we may always pick the central element
to be the pivot. We can still find the family of inputs on which we get Θ(n2) runtime. As a useful exercise,
one can try and describe what these inputs would be. The answer can be found in the remarks below).
The same holds true if we move around the pivot in some systematic, deterministic way (for example,
you might alternate between the pivot being the first and the last element. Once again lists where the
elements are in decreasing order give a poor runtime). Hence what we need to do is choose the pivot in a
non-deterministic way, which is to say, we choose the pivot randomly. In this case the worst case analysis
becomes a touch more difficult and a touch more nuanced. To be precise, the worst case on some given
input is still O(n2). This occurs if the random pivots that are chosen are ‘bad’ pivots. However this is no
longer useful information since if we were to run the algorithm again we would almost certainly see a dif-
ferent set of pivots in which case the performance would be better. Instead what we are more interested
in, what is more useful, is how badly can we expect the algorithm to behave on average. In other words,
we wish to find the expected worst case runtime. This analysis is in fact almost identical to the average
case analysis we did above which means what we would find is that on any particular input, the expected
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worst-case runtime isΘ(n logn).

There are some things to be learnt from this. Perhaps the most important thing is that randomisation
can in fact improve algorithms! While we may think that adding uncertainty to an algorithm’s design is
poor form, in some cases that is exactly what we need. When should we use randomness to improve
the behaviour of our algorithms? Certainly not for all algorithms, since for example, using a randomized
algorithm would be a terrible idea for a hash function. In general, we use randomized algorithms when
there are lots of good choices but it’s difficult to find a choice that is guaranteed to be good (indeed there
may be no choice that is good for all inputs, as with quicksort above). In this case, we hope to find a good
choice through sheer dumb luck.

Remark 12.1 (Solution to above exercise). Suppose we have the elements {1, . . . ,n} which we wish to place
into an array of size n. We place 1 at n//2 = ⌊n

2 ⌋. Then 2 at n//2−1 and 3 at n//2+1. Similarly 4 is placed

n//2−2 and 5 at n//2+2 and we keep going like so where each element k is placed at n//2+(−1)k+1k//2.
In this case every time the pivot is chosen, it is the smallest item in the list (assuming the pivot is chosen
to be at position n//2).

13 Amortised Analysis

Thus far we have discussed finding the worst case runtime of single operations. However, in the ‘real
world’ (whatever that may be), operations don’t always run alone. Quite common is to run a sequence of
operations. Then what we care about is the time complexity of the sequence. This leads us to the notion
of the worst-case sequence complexity (WCSC) which is the maximum time taken over all sequences of m
operations. We can immediately find an upper bound for this, since the WCSC has to be less than or equal
to m times the worst-case runtime of the worst operation. This would be assuming we hit the worst case
at every single stage in our sequence. However the WCSC may be strictly less than this (for example if
repeatedly applying the worst operation is not a legal sequence of operations, or becomes cheaper each
time).

The amortised sequence complexity is then defined to be

Amortised sequence complexity = WCSC over all sequences of m operations

m

This represents (in some sense) the average worst-case complexity per operation. Note, however, that
this is different than the average-case analysis we did previously (in particular there are no probability
distributions). This average instead gives us an idea of how much time we expect any given operation to
take when the ADT is being used, where we account for how the different operations may influence each
other’s runtime.

13.1 Calculating Amortised Complexity

There are a few different ways one can calculate the amortised complexity. We mention 3 here.
The simplest way, of course, is to just follow the definition: define all sequences of operations of length

m, find their running time, find the worst one and divide that by m. This is known as the aggregate
method. This is particularly useful in ADTs with only one operation since there is always exactly one
sequence of length m (apply the operation m times). Another use for the aggregate method is to find an
upper bound for the worst-case time complexity of all sequences of m operations.

Another method we consider is something we have lightly touched on in the past. Recall in our dis-
cussion of heapsort (see Section 6), specifically in the context of turning an unsorted array into a heap.
We discussed how by applying a lot of cheap operations first (calling MaxHeapify on smaller subtrees),
we can ‘buy’ some time to make expensive operations (calling MaxHeapify on larger subtrees a bit
cheaper. We generalise this idea over here. In particular, we associate a fixed ‘fee’ for each operation (this
fee is the amortised sequence complexity itself). Applying operation takes a certain cost as well. If the
cost of applying the operation is less than the fee, then we have some profit remaining. We bank this
overcharge until an expensive operation comes along whose cost is actually greater than the fee. We can
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compensate for the extra cost using the time/money (you know what they say, time is money) we have
banked. This is known as the potential method (think of potential energy from physics). One thing to
note about this method is that we assume the expensive operations to be at the end of the sequence (so
in particular, we never go into debt).

A clever variation of the potential method is the accounting method, where instead of just having the
overcharge/profit associated with the data structure as a whole, we associate it to specific parts of the data
structure (for example to a particular node in a tree or to a particular element in an array). We will mostly
focus on the aggregate method and accounting method.

13.2 Example 1 (Binary Counter)

Suppose our data structure is a k-bit binary counter, whose only operation is increment. We will find the
amortised sequence complexity using the aggregate method. Our cost will be the number of bits that need
to be changed upon each increment.

Suppose we call increment m times. Then bit 0 is flipped every time. Bit 1 is flipped every other time.
To be precise, it is flipped ⌊m

2 ⌋ times. Similarly bit 2 is flipped every 4 times or ⌊m
4 ⌋ times. Continuing this

process, we find that the number of bit flips performed is

k−1∑
i=0

⌊m

2i

⌋
We can bound this above by

∞∑
i=0

m

2i
= 2m

This means that the runtime for the sequence of m increments, which is also the worst cast time com-
plexity of all sequences of m operations, is O(m). Then the amortised cost of the operation is O(m)

m =O(1).
We can also analyse this using the accounting method. It will be useful to have the code for this.

1 INCREMENT(A):
2 i = 0
3 w h i l e i < length[A] and A[i] == 1:
4 do A[i] = 0
5 i = i + 1
6 i f i < length[A]:
7 then A[i] = 1

We will charge $2 for each increment. In this case we will have a so-called credit invariant which will
be that we can place $1 on every bit that is 1. A credit invariant is a condition that holds throughout the
execution of a sequence of operations. We can use induction to show it holds true. The invariant is trivially
true at the beginning since the counter is all 0’s. In each increment we alter the string of leading 1’s and
flip (at most( one 0 to a 1. The flipping of the 1’s to 0’s can be paid for by the $1 we have place on them.
After flipping the 0 to 1, we have $1 left which can be placed on the new 1. Hence the amortised runtime
is at most 2, giving us O(1) amortised complexity again.

13.3 Example 2 (Stacks)

We will define a new ADT called a multipop Stack which has the usual push and pop operations (each of
which takes constant time). In addition, we also have multipop which works as follows

1 MULTIPOP(S, k):
2 w h i l e n o t STACK -EMPTY(S) and k != 0:
3 do POP(S)
4 k <- k - 1

Let us try and find the amortised sequence complexity of this data structure. First, we see that the time
complexity of MULTIPOP(S, k) is min(|S|, k), making it by far the worst operation. In particular, if we
were to call to MULTIPOP(S, n) n times, then the time for this sequence would be bounded by O(n2).
However clearly this is far too large of a bound, we could never actually achieve it. First we would need at
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least n −1 pushes to get our stack to contain some items (we are trying to maximise the runtime to find
the worst case). We follow this with MULTIPOP(S, n - 1) (or something larger than n − 1) to see that
the runtime is at most O(2n −2) or O(n). Hence the amortised complexity of O(1). We can also show this
using the accounting method.

The fee or charge (or amortised cost) will be 2 for pushes and 0 for both pop and multipop (remember
we are allowed to charge different amounts to different operations). Our credit invariant will be that every
item in the stack has an (extra) $1 on it. Suppose for now that the invariant holds (we will prove it later).
This means that any time we need to pop an item, it always has the necessary cost to pay for it! Hence
the amortised cost per operation is at most $2 implying the amortised complexity is O(1) (as we noted
earlier).

Now let us prove that the credit invariant holds. We do so using induction. We first show that it holds
for the empty stack and then we show that if it holds before we run a given operation, it will hold after we
run the operation as well. If we want to align this with usual induction, we can think of inducting on the
lengths of the sequences of operations. We first show it holds for the sequence of length 0. Then assuming
it holds for a sequence of length k, we show that it holds for sequences of length k + 1. By assumption
the invariant holds before the k + 1st operation is run, hence we only need show that it holds after this
operation is as well. Since this operation (in principle) could be anything, we show that if the invariant
holds before running an operation, it will hold after it as well. Then let us do this.

Clearly the invariant is trivially true (technically vacuously true), if the stack is empty. If we push an
item, we have $1 left over, which we can associate to the newly inserted item. Every time we pop, we re-
move an item (using the $1 on it, which we know is there since we assume the credit invariant to hold be-
fore an operation is run). The same holds true for multipop (after all, it’s just multiple,consecutive pops).
In each case, the credit invariant remains true after the operation (assuming it held at the beginning), thus
we are done.

13.4 Example 3 (Dynamic Arrays)

We now consider the situation with dynamic arrays, in particular inserting into them. We provide the code
below.

1 d e f insert(A, x):
2 # Check whether array is full
3 i f A.size == A.allocated:
4 new_array = new array of length (A.allocated * 2)
5 copy a l l elements of A.array into new_array
6 A.array = new_array
7 A.allocated = A.allocated * 2
8

9 # Insert element into first empty spot
10 A.array[A.size] = x
11 A.size = A.size + 1

The operations we count for our runtime analysis are the number of reads and writes into arrays per-
formed. For example the first insert costs 1. The second insert requires us to copy the first element into a
new array, costing 2 (one for the read and one for the write) and 1 more for the final insertion (i.e. the one
from line 10). We first perform an aggregate analysis of insert.

The time taken by n inserts is given by

T (n) =
n−1∑
k=0

tk

where tk is the time taken to insert the item at index k in our array. We see that

tk =
{

2k +1, if k is a power of 2

1, otherwise

Consider the summation for T (n). We have a +1 for every term. This means the total will be n plus
something. This something is twice the sum of the powers of 2 that are below n −1 (by definition of tk ).
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This means that

T (n) =
⌊logn−1⌋∑

i=0
2 ·2i +n

= 2(2⌊logn−1⌋+1 −1)+n

≤ 2(2log(n−1)+1 −1)+n

= 2 ·2(n −1)−2+n

= 5n −6

Hence a single insert has an amortised cost of O(1).
We can also find this using the accounting method. In this case we charge each insert $5. Our credit

invariant is that when the array is full and needs to be expanded, every item in the second half of the array
has $4 on it (which can be used for moving itself and another element from the first half). Any inserts into
the second half of an array will only cost 1 and since we charge $5, there will always remain $4 which we
can associate to this item.

14 Graphs

A very common abstract data type, especially in computer science, is the graph. Fundamentally, graphs
are used to represent relationships between different objects. Admittedly this is a vague description, but
that is because of how incredibly versatile graphs are.

Figure 18: Example of an undirected graph

Figure 19: Example of a directed graph

Formally, a graph is a tuple (V ,E) where V is a set of vertices (or nodes) and E is a set of edges. A vertex
is a single object and an edge is either a tuple of vertices (v1, v2) or a 2 element set of vertices {v1, v2} (we
will mostly use the former convention). If a graph is undirected, the order of the vertices in an edge does
not matter. That is (v1, v2) represents the same edge as (v2, v1) (in such cases it may make more sense
to use the set notation described previously). In a directed graph (v1, v2) and (v2, v1) represent different
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edges. Directed graphs may have self loops, i.e. an edge of the form (v, v) however undirected graphs may
not.

If we can ‘get’ from a vertex u to a vertex v , then v is said to be adjacent to u. To be precise, v is said to
be adjacent to u if (u, v) is an edge (if the graph is undirected, then the relationship is symmetric of course:
v is adjacent to u if and only if u is adjacent to v . However this is not the case with directed graphs).

For undirected graphs, we say the edge (u, v) is incident on vertices u and v . If this was a directed
graph instead, we would say the edge (u, v) is incident from u and is incident to v .

An important quantity is the degree of a vertex, which is roughly a measure of how connected the
vertex is. For undirected graphs, this is simply the number of edges of incident on a vertex. As usual, we
need to differentiate between the two types of edges we may have for any vertex in a directed graph. So
we have the in-degree which is the number of edges incident to v (i.e. the number of edges going into v)
and the out-degree which is the number of edges incident from v (i.e. the number of edges leaving v).

A natural attribute to consider now is the neighbourhood of a vertex, which would be the vertices you
can immediately get to or from a given vertex. For directed graphs, we have in-neighbourhoods where the
in neighbourhood of v , is the set of vertices u where (u, v) is an edge (these are all vertices that can get to
v in ‘one step’.) and the out-neighbourhood which is the set of vertices w such that (v, w) is an edge (these
are all the vertices that v can reach in ‘one step’). If the graph is undirected then the two sets are the same
and we simply call it the neighbourhood of v .

Finally sometimes we wish to associate real numbers to each of the edges to get a weighted graph. The
associated real number for each edge is called the edge cost or edge weight.

Immediately when one sees a graph, one is tempted to talk about paths which is exactly what one
would expect. Formally, a path is a list of edges of the form (v,u1), (u1,u2), . . . , (uk−1, x) (perhaps you might
have expected a path to be a list of vertices where there exists an edge between every consecutive part of
vertices. The two definitions are obviously equivalent and which one we choose is largely a matter of
taste). We will define the length of a path to be the number of edges on the path. A cycle is a path (with no
repeating edges) that begins and ends with the same vertex. A simple cycle is one where the only vertex
that repeats is the first (and last) one. A graph is said to be acyclic if it has no cycles.

A graph is said to be connected if there is a path between every pair of vertices. For disconnected
graphs, we often talks about its connected components, which are again what you would expect (we
don’t need a precise definition here, but the formal definition involves defining two vertices to be equiva-
lent if there exists a path between them and then the connected components are simply the equivalence
classes).

At this point the reader may realize that we have already worked with some special graphs a lot, namely
trees! To be precise, a tree is simply an undirected, connected, acyclic graph (in fact this is a definition). If
we have a special vertex, which we call a root, we get a rooted tree. Non-rooted trees are sometimes called
free trees. Finally a disjoint union of trees is (delightfully) called a forest. In other words, a forest is a graph
where every connected component is a tree.

Thus graphs are generalizations of trees. Given how useful trees have been, one can only imagine how
useful graphs will be!

Remark 14.1. Whether or not two graphs are the same is entirely dependent on the connections and
vertices of the graphs, not on how we draw them. Although this might seem obvious, it is often easy to
forget since there are many ways we might draw a particular graph and it’s not always obvious whether
two graphs really are the same or different.

14.1 Graph Representations

There are two common ways of representing graphs: adjacency lists and adjacency matrices. An adja-
cency list is a list (most likely in an array) of all the vertices in the graph where each vertex points to a
linked list of its (out) neighbours. For an adjacency matrix, on the the other hand, we simply say whether
or not a given edge is present and present this information in matrix form where 1 represents the existence
of a matrix and 0 its non-existence.

If the graph is undirected then the matrix will be symmetric with 0s down the diagonal. This need not
be the case directed graphs. Additionally for directed graphs, we need to decide whether a 1 in row i and
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Figure 20: An equivalent graph to Figure 18

column j represents the edge (i , j ) or ( j , i ). We will use the former convention (recall that the element in
row i and column j is in the (i , j ) spot. This makes it easier to remember the convention). In other words,
the matrix entries ai j are given by

ai j =
{

1 if (i , j ) ∈ E

0 otherwise

As an example, the adjacency matrix for the undirected graph in Figure 18 is
0 1 0 0 1
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0


and the matrix for the directed graph in Figure 19 is

0 1 0 1
0 0 1 0
0 0 1 1
0 0 0 0


It is clear that the spatial complexity of adjacency matrices is O(|V |2) (recall that |S| for a set S is the

number of elements in S or its cardinality). With a bit of thinking we realise that the spatial complexity
of adjacency lists is larger of |V | and |E | (you might think that the complexity should be |E | but we always
need an array of size |V | to have every vertex point to its neighbourhood even if the neighbourhood is
empty). Thus we can say that the spatial complexity of adjacency lists if O(|V |+ |E |).

Now let us consider the time complexity of these representations. The basic operations of graphs are
adding/removing vertices, adding/removing edges, verifying if an edge is present (known as edge query)
and finding the neighbourhood of a vertex (where finding the in-neighbourhood and out-neighbourhood
are two separate operations if G is directed). In most cases, the complexity will depend on how we are
implementing the representations. For example, if we are storing the matrix in an array then adding new
vertices would require us to copy elements into a new array making the operation O(|V |2) in this case. On
the other hand if adjacency lists are stored as an array of (pointers to) linked lists then adding a new vertex
is constant (we add an empty linked list to the end of this array).

14.2 Breadth First Search

One of the most common things we want to do is walk through a graph while perhaps applying some op-
eration on each vertex. Breadth-first search is one such method for walking through a graph. If one thinks
of the special case of the tree, the strategy (and name) are easier to understand. The idea is we search
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broadly first before diving deep (i.e. we explore all the vertices at a particular depth before exploring their
children). The counterpart is of course to dive deep before searching broadly, known reasonably enough
as Depth First Search, will be discussed later.

By starting a vertex s (short for source), we find paths from s to reachable vertices v . We can use these
paths to construct a tree rooted at s. This is called the BFS tree.

A thing we very often do with graphs is colour the vertices. This means we classify the vertices into
certain categories. We will see this technique in the BFS algorithm. In particular, we will have 3 colours:
white, grey and black. White vertices will be ones we haven’t discovered yet. Grey vertices are vertices
which have been discovered but not fully explored (it may have edges we haven’t gone down). Finally
black vertices have been explored fully. In addition, to the colour of each vertex, we will also keep track of
the parent of each vertex and its distance from s.

Figure 21: Example of vertex colouring for BFS

1 BFS(G = (V, E), s):
2 # we first initialise the graph with appropriate values
3 f o r v i n V:
4 colour[v] = white
5 d[v] = inf # distance from s/depth of node in BFS tree
6 p[v] = null # parent , pi is another commonly used symbol
7

8 # initialising s
9 colour[s] = grey

10 d[s] = 0
11 initialise empty queue Q # Q will store the grey vertices , handled in FIFO order
12 ENQUEUE(Q, s)
13

14 w h i l e Q i s n o t empty:
15 u = DEQUEUE(Q, s)
16 f o r each edge (u, v) i n E:
17 i f colour[v] == white:
18 colour[v] = grey
19 d[v] = d[u] + 1
20 p[v] = u
21 ENQUEUE(Q, v)
22 colour[u] = black

Let us consider the complexity of this algorithm. First we see that each node is enqueued at most once
(namely if it is connected to s or reachable from s). So the while loop iterates at most |V | times. Moreover
the while and for loop combined iterate over all the edges in G . Therefore the run time of this algorithm
is O(|V |+ |E |) (if |E | < |V | then we might still need to iterate over all the vertices so we again have the case
that the runtime is bounded by the larger of the two).

We claim that the BFS satisfies a very neat property: namely the d [u] of each vertex after the algorithm
is shortest distance from s to the vertex u. By definition this is the smallest number of edges on any path
from s to u (this definition will alter slightly when we consider weighted graphs).

Let δ(s, v) denote the shortest distance between s and v . First we claim that δ(s, v) ≤ δ(u, v)+1 for all
(u, v) ∈ E . This is obvious if v is not reachable from s (this means that if (u, v) ∈ E then u is not reachable
from s so the right hand side is ∞). Suppose v is reachable from s then. Suppose p is a path from s to v .
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If we remove the last edge from p, we get a path from s to some u. By definition, the length of this path
must be greater than or equal to δ(s,u) (remember that δ(s,u) is the length of the shortest path so all other
paths must be bigger or equal in length). Then the length of p is at least δ(s,u)+1. Once again we use the
definition of δ to conclude that δ(s, v) ≤ δ(s,u)+1.

Next we claim that d [v] ≥ δ(s, v) for all v ∈ V at any point during BFS. Clearly this holds at the begin-
ning (line 14) as d [s] = 0 = δ(s, s) and d [v] = ∞ for all other v . We inductively assume the claim holds
for some sequence of ENQUEUE and DEQUEUE operations and we will show it holds immediate after one of
these operations as well. Suppose we enqueue a vertex v . Then we must have discovered it from a vertex
u which was queued before. Therefore d [u] ≥ δ(s,u). Additionally by line 19 of the algorithm, we know
that d [v] = d [u]+1, allowing us conclude that d [v] ≥ δ(s,u)+1 which we know to be greater than or equal
to δ(s, v) by the previous lemma. Since we never change d [v] again, the claim holds.

The next lemma is that if Q = [v1, . . . , vr ] then d [vi ] ≤ d [vi+1] and moreover that d [vr ] ≤ d [v1]+1. This
mean that the distances in the queue at any time are non-decreasing and can differ by at most 1. We will
induct similarly to before. Clearly this holds in the base case when Q = [s] (there is only one element!).
So suppose the statement holds when Q = [v1, . . . , vr ] and we will show it holds whenever we ENQUEUE or
DEQUEUE from this point. Dequeuing is the easier one to consider. Since we are assuming Q to be non-
decreasing to be begin with, removing v1 doesn’t change this and v2 is made the new first element (or Q is
empty now which is also fine). Since v1 ≤ v2 and vr ≤ v1 +1, we must have that vr ≤ v2 +1 preserving the
second property. Now suppose we enqueue a vertex v , making it now vr+1. By looking at the code, we see
that this occurs after dequeuing its parent u. Then d [v] = d [u]+1. By assumption d [u] ≤ d [v1] therefore
d [v] = d [vr+1] ≤ d [v1]+1. By assumption we know that d [vr ] ≤ d [v1]+1 so the non-decreasing property
is maintained as well.

Theorem 14.2 After we run BFS(G, s), d [v] = δ(s, v) for every v ∈V .

Proof. We prove this using contradiction. Let v be a vertex where d [v] > δ(s, v) for the minimum such
δ(s, v) (we already know that d [v] cannot be less than δ(s, v) by the first claim shown above). This means
that for all u where δ(s,u) < δ(s, v) then d [u] = δ(s,u). Let u be v ’s preceding vertex in the minimal path
from s to v . Then we know that d [u] = δ(s,u) (indeed it is not hard to see that δ(s,u) = δ(s, v)−1). Thus
our assumption is equivalent to d [v] > d [u]+1.

Now suppose we have dequeued vertex u and are exploring the edge (u, v). There are three possible
colourings that v could have. If v is white then d [v] is set to d [u]+1 (and never reset to anything else),
leading to a contradiction. If v is black, then it appeared in the queue before u so d [v] ≤ d [u] (remember
we have non-decreasing distances in Q). This leads us to another contradiction. The final possibility is
that v is grey. This means v is currently in Q (this is where all the grey vertices are stored). Then before
u was dequeued, u and v were simultaneously in Q. We know then that d [v] ≤ d [u]+1 (distances in the
queue can differ by at most 1) giving us our final contradiction.

14.3 Depth First Search

As we said depth first search will be the counterpart to breadth first search. In this case, we will search as
deep as possible before backtracking to explore the edges of an already discovered vertex. We will also be
colouring the vertices as we walk through the graph and the colours and what they correspond to will be
the same: white for undiscovered vertices, grey for discovered vertices that have not been fully explored
and black for vertices that have been fully explored. In this case, however, our definition of fully explored
is subtly different. We will say a vertex has been fully explored if we have explored all of its its children and
their children and their children and so on. Additionally instead of storing a distance in the nodes we will
store two timestamps (i.e. two integers) for the discovery time, when a vertex is first discovered, and the
finish time, when a vertex has been fully explored.

DFS is an algorithm that is begging to be written recursively. Hence we will heed its wishes and do just
that. Additionally, DFS is commonly used to find the connected components so our main algorithm won’t
take in a source vertex will instead call a helper function DFS-VISIT(G, u) repeatedly for each u in V .

1 DFS(G = (V, E)):
2 # initialisation
3 f o r each v i n V:
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4 colour[v] = white
5 f[v] = d[v] = inf
6 p[v] = null
7 time = 0 # global
8

9 f o r each v i n V:
10 i f colour[v] == white:
11 DFS -VISIT(G, v)
12

13 DFS -VISIT(G = (V, E), u):
14 colour[u] = grey
15 time = time + 1
16 d[u] = time
17

18 f o r each (u, v) i n E:
19 i f colour[v] == white:
20 p[v] = u
21 DFS -VISIT(G, v)
22 colour[u] = black
23 time = time + 1
24 f[u] = time

Remark 14.3. The above algorithm is for a directed graph. For undirected graphs, we just need to make a
slight tweak to ensure that we don’t travel over the same edge twice.

After we have run DFS we will be left with a whole bunch of disconnected trees, which is called the
DFS-forest. Specifically, we will have trees from the parent-child relationships we are tracking, each of
which corresponds to an edge in the original graph. These edges are called, understandably enough, tree
edges. However consider the remaining edges in the graph. We may, for example, have a back edge (u, v)
where v is an ancestor of the vertex u (hence we are going ‘back up’ the tree with this edge). These are
found during the execution of line 19 above, when the colour of an edge’s endpoint (in this case v) is grey.
We may of course have cases where rather than being an ancestor v is a descendant of u. In this case we
get a forward edge. Finally, we may have that v is neither an ancestor nor a descendant. Thus the edge
(u, v) is an edge between different branches of the same tree or an edge between different trees in the
forest. Such edges are called cross-edges. Both forward edges and cross-edges are found when v is black.

Let us consider the complexity of DFS. Note that DFS-VISIT is only called on white vertices which
are immediately painted grey. So DFS-VISIT is called exactly once on each vertex (note this is different
from BFS since in a disconnected graph, we may not reach every node with BFS. With DFS, however, this
is not the case). Each DFS-VISIT also walks through the adjacency list of a single vertex. Hence over all
the vertices we will have traversed through all the edges. As we have argued before, the complexity of this
algorithm must then be the larger of |V | and |E |, so in particular we can conclude that the runtime for DFS
is O(|V |+ |E |).

We have one final property with DFS known as the parenthesis theorem.

Theorem 14.4 (Parenthesis theorem) Suppose we run DFS on a graph G. Then for any vertices u, v ∈ G,
exactly one of the following holds:

•
[
d [u], f [u]

]∩ [
d [v], f [v]

]=;: the two intervals are disjoint

•
[
d [u], f [u]

]⊂ [
d [v], f [v]

]
: the interval

[
d [u], f [u]

]
is contained in

[
d [v], f [v]

]
•

[
d [v], f [v]

]⊂ [
d [u], f [u]

]
: the interval

[
d [v], f [v]

]
is contained in

[
d [u], f [u]

]
14.4 Using DFS

Topological sort is a way of ordering vertices, specifically in directed, acyclic graph. In particular, it is a
linear ordering of vertices so that if (u, v) is an edge in G , then u comes before v in the ordering (this shows
why we need the graphs to be directed and acyclic). Using DFS, an algorithm to find a topological sorting
of the vertices is quite easy to find. In particular, we perform DFS and as each vertex finishes we add it to
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the beginning of the list. This works because a vertex is added only after all its edges have been explored
fully. Thus by adding it to the beginning we know that all of its neighbours will only appear later in the list.

DFS can also be used to determine whether or not a directed graph G is strongly connected, where by
strongly connected we mean that for every pair of vertices u, v there is a path from u to v and from v to u
(this is very similar to the idea of connectedness for undirected graphs, although, as you might imagine, a
bit more work needs to be done for strong connectedness since we need paths to exist in both directions).
In order to find an algorithm for this, we employ the classic trick when handed a difficult problem: reduce
it to a simpler one. Note that being strongly connected is equivalent to saying that there exists a node s
such that there is a node from s to every vertex and a path from every vertex to s (we can then construct
a path from u to v by combining the paths from u to s and from s to v). Of course if a graph is strongly
connected then every s is going to satisfy this property, so we can choose a vertex s at random and simply
check whether or not it satisfies this property.

The question then remains how can we check this. Well, at least one of the directions is easy to do with
DFS. Namely, we perform DFS-VISIT(s). If f [s] = 2|V |, then we know there is a path from s to every other
vertex. This is because the timer increments once each time we encounter a new vertex and once each
time the vertex has been fully explored. Thus if f [s] = 2|V |, then all the vertices in G were encountered
(thus if f [s] < 2 |V |, we know that G is not strongly connected). Thus if f [s] = 2 |V |, we know that every
vertex is reachable from s. But how can we determine whether the reversal of this question is true, whether
s is reachable from every vertex? In fact, phrasing this as the reversal is exactly the way to think of this: we
simply reverse all of the edges in G and run the same algorithm on this new graph. In this way, if a vertex
is reachable from s in the new graph, s is reachable from the vertex in the original one. As a side note, the
reversal of all the edges is particularly simple with adjacency matrices: we simply take their transpose!

14.5 Minimum Spanning Trees

Given a graph G , a spanning tree is a tree (i.e. an undirected, acyclic, connected graph), formed from a
subset of the graphs edges that contains all the vertices in G . Quite often there is more than one spanning
tree. In the case of unweighted graphs, all spanning trees are (generally) equally optimal. If the edges have
weights though, this is no longer the case. In particular, there will be a minimum spanning tree.

Given a weighted graph G , we can talk about its own weight (sometimes denoted w(G)) which is simply
the sum of the weights of the edges in the graph. Then a minimum spanning tree for G is a spanning tree
whose weight is smaller than or equal to the weight of any other spanning tree. The minimum spanning
tree (MST) need not be unique either (the trivial example is any unweighted graph, which can be viewed
as a weighted graph where all the edges have the same weight. In this call, all spanning trees will have the
same weight).

A very common problem is to find a minimum spanning tree of a weighted graph. The general ap-
proach for our algorithms to achieve this will be to start with just the vertices and continually add edges
from the the graph to make a tree or forest as we go until we have our MST. Thus in general, the algorithm
can be described like so

1 GREEDY -MST(G = (V, E), w):
2 T = {} # invariant: T is a subset of some subset of G
3 while T is not a spanning tree: # i.e. while |T| < |V| - 1:
4 find e "safe for T"
5 T = T + e # or T = T union {e}

where w is the weight map, i.e. a map from the set of edges E to the real numbers. Also note how in this
case, we are thinking of the tree as simply a set of edges.

The question, of course, is what does it mean for an edge to be safe. To be honest, the precise definition
is that e is safe for T if T being a subset of a minimum spanning tree implies that T ∪ {e} is also a subset
of a minimum spanning tree. This is a bit of circular definition, so we need another way of determining
when an edge is safe. For this we have the following theorem.

Theorem 14.5 Suppose G is a connected, undirected, weighted graph, T is a subset of some MST of G and
e is an edge whose endpoints lie in different connected components of T . If e is an edge of minimal weight
connecting the connected components, then e is safe for T .
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Intuitively, this theorem is clear. Given two connected components in T , we know that the MST must
contain an edge connecting them and if we pick an edge which doesn’t have the minimal weight, then
it would not be a minimum spanning tree. We use this theorem for both the algorithms below, albeit in
different ways.

14.5.1 Prim’s Algorithm

Prim’s algorithm works by choosing an initial root vertex and continually adding edges of minimal weight
to T to form a growing tree. That is, at each step we find an edge that has one vertex in T and one outside
T and moreover over all such edges, we pick the edge that has minimal weight. The algorithm written
precisely is like so:

1 MST -PRIM(G = (V, E), w, r):
2 # r = initial choice of root
3 # initialisation
4 f o r each v i n V:
5 priority[v] = inf # we will use a priority queue to determine the edge to add
6 p[v] = None # p[u] = parent of node u
7 priority[r] = 0
8 Q = V # Q = our priority queue
9

10 # main bit
11 w h i l e Q i s n o t empty:
12 u = ExtractMin(Q)
13 T = T + {(p[u], u)} # unless when u = r (in which case p[u] doesn’t make

sense)
14 f o r each v i n adj[u]:
15 i f v i n Q and w(u, v) < priority[v]:
16 # w(u, v) < priority[v] means that we have found a ‘shorter ’/more optimal

path to v
17 decreasePriority(Q, v, w(u, v))
18 p[v] = u

Importantly, note the use of the method decreasePriority in line 17. This is of course not a part of the
Priority Queue ADT (see Section 5), so we must augment our data structure. It is not immediate how we
should change the heap data structure to allow for changing priorities. The main problem is of course
finding the particular element, after finding the element, we just need to do some bubble ups. Luckily
we don’t need to do any searching! We can simply assume that the v in line 17 has a pointer to the corre-
sponding element in the heap, which means that decreasePriority is O(log |V |) in the worst case (since
the number of elements in the heap is |V |). Additionally, the combination of the while loop in line 11 and
the for loop in line 14 means that the if block is run at most |E | times (the combination of the loops
means we iterate over |E | twice since edge will be found once from either end point. But each edge can
only be added at most once and after an edge has been added the v in Q part of the if statement will
evaluate to false once we reach it a second time. This implies that the overall runtime of this algorithm is
O(|E | log |V |).

14.5.2 Kruskal’s Algorithm

Kruskal takes a slightly different approach. Instead of starting with a tree and maintaining it throughout,
Kruskal starts with a forest and continually adds edges until we form a tree. The claim is that the tree at
the end will be a minimum spanning tree of the initial graph. What edges should we add to ensure that
this claim holds? As you might imagine it is the edge of minimal weight that we add. Once again, to be
precise, at each step we pick the minimal edge among all the remaining edges that do not form a cycle. We
form a cycle exactly when both end points of the edge are in the same connected component in T . Thus,
we can describe the algorithm like so

1 MST -KRUSKAL(G = (V, E), w):
2 # as before w = weight function/assignment
3 T = {}
4 sort edges so that w(e_1) <= w(e_2) < ... <= w(e_m)
5 f o r i i n r a n g e (1, m + 1):
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6 let (u_i , v_i) = e_i
7 i f u_i and v_i are i n different connected components of T:
8 T = T + {e_i}

We know that the sorting in line 4 can be done in O(|E | log |E |) time. The big question, of course, is
how can we determine efficiently whether or not two vertices are in the same connected component. For
this, we turn to a new data structure!

15 Disjoint Set ADT

The data for the disjoint set ADT is a collection of non-intersecting sets where each set is identified by a
unique element of the set called the representative. Thus we can determine whether two elements are in
the same set by comparing their representative (or more precisely by comparing the representatives of the
sets that the two elements belong to).

Given the context from Kruskal’s algorithm, it seems natural to have the following operations for this
ADT:

• Make-Set(x): Given an element x that is not already in one of the disjoin sets, create a new set
containing only x and designate x as the representative of this set.

• Find-Set(x): Given an element x, return the representative of the set that x belongs to (or NIL if
x belongs to none of the sets).

• Union(x, y): Given elements x and y that belongs to the sets Sx and Sy , make a new set Sx ∪
Sy , designate a representative and remove Sx and Sy from the ADT (the last part is necessary to
maintain disjointedness of the sets)

Remark 15.1. It is also useful (and important) to note what is not possible with this data structure. For
example, there is no way of finding what all the disjoint sets are or of finding what all the elements in a
given disjoint set are.

With this, we can make the pseudocode a bit less informal

1 MST -KRUSKAL(G = (V, E), w):
2 T = {}
3 sort edges so that w(e_1) <= w(e_2) < ... <= w(e_m)
4 f o r v i n V:
5 Make -Set(v)
6 f o r i i n r a n g e (1, m + 1):
7 let (u_i , v_i) = e_i
8 # if u_i and v_i are in different connected components of T:
9 i f Find -Set(u_i) != Find -Set(v_i):

10 Union(u_i , v_i)
11 T = T + {e_i}

It is important to realise how the disjoint set ADT is typically implemented: in particular each element
maintains a pointer to the DJS data structure.

We will look at various ways of implementing DJS analysing each one by the worst case sequence
complexity.

15.1 Implementation I: Circular linked list

We might initially start with each disjoint set being a linked list with the final element having a pointer
back to the first element (thereby forming the circular structure). We designate one of the elements in
the linked list as the representative (marking it in some way) so that Find-Set simply requires iterating
through the list until we find the representative. Union is a bit more finnicky (we are trying to combine
two loops into one loop. The procedure is as you would expect but to execute it takes some work.).

Suppose the set Sx contains x1, . . . , xn and the set Sy contains y1, . . . , ym (where Sx and Sy are both
stored as circular linked lists) with x1 and y1 as the respective representatives. Then running Union(x2, y5),
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for example, we link x2 to y5 (i.e. the next element of x2 now points to y5). Then we iterate through Sy

to find the element preceding y5, namely y4, and link y4 to x3 (and remove the pointer from y4 to y5 of
course). This forms one continuous loop. The only problem is that this set now has two representative
but this can be dealt with easily by demarking (unmarking?) the representative in Sy as we were iterating
over it.

Remark 15.2. Quite often, instead of linking x3 to y5 we might instead link xn to y1 and yn to x1. Ulti-
mately of course the result is the same (we still get one continuous loop of Sx ∪Sy ) and takes about the
same time. With this implementation of Union, the result of unioning an element of Sx with an element
of Sy will always produce the same result (for example the resulting linked list with Union(x2, y5) and as
the linked list with Union(x4, y1)).

Let us analyse this implementation using worst case sequence complexity. Note that in a sequence of
m operations we can get a set to contain at most m elements and Find-Set will need to iterate over most
m −1 items on such a set (if we call it on the element immediately after the representative for example).
Thus immediately we find that the worst case sequence complexity is O(m2) (this would correspond to
calling Find-Set on the set of m elements m times. Clearly this is a very large upper bound since simply
constructing a set of m elements would require more than m operations).

We claim that the worst-case sequence complexity is in fact Θ(m2). For this we need to give a family
of sequences which actually achieves the m2 runtime. The idea is to actually achieve the sequence that
was suggested in the upper bound argument above. Namely, we will use the first portion of the sequence
to construct a large set and then use the latter portion of the sequence to call expensive Find-Set oper-
ations. To be precise, the first n operations in the sequence are Make-Set’s, where n = m

4 . The following
m
4 − 1 operations are unions so that we can combine these n elements into one big set (this portion of

the sequence might look something like Union(x1, x2), Union(x1, x3), . . . , Union(x1, xn)). The remainder
of the sequence is Find-Set(x2) (remember the convention described in Remark 15.2). In this case, the
Find-Set’s will each require Θ(n) =Θ( m

4 ) runtime. Since there are m
2 +1 such Find-Set’s, these opera-

tions alone will requireΘ(m2) runtime giving the desired tight bound.

15.2 Implementation II: Backpointers

The problem with the above implementation is that some Find-Set’s take too long. We might consider
fixing this by including a pointer to the representative in every node. In this manner, Find-Set would run
in constant time! The problem, as you might imagine, is union. In particular, we would need to change
the pointers for all the elements in the second set.

We can similarly argue that the worst case sequence complexity for this implementation is Θ(m2). As
before, we argue that there at most m elements in any disjoint set, thus union requires changing at most
m pointer. Thus if the sequence was all Union’s and it did have to change m pointers each time, we would
get a quadratic runtime. Clearly the runtime for a sequence of length m must smaller than this, allowing
us to conclude that that the worst case sequence complexity is O(m2). We can also construct a sequence
to conclude that the worst case sequence complexity is Θ(m2). As before, we will try achieve the worst
case scenario painted previously. We will take n = m

2 and have the first n operations be Make-Set’s. The
following m

2 −1 operations are Union’s where the second element is always the larger one (as an example,
this sequence might look something like Union(x2, x1), Union(x3, x1), ..., Union(xn , x1)). The number of
pointers changed over all the unions is

m
2 −1∑
i=1

i =Θ(m2)

Side note: the sequence defined above is of length m −1. You can have the last operation be anything
to get the sequence to be of length m. It doesn’t really matter since the unions defined above take Θ(m2)
on their own.

15.3 Implementation III: Union by Weight

There is an obvious improvement to the above implementation. Instead of always changing the pointers
in the second set, we should instead change the pointers in the smaller of the two sets. To this end, we
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add an attribute to each disjoint set called the weight, which is simply the number of items in the set.
Now for the worst case sequence complexity analysis. In this case we will only be able to find an upper

bound rather than a tight bound. Let x be any element in one of the disjoint sets. We want to find the
number of times the pointer from x to its representative will change. Note that the pointer only changes
when x is in the smaller of the two sets. In such cases the size of the set that x is in at least doubles. Thus x
is going to be in the smaller set at most logn times where n is total number of elements in all of the disjoin
sets. Since each element’s pointer is changed at most logn times and there are n elements, at most n logn
pointers are changed. Since Make-Set and Find-Set are both constant time, we find that the worst case
runtime of a sequence of m operations with this implementation is O(m +n logn) where n is the number
of Make-Set operations in the sequence (if there are lots of Make-Set and Find-Set operations instead of
Union operations, then m is going to be greater than n logn, thereby dominating the runtime. Otherwise
we have O(n logn) runtime).

15.4 Implementation IV: Inverted Tree

Having played around with this a fair amount by now, we might realise that it seems unnecessary to add
lists and combine loops to form larger loops, when all we really need is some way of getting to the rep-
resentative from any given node. Thus for instance when taking union of two sets, why not have the
representative of the second one point to the representative of the first one. Furthermore, having forward
pointers is largely unnecessary when again all we need is a way to get to the representative. Instead we
could reverse the forward pointers so there is a path from every node to the representative.

To summarise, we have the following: we have a tree structure with the representative as the root.
However, the tree is inverted since the rather than have parents point to children, we have children point
to parents. We will also have the root point to itself.

With this implementation, Make-Set is of course constant. Find-Set in the worst case is going to be
Θ(h) where h is the height of the tree. Finally Union is simply the time for Find-Set plus some constant
amount of changing pointers.

As usual, we will do our worst case sequence complexity analysis. As before it is easy that worst case
runtime must be O(m2) (Find-Set takes at most Θ(m) time, for example if we call it on a leaf of the tree
and the tree has no branches). The sequence we provide is the one that more or less actualises this worst
case scenario. Namely we have n = m

4 Make-Set operations and m
4 −1 Union’s in such a way so that the

resulting tree is simply a chain (this can be done by making the first argument to Union a singleton set
every time). Then we call Find-Set on the very last item each time for the remaining operations giving
usΘ(m2) runtime in the worst case.

15.5 Implementation V: Inverted Tree with Union by Weight

We can of course make the same improvement we made last time: namely each tree stores its weight
(i.e. the number of nodes in it) and when performing a union we ensure that the larger tree is one whose
root/representative is maintained (note that larger trees will have more leaves and Find-Set is most ex-
pensive on leaves. So in order to minimise the number of leaves after the union we keep the larger tree as
the root).

We can run a similar analysis to before. Let x be any arbitrary element in one of the disjoint sets. The
distance between x and its representative only increases if it is unioned with a larger set. By previous
argument, we know that this can happen at most logn times (where n is total number of elements). Note
that each step distance between x and and its representative only increases by 1. Since at the beginning
x is its own representative, we know that the height of any tree in the data structure can be at most logn
after m operations, n of which were Make-Sets. This means that each Find-Set takes at most O(logn)
thus the worst case time complexity of a sequence of m operations is O(m logn).

15.6 Implementation VI: Path Compression

Ideally, what we would like is for the tree to always be of height 1 with each node pointing directly to the
representative. But as you might imagine that is going to be quite hard to maintain. For example upon
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performing a union we would have to go through all the children of the root and change their pointers
to the new one (and we don’t even have a way of finding all the children! Remember all the pointers are
reversed so we only have pointers from children to their parents). A better idea is to update these pointers
when we find them. In particular, suppose we call Find-Set on an element and see that it doesn’t point
to the root. Then we follow the path to the root and modify all the nodes along the path so that they all
point directly to the root. This is known as path compression. Admittedly this might double the runtime
for Find-Set (if an element is at depth d , then it takes d steps to get to the root and since there are d
elements along the way (including itself), we have d pointers to change as well) but it means that all future
operations are much cheaper. A messy proof tells us that the sequence complexity with path compression
is O(m logm).

15.7 Implementation VII: Union by Rank

With path compression, it is not the weight of the tree that is important but its height. Thus we will track
the height instead of the weight. But then we realise that keeping track of the height exactly is actually
quite difficult. Performing a path compression may or may not have decreased the height; the only way to
know would be know the depths of all the leaves (which would involve keeping track of the leaves as well,
at least roughly). Luckily we don’t need to known the height exactly, simply knowing an upper bound for
it will do. This quantity is known as the rank. It can also be defined like so: the rank of a leaf is always 0
and the rank of an internal node is 1 more than the maximum rank of its children.

We need to check how rank interacts with the ADT operations. If we do Make-Set(x), then it is clear
that we should set the rank of the node to be 0 (remember that the rank of a leaf is 0). The rank remains
unchanged after running Find-Set (if anything the height will have decreased, but the upper bound will
still hold so it need not be changed). When performing a Union we ensure that it is the representative
of higher rank that becomes the root in which case the rank need not changed (the upper bound is still
maintained). If, however, the rank of the two representatives is the same, then taking the union will could
increase the maximum height, by 1, and therefore we also need to increase the rank by 1. In this scenario,
we could pick either representative to be the root, but by convention we will always choose it to be the
first one.

An even messier proof than before shows that the worst case sequence complexity for this implemene-
tation is O(m log∗ n) where log∗ is the iterated logarithm. log∗ n is the number of times that the logarithm
function must be applied to n in order to get a result that is below 1. To be formal, you can define it as

log∗(n) =
{

0 n ≤ 1

1+ log∗(logn) n > 1

Note that log∗ is a very, very slow growing function. The function is 0 on (−∞,1], 1 on (1,2], 2 on (2,4], 3 on
(4,16], 4 on (16,65536], 5 on (65536,265536] and so on. Thus the function is essentially constant meaning
that the amortised complexity with this algorithm is very close to being constant.

16 Lower Bounds

Lower bounds are some of the most delightful things in computer science. In this case you analyse, not
the complexity of a particular algorithm, but the complexity of a problem, in order to make statements
about the minimum amount of effort required to solve a problem. In other words, you are finding what is
the smallest runtime that any algorithm solving the problem could have.

Consider the example of sorting. We know we can sort in O(n logn) (via randomised quicksort for ex-
ample). This gives an upper bound for the runtime of the best algorithm for sorting. If we knew the lower
bound we could conclude that we had already found the best algorithm (up to asymptotic behaviour).
But this is clearly a difficult problem: we would need to argue that every algorithm solving the problem
must run a certain amount of time. In practice, to make our lives easier we often classes or families of
algorithms (i.e. algorithms that tackle the problem in similar ways).
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To continue the example with sorting, consider the class of algorithms that use pairwise comparison
(i.e. the sorting is done by comparing pairs of elements in some manner). We can use comparison trees
to represent such algorithms.

16.1 Comparison Trees

In order to get used to arguing with comparison trees, let us consider the slightly different problem of
searching through a sorted (1-based index) list and returning the index of the item if present. Suppose we
are searching for an element in x in a list A where A is of length 3. In the first step, we compare x with A[2]
to determine whether x should be on the first half of the list or the second half. Then we compare x with
A[1] or A[3] depending on the previous result (but not both). Now we know that x is either at a specific
index or not in the list at all. We can determine which of these it is with one final comparison. We can
summarise all this in a comparison tree, see Figure 22.

Figure 22: Comparison tree for binary search (return 0 if x is not in the list)

Suppose a problem has q possible outputs. This puts a lower bound on the height of the comparison
tree since each output will correspond to at least one leaf. In particular, recall that a binary tree of height
h can have at most 2h leaves. Conversely, if a binary tree is to have q leaves then it must at least be of
height ⌈log q⌉. The worst case runtime is proportional to the height of the tree and the expected runtime
is proportional to the average depth of the leaves.

Remark 16.1. This means that searching in a sorted list with q items is going to take at least Ω(⌈log(q +
1)⌉) = Ω(log q) time. But binary search already has this runtime so we confirm that binary search is the
fastest way of searching in a sorted list!

16.2 Sorting

We now apply a similar analysis to the problem of sorting. First we make the problem precise: we seek
an algorithm that will take as input a list of length n and output a permutation of [1, . . . ,n] indicating the
position (or rank as in Section 10) of each element. Thus for example, the output for [2,6,3] would be
[1,3,2]. The comparison tree for n = 3 might look like Figure 23.

There are n! possible outputs (the number of permutations of [1, . . . ,n]) thus the height of comparison
tree must be at logn!. We claim that logn! =Θ(n logn) since

logn! = logn + log(n −1)+·· ·+ log2+ log1 ≤ n logn

logn! = logn + log(n −1)+·· ·+ log2+ log1 ≥ logn + log(n −1)+·· ·+ log
n

2
≥ n

2
log

n

2

Thus any sorting algorithm that uses pairwise comparisons must take at leastΘ(n logn) time.
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Figure 23: Comparison tree for sorting with n = 3

One does occasionally hear whispers of sorting being done in much faster time. How is this possible?
The answer is cheating (kind of). We have found the lower bound for a very particular problem, if we
change the problem slightly, for example by adding certain restrictions, we can get different lower bounds.
A somewhat silly example is if we knew the elements of the list to be sorted were n distinct elements from
[1, . . . ,n]. In this case, the algorithm could be made constant time by simply returning the input list.
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