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1 Introduction

Differential equations are equations where the unknown is a function and the given equation gives us
a relationship between the function and its derivative(s). Such equations are common in physics, eco-
nomics, and even other areas of math where we know how a quantity changes (i.e. its derivatives) but not
necessarily how to determine the quantity at any given instant. Perhaps the most important differential
equation is Newton’s (second) law:

ma = F

This equation tells us how force and acceleration, the second derivative of position, are interrelated. A
similar example is that of the spring, where Hooke’s law (in combination with Newton’s law) tells us:

m · x ′′(t ) =−k · x(t ) (1.1)

Without too much effort, we see that

x(t ) = cos

√
k

m
t


forms a solution to (1.1), by which we mean that it satisfies the differential equation. Playing around a bit
more we find that

x(t ) = A cos

√
k

m
t

+B sin

√
k

m
t

 (1.2)

where A and B are any real numbers, all form solutions to (1.1). As it turns out, this is what all solutions
to (1.1) look like, although this is something we will prove later.

The parameters A and B are determined by the initial conditions that the differential equation needs
to satisfy (in general 2 unknowns will require 2 initial conditions). Hence A and B in some sense parametrise
the solution space. In such cases, we would like to have the parameters cover the entire solution space
and for each set of parameters to correspond to a different solution.

1.1 Solving Differential Equations

There are two types of differential equations: ordinary differential equations, ODEs, (where the unknown
function is in one variable) and partial differential equations, PDEs, (where the unknown function is in
several variables). Our goal is to understand the quantity that the unknown function measures. Of course
the best way to understand this quantity is by finding the unknown function. For example, the solutions
above (see Equation 1.2) instantly tell us that x has periodic behaviour, not something immediate from
the differential equation itself.

This is why there is so much interest in solving differential equations. ODEs can sometimes be solved
analytically (see the above example), PDEs, almost never. However, we can often analyse differential equa-
tions themselves in order to make qualitative statements about the functions (how it changes, its limiting
behaviour, points of equilibrium, etc.) and still learn meaningful information about the quantity being
measured.

But perhaps we go any further, we should probably define what ODEs are

Definition 1.1 (Ordinary Differential Equation). An ODE is an equation of the form

F (t , x(t ), . . . , x(k)(t )) = 0

where x is a vector valued function on an open interval I ⊂Rwhich is k−times continuous differentiable1.
This is known as the implicit form of the ODE.

If the codomain of F is Rm with m > 1, we get a system of equations. Sometimes we can express the
k−th derivative as a function of the lower order derivatives which gets the standard or explicit form.

We should also probably define what it means to solve an ODE.

1In principle we don’t need continuity of the k−th derivative, only its existence. However this does make things a lot nicer
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Definition 1.2. A (classical) solution of an ODE F (t , x(t ), . . . , x(k))(t ) = 0 is a function of class C k φ : I →Rn ,
where I ⊂R is an open interval, such that F (t ,φ(t ), . . . ,φ(k)(t )) = 0 for all t ∈ I .

Note that not all ODEs can be solved. Consider, for example,∣∣∣d y

d x

∣∣∣+|y |+1 = 0

Now, consider the following non-example. Suppose we are given the ODE

x + y · y ′ = 0

We can define y(x) =
√
−(1+x2) and we see that

y ′(x) = −x√
−(1+x2)

which means that x + y · y ′ is certainly equal to 0. However, y is not defined in the reals!

Definition 1.3. The general solution of an ODE is a formula for all possible solutions.

The solution for x above, (1.2), is an example of a general solution. It is normally no easy task to
find the general solution to a differential equation as one needs to prove that they have indeed found all
possible solutions.

1.2 Standard Trick

There is a standard trick to turn a higher order ODE into a system of first-order ODEs which is a bit simple-
minded but occassionally useful.

Example 1.1. Suppose we now have the equation

mx ′′ =−kx − cx ′

(one may think of this as introducing drag into our spring example). We can introduce new variables

x1 = x, x2 = x ′

allowing us to write (
x1

x2

)′
=

(
x2

−−k
m x1 − c

m x2

)
■

In the general case of F (t , x, x ′, . . . , x(k)) = 0, we define

x1 = x

x2 = x ′
1

x3 = x ′
2

...

xk = x ′
k−1

thus allowing us to write F (t , x1, x2, . . . , xk ) = 0.
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2 Simple Examples

We list a few ‘classic’ examples of ODEs here.
The first example is perhaps the simplest one, one could think of

x ′ = 0 (2.1)

It is easy to see that this is (only) solved by x(t ) = c where c is some real constant (and t is any real number).
Indeed the Fundamental Theorem of Calculus (and Mean Value Theorem) tell us that this is the general
solution, thus we get a solution space of 1-dimension. This means that a single parameter dictates every
possible solution, in this case that parameter is c.

The second example we look at is a slightly generalised version of this

x ′ = f (t ) (2.2)

Once again using the Fundamental Theorem of Calculus and the Mean Value Theorem, we find that the
general solution is

x(t ) = x0 +
∫ t

0
f (s)d x

where once again our space of solution is one-dimensional, governed in this case by the constant x0.
The third example is one where things get interesting (and also an incredibly important example).

x ′ = ax (2.3)

In fact this is a whole family of differential equations for every a ∈ R. Some minor knowledge of calculus
tells us that

x(t ) = ceat

is a solution to this differential equation (once again c can be any real constant). However it is not imme-
diately obvious that this is the general solution to the differential equation. Let us show that this is is the
case.

Let x̃(t ) be any solution to the equation. Our claim is that (2.3) is a constant multiple of eat . We show
this by proving that the ratio of the two functions is always constant

d

d t
(x̃(t )e−at ) = x̃(t )(−ae−at )+ x̃ ′(t )(e−at )

=−ax̃(t )e−at +ax̃(t )e−at

= 0

This example indeed illustrates a general principle for solving ODEs: guess and check. This is to say
that it is often easier to guess an answer to an ODE and then verify that this solution works than find one
analytically.

3 Useful Pictures

We’ve said many times that solving ODEs is a difficult, often impossible, task. We reiterate that here:
solving ODEs is a difficult, often impossible, task. However, it is the case that the ODE can give us a lot of
information about its solution(s) which we often summarise in various pictorial formats.

A differential equation gives us a way of computing the slope of the tangent to the function at any
given point (this is, after all, what the derivative measures).

Thus one thing we can do to try and visualise the behaviour of the function is to find its derivative at
every point 2. This called the slope field or direction field 3

2In practice, one often limits themselves to a finite set of points
3Note the multiple names which will be a common theme here. It seems that the only thing harder than solving a differential

equation is naming things related to them consistently.
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Figure 1: Drawing the slope at one point

Seeing the slope field, we can turn the question of solving a differential equation to a visual one: we
need to find a function which is tangent to every slope line. Of course there are a variety of possible
solutions depending on where one starts from (one would hope that after deciding where to start from,
there is only one solution. we will see that in sufficiently nice conditions, this is the case). These solutions
are also called integral curves. We illustrate a few examples below in Figure 3.

We see that the slopes are all the same along any horizontal line. This is because the differential equa-
tion is independent of t . Such an ODE is called autonomous. For more general ODEs, we can still ask the
question of what is set of points (t , x) such that f (t , x) = k for some constant k. In this case we call the set
of points isoclines (in particular then horizontal lines are isoclines for autonomous ODEs).

Consider the equation
x ′ = 2x

It is clear that the case with x = 0 (horizontal line in Figure 3) is a special case as this is the only constant
solution. In this case we call 0 an equilibrium or steady state or stationary point. Consider what happens
we are slightly above x = 0. In this case as t goes to infinity (one often thinks of this time evolving), x(t )
gets further and further away from 0 (if this is modelling the position of a particle, then this shows that the
particle grows further and further from its initial position (and at an increasing pace)). In particular if x(t )
is positive, it becomes more and more positive and if x(t ) is negative, it becomes more and more negative.
We often represent this in what is called a phase line or phase portrait.

The fact that solutions near 0 move away from 0 as t increases, means that although 0 is an equilibrium
point, it is an unstable one (also called a source, if one imagines this as the flow a fluid). The opposite is
of course a stable equilibrium (or sink) where solutions within some neighbourhood of the equilibrium
point tend towards the equilibrium. Such a case occurs if we consider Equation 2.3 for a < 0. In this case
0 is again an equilibrium point, but now it is a stable one.

Notice the difference in behaviour between a > 0 and a < 0. Behaviour for all a > 0 is qualitatively
the same and the same holds true for a < 0. In such cases we say that the equation x ′ = ax for a > 0 (or
a < 0) is stable (this is different from 0 being a stable point; in this case we are talking about the family of
equations being a stable one.).

It seems suggestive that we left out the case for a = 0 above. Indeed that is because the behaviour
of the function is completely different for a = 0, since x(t ) is a constant in this case (this is exactly very
example of an ODE we considered). It is at this point that 0 goes from being a source to a sink where the
slightest change in a causes it to go one way or the other. We say then that a = 0 is a bifurcation in the
1-parameter family of equations x ′ = ax.
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Figure 2: Drawing a slope field on a grid for x ′ = 2x

4 The Logistic Equation

Imagine you are trying to model the growth of a population. We know that if a population is small and
is in ideal conditions (easily accessible food, few predators, lots of space, etc.). A population will grow
exponentially. However, we also know that this cannot continue forever. As a population grows larger and
larger, it will start pushing towards the limits of the available resources. In fact if the population grows too
large for its environment (for example if there’s not enough food or too many predators), then one would
expect the population to decrease. A simple equation, known as the logistic equation4, that models this
behaviour is

x ′ = ax
(
1− x

N

)
(4.1)

where a ∈R is the growth rate of the population and N is the carrying capcity or the ideal population size.
Notice that if x is small then x ′ ≈ ax and if x > N (i.e. the population is greater than the carrying capacity)
then x ′ < 0. We immediately see that this equation is still autonomous (we still have no t in the equation)
but it is no longer linear. This might already suggest that this is a somewhat more difficult problem than
before (it is). Nevertheless, we can make our life a bit easier with one small assumption: without loss of
generality we can take N to be 1 (we just choose appropriate units of x to make this work. One can think
of x modelling the proportion of the ideal population rather than the actual size of the population). We
thus define

fa(x) = ax(1−x) (4.2)

We see that fa(x) is 0 for x = 0 and x = 1 (these are hence our equilibrium points), positive if x ∈ (0,1)
and negative otherwise. This already tells us that x ≡ 0 is an unstable solution while x ≡ 1 is a stable
one. We can solve for other solutions to this differential equation (for other initial conditions) using a
technique known as separation of variables.

4More precisely, the logistic equation is the solution to the differential equation with N = 1, but that’s really more of a "tomato,
tomato" situation
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Figure 3: Slope field with some solutions (solutions illustrated in black)

Figure 4: Phase line/portrait for x ′ = 2x

We solve the ODE using separation of variables (see Subsection 17.1).

x ′ = ax(1−x)

x ′

ax(1−x)
= 1

1

a

∫
1

x(1−x)
d x =

∫
1d t

1

a

∫
1

x
+ 1

1−x
d x = t + c

1

a
ln

∣∣∣ x

1−x

∣∣∣= t + c∣∣∣ x

1−x

∣∣∣= eat+ac

x

1−x
= c2eat

x = c2eat

1+ c2eat
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Thus our solution is

x(t ) = c2eat

1+ c2eat (4.3)

4.1 Parameterising the general solution

Recall that that we also had special solutions to the equation, namely x ≡ 1 and x ≡ 0. We then see that
c2 = 0 recovers one of the solutions! Unfortunately the same is not true for the other solution (we would
require c2 =∞). We can divide the numerator and denominator by c2 to recover x ≡ 1 but we now lose
x ≡ 0. This suggests that there might be a better parameterisation of the solutions. We see that

x0 := x(0) = c2

1+ c2

We can solve for c2 and substitute that into Equation 4.3 to get

x(t ) = x0eat

1−x0 +x0eat = x0

(1−x0)e−at +x0
(4.4)

With this parametrisation, x0 = 0 and x0 = 1 get us the two special solutions.
Let’s analyse this equation to see what we can learn of it. We will consider the case a > 0 since it is clear

from the differential equation that cases for a < 0 are simply going to be reflections of the positive case
(besides it is remarkably rare for populations to have a negative growth rate). Suppose the initial point x0

is between 0 and 1. In this case, x ′ is positive so x will increase as t increases (as we already predicted) and
x ′ will tend toward 0. However, looking at Equation 4.4 we can see that no value of t will make x(t ) = 1.
Hence x = 1 forms an asymptote. Suppose x0 is greater than 1. Then x ′ is negative. In this case, as before,
x will continually decrease, approaching x = 1 but never intersecting it. The most interesting case is when
x0 < 0. In this case, we know that x(0) = x0 < 0. Note that at t = 0 the denominator starts of as a positive
number, 1. However as t grows larger and larger, (1−x0)eat will tend towards 0. Since x0 is a fixed negative
number, this means the denominator will be 0 at some point in time. In fact, we can work quite easily that
this occurs at t = 1

a ln( −x0
1−x0

). This means that in this case the function will blow up to −∞ in finite time.5

Figure 5: Solutions to the logistic equation (solutions in black), source

5 Linear System of ODEs

A differential equation of the form
X ′ = A(t )X + f (t )

5We let the reader decide how they feel about negative population sizes exploding to −∞.
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where A(t ) is an n ×n matrix and f is a map from an interval I ⊂ R to Rn is known as a linear system of
ODEs. A(t ) is called the matrix of coefficients (its entires being the coefficients) and the function f is called
the inhomogeneity. If f = 0 then the equation is called homogeneous and if A(t ) is a constant matrix then
we have what is called a constant coefficient ODE. As usual, if X ′ = F (X ) for some F , then all X0 that satisfy
F (X0) = 0 are called equilibrium points of a system (in the case of a linear system, F (X ) = A(t )X + f (t ), but
this statement applies more generally).

We will start by considering the simplest case of a linear system: a homogeneous, constant coefficient
ODE (as we will see solving a homogeneous ODE allows us to solve the general system, see Subsection 5.2).
In this case X0 = 0 is always a equilibrium point. If det(A) = 0 then we have a space of equilibrium. Re-
ducing further to case of A being 2×2, if det(A) = 0 we have a straight line of equilibrium points in R2 (we
of course ignore the uninteresting case of A = 0).

As mentioned, we will start by simply considering the case in R2. In other words our differential equa-
tion is of the form (

x
y

)′
=

(
a b
c d

)
︸ ︷︷ ︸

A

(
x
y

)
=

(
ax +by
cx +d y

)
(5.1)

The system would be easy to solve if b = 0 and c = 0 as we would left with equations of the form x ′ = ax
and y ′ = d y which already know how to solve. This occurs if A is a diagonal matrix. If A is diagonalizable,
then we can change our coordinates to make A diagonal and solve the system. In either case, we more
or less get x = x0eat and y = y0ed t as our general solutions. Moreover, in the one-dimensional, case the
system would would look like x ′ = ax, which again has the solution x(t ) = x0eat . This might inspire us to
define the answer for the 2×2 case (and the general case) to be

X (t ) = e At

Despite the nonsense that this looks, there is a way of interpreting what it means to “exponentiate a ma-
trix", using the Taylor expansion of ex . In other words, we define

e At :=
∞∑

k=0

t k

k !
Ak = I + t A+ t 2

2
A2 + t 3

3!
A3 + . . .

Of course this is an infinite series so we need to decided whether it converges or not (and what conver-
gence even means in this case), but at least each of the terms in the series makes sense.

As we will see later, this is in fact always convergent and does indeed solve our ODE and forms a
general solution to our ODE. Moreover, we have that

d

d t
e At = Ae At

Another educated guess one may make, once again looking at the one-dimensional case, is that the
answer will be of the form

x(t ) = eλt v

where λ is a real number and v is a (constant) vector in Rn , which are parameters to be determined.
Assuming this to be case, we can substitute this in Equation 5.1 to conclude that

λeλt v = A(eλt v)

for all t . This implies that Av =λv or in other words that λ is an eigenvalue with eigenvector v .

5.1 Example

Let us try our hand with an example (with the second guess for now). Suppose we are given(
x
y

)′
=

(
2 3
1 0

)
︸ ︷︷ ︸

A

(
x
y

)
(5.2)
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Using our favourite method of finding eigenvalue/eigenvector pairs, we determine that the eigenval-

ues of A are 3 and −1 with eigenvectors

(
3
1

)
and

(
1
−1

)
respectively. We then have two solutions

X1(t ) = e3t
(
3
t

)
X2(t ) = e−t

(
1
−1

)
However observe that any linear combination of X1 and X2 is also a solution. This leads us to super-

position principle (also known as the linearity principle).

Figure 6: Phase Portrait of Equation 5.2

5.2 Superposition/Linearity Principle

Suppose X1(t ) is such that it solves
X ′ = A(t )X + f1(t )

and X2(t ) solves
X ′ = A(t )X + f2(t )

Then for real a1, a2, X (t ) = a1X1(t )+a2X2(t ) solves

X ′ = A(t )X +a1 f1(t )+a2 f2(t )

This is easily verified by substituting the solution into the differential equation (and using the fact that
multiplication with a matrix is linear). A consequence of this is that solutions to a homogeneous, linear
system of ODEs forms a vector space.

Another consequence is the fact that the general solution X ′(t ) = A(t )X + f (t ) is given by

X (t ) = Xg enhom(t )+ y(t )

where Xg enhom(t ) is the general solution to the homogeneous system of equations X ′ = AX and y(t ) is one
particular solution to X ′(t ) = A(t )X + f (t ) (recall the similarities to solving a linear system of equations
given by AX = b, where the solution is given by b + X̃ where X̃ is the space of solutions solves AX = 0 (if b
lies in the range of A)).
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This means that if X maps toRn and A ∈Rn×n then the space of solutions to X ′ = AX forms a n−dimensional
vector space. In fact if X1(t ), . . . , Xn(t ) are (linearly independent) solutions to X ′ = AX then

X (t ) = a1X1(t )+ . . . an Xn(t ) a1, . . . , an ∈R

is the general solution to X ′ = AX . This in fact holds in general but we will only prove this for the case
when A can be diagonalised (for now). Later we will show the general case.

Lemma 5.1 The general solution to X ′ = AX where X maps to Rn and A is a diagonalisable n ×n matrix is
given by

X (t ) = a1X1(t )+ . . . an Xn(t )

where the Xi themselves are linearly independent solutions (meaning X1(t ), . . . , Xn(t ) are linearly indepen-
dent for all t ) to the system of equations.

Proof. Let v1, . . . , vn be eigenvectors of A that form a basis for Rn . Suppose their respective eigenvalues
are λ1, . . .λn .

Suppose the initial value problem is given by{
X ′ = AX
X (0) = a1v1 + . . . an vn

(5.3)

Then
Y (t ) = a1eλ1t v1 . . . aneλn t vn

solves this initial value problem.
Suppose Z (t ) is another solution to this IVP. Since v1, . . . vn is a basis for Rn , we can write Z (t ) =

b1(t )v1 + . . .bn(t )vn where the bi are real-valued functions. We know that bi (0) = ai since Z (0) = Y (0) =
X (0). Also note that

Z ′(t ) = b′
1(t )v1 + . . .b′

n(t )vn

AZ (t ) = A(b1(t )v1)+ . . .bn(t )vn)

= b1λ1v1 +·· ·+bnλn vn

Equating coefficients of the vi (which are uniquely determined since the vi for a basis) we get that b′
i (t ) =

λi bi (t ) and bi (0) = ai . We know that for each i , this is uniquely solved by bi (t ) = eλi t ai implying that
Z = Y . This allows us to conclude that the solutions to X ′ = AX are uniquely determined by the initial
value.

Remark 5.2. We know that that bi above are differentiable as they are the composition of two differen-
tiable functions: Z and the linear projection onto vi which is a linear map with constant coefficients/entries
(hence in particular is differentiable with respect to t ).

5.3 Types of Systems

We can categorise the different systems of equation based on the eigenvalues.

5.3.1 Saddle Point

Suppose we are given

X ′ =
(
2 3
1 0

)
︸ ︷︷ ︸

A

X (5.4)

Then we know that its eigenvalues are λ1 = 3 and λ2 = −1 with eigenvectors v1 = (3,1) and v2 = (1,−1)
respectively. Note that this is a case where the eigenvalues are of opposite sign. In this case the phase
portrait would look like Figure 7.
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Figure 7: Saddle point, source

Note that as time as evolves points on the line spanned by v2 move towards the origin (exponentially)
while points on the line spanned by v1 move away (also exponentially). In this case we call v2 the stable
line and v1 the unstable line. Now consider a point that is not on either of these lines but is some linear
combination of v1 and v2. In this case as time evolves, the component for v2 will shrink to 0 while the
component for v1 will shoot off to infinity leading to this above shape. This is called having a saddle point
at 0. Any time we have eigenvalues of opposite sign we get something like above.

5.3.2 Unstable Node

The next question, of course, is of course is what happens if we have two eigenvalues of the same sign. We
first consider the case of both eigenvalues being positive. As an example, we can consider

X ′ = B X (5.5)

where B = A +2I . Then the eigenvalues of B are λ1 = 5 and λ2 = 1 with v1 and v2 as before. In this case
everything moves away from the origin giving us what is called an “unstable node at 0". However note that
since the λ1 is greater, the v1 component of any point will increase much faster as t →∞. So eventually
the paths will seem parallel to v1. Conversely as t → 0, the v1 component will also decrease to 0 faster
than v2 so the integral curves (aka solutions) become tangent to v2 as t approaches 0. Hence we conclude
that the phase portrait will look like so.

5.3.3 Stable Node

We next look at the case when both eigenvalues are negative. Perhaps unsurprisingly, the picture will be
quite similar to the previous with some slight modifications. Continuing our tradition of having a concrete
example, we consider

X ′ =C X (5.6)

where C = A − 5I . Our eigenvectors remain v1 and v2 as usual but their corresponding eigenvalues are
now λ1 = −2 and λ2 = −6. Now as we evolve time, everything will approach the origin. Thus we call this
situation having a “stable node at 0". However now v2 approaches the origin faster than v1 so the the
integral curves will reflect this by becoming tangent to v1 as t →∞.
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Figure 8: Unstable Node, source

5.3.4 Center

Of course not every real matrix will have eigenvalue. More particularly, it may not have real eigenvalues
but it will certainly have complex eigenvalues. Indeed eigenvalues (for real matrices) come in conjugate
pairs. However we can close our eyes, pretend everything is real, and in the end split things into their real
and complex complex components to get genuinely real solutions. Let us demonstrate what this means.
Suppose we are given

X ′ =
(
0 −1
1 0

)
︸ ︷︷ ︸

J

X (5.7)

In this case, the characteristic equation is p(λ) = λ2 +1. The roots of this polynomial are i and −i which
are thus our complex eigenvalues. As mentioned, we don’t worry about these being complex and proceed
as normal. We see that

J − i I =
(−i −1

1 −i

)

and that the vector v1 =
(

i
1

)
lies in its kernel hence is the corresponding eigenvector for λ1 = i . Similarly

we conclude v2 =
(−i

1

)
is the eigenvector with eigenvalue λ2 = −i (in fact this can be concluded without

any calculations. If A is a matrix with real entries and has an eigenvector v with eigenvalue λ, then v is
an eigenvector with eigenvalue λ where v is defined in the obvious way: taking the complex conjugate of
each entry). Thus our two solutions are

z1(t ) = e i t v1, z2(t ) = e−i t v2
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Figure 9: Stable Node, source

Expanding this using Euler’s formula, we get

e i t v1 = (cos t + i sin t )

(
i
1

)
=

(
i cos t − sin t
cos t + i sin t

)
=

(−sin t
cos t

)
+ i

(
cos t
sin t

)
We claim that

X1(t ) =
(−sin t

cos t

)
, X2(t ) =

(
cos t
sin t

)
are (linearly independent) solutions to Equation 5.7 (note we would have gotten the same solutions if we
had chose to expand z2 instead).

It is easy to see that the solutions will travel in a circular path: counterclockwise as time moves forward
and clockwise as time moves backward. This is known has having a center at 0. This occurs anytime the
eigenvalues are purely imaginary numbers.

A few claims were made up in the above example. Let us prove them formally.

Lemma 5.3 Suppose A ∈Rn×n . Suppose v is an eigenvector with a eigenvalue λ. Then

• λ is an eigenvalue of A with eigenvector v

• If λ is not real, then v is not in Rn (it has complex entries). Moreover, Re(v) and Im(v) are linearly
independent.

Proof. The first statement is easily verified by noting that A = A since A has real entries. Therefore

Av =λv ⇔ Av =λv ⇔ Av =λv

In order to verify the second statement suppose v = u+i w where u, w ∈Rn . We will prove that u and w
are linearly independent via contradiction. So suppose there exists real number s and t and some v0 ∈Rn
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Figure 10: Center at 0, source

such that u = sv0 and w = t v0. Then v = u + i w = (s + i t )v0. Since v0 is a multiple of v , it must also be an
eigenvector of A with eigenvalue λ. This means that

Av0 =λv0

The left side of this equation is always in Rn however if λ is not real then λv0 will not be. Thus we get a
contradiction if λ is non-real. This shows that u and w are linearly independent so neither can be 0, thus
v must have complex entries.

Lemma 5.4 Z (t ) is a complex solution to X ′ = AX (where A is a real matrix) if and only if Re(Z (t )) and
Im(Z (t )) are also solutions.

Proof.
Z ′

Re (t )+ i Z ′
Im(t ) = Z ′(t ) = AZ (t ) = AZRe (t )+ i ZIm(t )

Next we want to show that we have found the general solution to Equation 5.7.

Lemma 5.5 The general solution Equation 5.7 is given by x(t ) = a(−sin t ,cost )+b(cos t , sin t )

Proof. Suppose y(t ) = (u(t ), v(t )) is another solution to the differential equation. Let f (t ) = (u(t )+i v(t ))e−i t .
Then

f ′(t ) = (u′(t )+ i v ′(t ))e−i t − i e−t (u(t )+ i v(t ))

= (−v(t )+ i u(t ))e−i t +e−i t (−i u(t )+ v(t ))

= 0

Therefore y =αe i t where α is some complex number implying that y is a linear combination of X1(t ) and
X2(t ) as given above.
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5.3.5 Spiral

Suppose we have

X ′ =
(
2 −1
1 2

)
X (5.8)

We find that the eigenvalues are λ1 = 2+ i and λ2 = 2− i with corresponding eigenvectors v1 =
(

i
1

)
and

v2 =
(−i

1

)
. Thus we find that a solution is given by

Z (t ) = e(2+i )t
(
i

(
1
0

)
+

(
0
1

))
= e2t (cos t + i sin t )

(
i

(
1
0

)
+

(
0
1

))
= e2t

(−sin t
cos t

)
+ i e2t

(
cos t
sin t

)
Thus the two solutions are given by the real and the imaginary parts:

X1(t ) = e2t
(−sin t

cos t

)
, X2 = e2t

(
cos t
sin t

)
The general solution is then of course some linear combination of X1 and X2.

Consider X1(t ). As t increases the (−sin t ,cos t ) component makes the point go around in the ori-
gin (with period 2π) while the e2t causes the magnitude to increase. Thus we get a spiraling out. In
order to determine the direction of the spiral (i.e. clockwise or counterclockwise) we can either investi-
gate (−sin t ,cos t ) (as t increases the x−coordinate decreases while the y−coordinate increases, therefore
counterclockwise) or we can try a point and determine which way the the tangent vector points. For ex-
ample substituting X = (1,0) into Equation 5.8 we find that X ′ = (2,1) implying that that the spiral must
be going counterclockwise.

Figure 11: Spiral (counterclockwise), source
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5.4 Repeated eigenvalues (Part I)

Suppose we have

X ′ =
(
3 −1
4 −1

)
X (5.9)

where we will denote matrix by A, as usual. The characteristic polynomial of A is λ2 −2λ+1 which has a
repeated root for λ= 1. Hence 1 is an eigenvalue with algebraic multiplicity 2. However A − I is a matrix

of rank 1, hence there is only one eigenvector namely v =
(
1
2

)
. This is gives one solution with

X1(t ) = ce t
(
1
2

)
However we expect a two dimensional solution space (a statement which we will justify later) hence we
know there should be one other linearly independent solution.

From the study of linear algebra, we recall in this case A must have a basis in generalised eigenvectors.

In this we can compute the generalised eigenvector of A is w =
(

0
−1

)
. Hence we might expect the second

solution to be of the form X (t ) = α(t )v +β(t )w with β ̸= 0 (the case with β = 0 is covered by X1 above).
Assuming that X (t ) does solve our differential equation we see that

X ′(t ) = A(α(t )v +β(t )w)

=α(t )Av +β(t )Aw

=α(t )λv +β(t )(λw + v)

= (λα(t )+β(t ))v +λβ(t )w

On other hand we also know that
X ′(t ) =α′(t )v +β′(t )w

equating coefficients (since (v, w) is a basis, the coefficients are unique), we get the following system of
equations {

α′ =λα+β
β′ =λβ

The second equation is easily solved by β(t ) = ceλt where c can be any constant (in fact, as we know,
the equation is only solved by this). Recall that we are trying find a particular solution to the differential
equation (one that is linearly independent of X1). Hence, for simplicity, we can take c = 1 above giving us
β(t ) = eλt .

This, however, leaves us to solve to solve for α. One might expect that we can simply use the theory
built up so far since this is simply a homogeneous, linear system of equations. However, one can check
that this system is exactly the case we are considering right now: the case with repeated eigenvalues with
a basis in generalised eigenvectors. Therefore we will have to resort to some combination of guesswork
and being clever.

In this case, we recall that the homogeneous equation α′ =λα would be solved by α(t ) = ceλt where c
is a constant. One might guess that if instead we vary the constant in some appropriate manner (i.e. make
it a function of t ), we might be able to solve for α′(t ) = λα(t )+ eλt . Therefore suppose α(t ) = y(t )eλt .
Assuming this to be a solution, we get

α′(t ) = y ′(t )eλt +λy(t )eλt

It is then clear that if y ′(t ) = 1 then we have a solution. In other words we can take y(t ) = ct for any
constant c. Once again we are only interested in one particular solution. Therefore, we take the simplest
one to conclude thatα(t ) = teλt . We then finally have a second, linearly independent solution to our ODE:

X2(t ) = teλt v +eλt w
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In other words the general solution to the ODE is given by

X (t ) = a1X1(t )+a2X2(t )

where a1, a2 are constants determined by the initial conditions, as usual.
Let us substitute the specific values of λ, v and w to get a clearer picture of the solutions (everything

thus far will hold for any repeated eigenvalues with a basis in generalised eigenvectors). We have that our
solution is given by

X (t ) = a1e t
(
1
2

)
+a2

(
te t

(
1
2

)
+e t

(
0
−1

))
= a1e t

(
1
2

)
+a2e t

(
t

(
1
2

)
+

(
0
−1

))
= (a1e t +a2te t )

(
1
2

)
+a2e t

(
0
−1

)

We see that as t →∞ the component corresponding to

(
1
2

)
increases much more quickly that its part-

ner, implying that the solution curves become increasing parallel to the line spanned by

(
1
2

)
. On the other

hand as t →−∞, this component also approaches 0 more quickly, so in the limit the solution curves be-

comes tangent to

(
1
2

)
at the origin. If the eigenvalue were negative, then things remain essentially identical

except the arrows are reversed.

Figure 12: Repeated (positive) eigenvalues, source

5.5 Repeated Eigenvalues (Part II)

It’s possible that one has repeated eigenvalues and a basis of eigenvectors. An example is

X ′ =
(
2 0
0 2

)
X (5.10)
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where the standard basis vectors are eigenvectors themselves. In this case every vector is an eigenvector.
Although the example might seem like a special case, it in fact highlights the general case since the as-
sumptions on the matrix mean that it is a multiple of the identity. If it’s a positive multiple of the identity
(like the example above), then everything tends away from the origin in the direction parallel to itself.
Note how extremely unstable this is since the mildest of perturbations cases the long term behaviour to
be completely different. If we have a negative multiple of the identity, then the situation reverses and ev-
erything approaches the origin (and of course this is a very stable situation: regardless of where you start,
you tend towards the origin).

6 Trace-Determinant Plane

We are interested in classifying the different dynamical systems, roughly based on what the phase por-
traits look like. For example, all centers are roughly the same (the only thing that varies is the frequency
and the direction of the rotation); all saddle points are essentially the same (up to some rotation and
stretching), etc. What we realise is that almost all of this information is determined by the eigenvalues
and in particular by the sign of the eigenvalues, whether they are real or complex, etc. If we can then
work out the relationships between the eigenvalues (ideally without solving for them), we can classify the
dynamical systems relatively easily.

This is where we remember from our study of linear algebra that the eigenvalues of a matrix can by
found by looking at the roots of the characteristic polynomial of the matrix and in the 2×2 case, this poly-
nomial is completely determined by the trace and determinant. Indeed we have that the characteristic
polynomial p A of a 2×2 matrix A is given by

p A(λ) =λ2 −Tr(A)λ+det(A)

We know then, for example, that if the discriminant of the above quadratic is positive, then we have 2
distinct real eigenvalues. If in addition the determinant is positive, then we know the eigenvalues share
sign. Finally we can use the trace to determine what exactly their sign is. This gives us a near complete
description of the qualitative behaviour of A. Repeating this analysis for the other cases, we summarise
our findings below.

Eigenvalues Normal form How to detect Shape

λ1 >λ2 > 0

(
λ1 0

0 λ2

)
Tr(A)2 > 4det(A) Unstable node

λ1 > 0 >λ2

(
λ1 0

0 λ2

)
det(A) < 0 Saddle

0 >λ1 >λ2

(
λ1 0

0 λ2

)
det(A) > 0, Tr(A) < 0 Stable node

λ=α+ iβ, α> 0

(
α −β
β α

)
Tr(A) > 0,4det(A) > Tr(A)2 Spiral source

λ=α+ iβ,α< 0

(
α −β
β α

)
det(A) > 0,Tr(A) < 0

4det(A) < Tr(A)2 Spiral sink

Table 1: Generic cases for X ′ = AX

These are the generic cases (to defined more precisely later), but roughly speaking, this is what ‘most’
2 × 2 matrices look like: they either have 2 distinct eigenvalues or 2 complex eigenvalues (which are
conjugates). This can be verified by the fact that the above cases have covered almost all of the trace-
determinant plane.

There do remain, however, some degenerate or exceptional cases that we still need to verify. In general
these occur when we have an equality of some kind (in other words something is equal to 0 and as one
can imagine this is rarely a good thing). These are summarised in Table 2.
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Eigenvalues Normal form How to detect Shape

λ= iβ

(
0 −β
β 0

)
Tr(A) = 0,det(A) > 0 Center

λ1 =λ2 > 0

(
λ1 1

0 λ1

)
Tr(A)2 = 4det(A),

rank(A−λ1I ) = 1,Tr(A) > 0
Unstable, source

λ1 =λ2 < 0

(
λ1 1

0 λ1

)
Tr(A)2 = 4det(A),

rank(A−λ1I ) = 1,Tr(A) < 0
Stable, sink

λ1 =λ2 > 0

(
λ1 0

0 λ1

)
A =λ1I ,Tr(A) > 0 (Very) unstable, source

λ1 =λ2 < 0

(
λ1 0

0 λ1

)
A =λ1I ,Tr(A) < 0 Stable, sink

λ1 > 0,λ2 = 0

(
λ1 0

0 0

)
det(A) = 0,Tr(A) > 0 Unstable

λ1 < 0,λ2 = 0

(
λ1 0

0 0

)
det(A) = 0,Tr(A) < 0 Stable

λ1 =λ2 = 0

(
0 1

0 0

)
Tr(A) = det(A) = 0, rank(A) = 1 Unstable

λ1 =λ2 = 0

(
0 0

0 0

)
A = 0 Constant

Table 2: Degenerate cases for X ′ = AX

We say a bifurcation occurs in an ODE when change the parameters a bit causes the qualitative be-
haviour to change drastically (for example changing from a source to a sink). This is a definition we will
make more precise later. These information is often summarised in a bifurcation diagram. Note that the
trace-determinant plane is an example of a bifurcation diagram where the axes and curves are used to
group similarly behaved equations together and bifurcations occur when we go from one region to an-
other.

7 Canonical Forms and Genericity

Definition 7.1 (Hyperbolicity). The origin is called a hyperbolic equilibrium for the ODE X ′ = AX if all
eigenvalues of A have non-zero real part.

In the case when A is a 2× 2 matrix, hyperbolicity holds whenever det(A) < 0 or if det(A) > 0 and
Tr(A) ̸= 0 (see trace-determinant plane).

Definition 7.2 (Genericity). A property (for example of matrices) is called generic if it is satisfied on a
dense, open subset (of Rn×n for example).

Theorem 7.3 The property of having n distinct eigenvalues is generic for n×n matrices. In other words the
subset of n ×n matrices which have n distinct eigenvalues is open and dense in Rn×n .

Corollary 7.3.1 (Cayley Hamilton Theorem) Let A be an n ×n matrix and let p A(λ) be its characteristic
polynomial. Then p A(A) = 0.

Proof. The statement is easily verified for diagonal matrices (the diagonal entries are the eigenvalues and
also the zeroes to the characteristic polynomial). Also note that pS (T −1ST ) = T −1pS (S)T for every invert-
ible T ∈ Rn×n and every S ∈ Rn×n . Thus the statement holds true not only for diagonal matrices but for
diagonalisable matrices as well. Since the subset of matrices with n distinct eigenvalues is dense in Rn×n ,
there exists a sequence of diagonalisable matrices (Ai )∞i=1 (with n distinct eigenvalues) that converges to
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A. In particular this means that the entries of the sequence of the matrices approach the entries of A.
The coefficients of the characterisitic polynomial of a matrix depend continuously on the entries of the
matrix. Thus as Ai → A we have that p Ai → p A . Since p Ai (Ai ) = 0 we get p Ai (Ai ) → p A(A) = 0.

7.1 Canonical Forms

Suppose we are studying our good old friend X ′ = AX . Suppose we set X = T Y where T is some invertible
matrix. Then

Y ′ = (T −1X )′ = T −1X ′ = T −1 AX = T −1 AT Y

Defining C := T −1 AT we get another differential equation Y ′ = C Y . Importantly if we choose T cleverly
we can make C a ‘simple’ matrix so that Y ′ = C Y is easily solved. Once we have a solution for Y , we can
easily find X , the solution to our original differential equation, since by definition X = T Y . What does it
mean for C to be simple? Ideally we would want it to be diagonal of course. But this of course not always
possible. Thus we go for the next best thing: the Jordan Canonical Form (JCF). Technically even this is
not always possible over the reals. However, what we can put the matrix into JCF as if we were over the
complex numbers and use the complex solutions to get (pairs of) real solutions, as we’ve done before.

The Jordan Canonical form allows to perform a change of basis to write every matrix as a block matrix
of the form

C =


J1

. . .

Jk

 , Ji =


λi 1

λi
. . .

. . . 1

λi


where each Ji is an li × li matrix. The Ji ’s are called Jordan blocks. Note that a diagonal matrix is a special
case of the above form where each Jordan block is 1×1.

Remark 7.4. The same eigenvalue could appear in different Jordan block. The total number of times that
λ appears in C (along the diagonal of course) is exactly the algebraic multiplicity of λ.

Remark 7.5. If λ ∈ C is an eigenvalue, we know that λ is as well. This also means that J is a Jordan block
in A.

7.1.1 Example

Suppose we know that a 5×5 matrix has an eigenvalue λ that has algebraic multiplicity 5 as well. Here are
some possible Jordan blocks.

λ 1

λ 1

λ 1

λ 1

λ

 ,



λ

λ 1

λ 1

λ 1

λ

 ,



λ 1

λ

λ 1

λ 1

λ

 ,



λ

λ

λ 1

λ 1

λ


The question then is how do we know which of the Jordan blocks we have? This takes a bit more work.

Note that any Jordan block of size l can be written as

J =λI +N

where N is a nilpotent matrix (this means that N l = 0 but N l−1 ̸= 0). As a consequece then we can dis-
tinguish which of the canonical forms by looking at the kernel of (A −λ) raised to various power. To be
specific, dimker((A −λI )m) is the number of Jordan blocks of size less than or equal to m. In first case
given above, we see that dimker(A −λ) = 1. This is enough to characterise this matrix completely since
this is the only way to a 5×5 Jordan block with one eigenvector. However for the middle two examples,
we see that dimker(A −λI ) = 2 for both of them (they both have two eigenvectors). We then try the next
power: dimker(A−λI )2 is 3 for the first matrix (second in row) and 4 for the other matrix (third in row).
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7.2 Solving Jordan Blocks

The question now boils down to how to solve a system of the form Y ′ =C Y where C is in canonical form
and possibly complex. One thing to note is that Jordan decomposition allows us to break the space into
invariant subspaces (that is after all one of the motivations for the decomposition). What this means is
that solutions for the Jordan blocks can be found independently and ‘stacked’ up together (think of the
analogy with diagonal matrices where we get n distict equations that can be solved independenly and
when combined give us a solution to the entire system). Thus we we only need solutions to Y ′ = JY where
the matrix J is of the form

J =


λ 1

λ
. . .

. . . 1

λ

=λI +


0 1

0
. . .

. . . 1

0


︸ ︷︷ ︸

N

Suppose Y (t ) = e tλZ (t ) is a solution to Y ′ = JY . Then

Z ′(t ) =−λe−tλY +e−tλY ′

=−λe−tλY +e−tλ(λY +N Y )

= N (e−tλY )

= N Z

Thus we solve for Z ′ = N Z , where N is a nilpotent matrix as shown above. This is equivalent to writing
z1

...

zn−1

zn


′

=


z2

...

zn

0


Since z ′

n = 0, we know that zn(t ) = cn where cn is some arbitrary constant. Then zn−1 = cn t + cn−1 where
cn−1 is again some real constant. Continue this way we get z1(t ) = p(t ) where p is some polynomial of
degree n − 1 (since n-th derivative is 0). This is the general solution (which makes sense, the space of
polynomials of degree at most n − 1 is of dimension n). Then Y (t ) = e tλZ (t ) solves Y ′ = JY , where we
may split Y into its real and imaginary components if necessary. We have thus found a solution for all
linear systems! A pat on the back is well-deserved but we postpone that for after a discussion of matrix
exponentials.

8 Matrix Exponentials

There is a second method of reaching the same answer with a bit less work (or rather with most of the
work swept under the rugs of past theorems and lemmas). We claim that a (in fact the) solution to Y ′ =
(λI +N )Y (where N is nilpotent) with Y (0) = y0 is given by

eλI+N y0 = eλt
∞∑

k=0

t k

k !
N k y0

Normally we would have to worry about convergence of infinite series, however since N is nilpotent the
above series is finite. Once again we have a product of eλt with some polynomial in t as we did before
(the coefficents come from y0). This might lead one to conjecture that the general solution to X ′ = AX for
any A is given by

e t A
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where once again we are more or less using the exponential notation as shorthand for its Taylor expansion.
We first need to ensure that this actually makes sense, that is we really do have convergence. We first need
a norm. It is a fact that in finite dimensions that all norms (and also all inner products) are equivalent
(any norm can be bounded by a multiple of another norm and similarly with inner products). Thus we
can quite frankly choose any norm we want. We will choose one that is quite common in this setting,
called the operator norm6 which is defined as

∥A∥ := sup
∥v∥≤1

∥Av∥ = sup
v∈Rn ,v ̸=0

|Av |
|v |

We may equivalently define it as the largest singular value of A (in the appropriate setting).
By definition we have the fact that ∥A∥ ≤ ∥A∥∥v∥. This leads to the lovely fact that ∥AB∥ ≤ ∥A∥∥B∥

since
∥AB∥ = sup

∥v∥≤1
∥AB v∥ ≤ ∥A∥ sup

∥v∥≤1
∥B v∥ = ∥A∥∥B∥

Remark 8.1. Rn×n with this norm is called a Banach algebra.

Proposition 8.2 The series

e t A :=
∞∑

k=0

t k

k !
Ak

converges absolutely.

Proof. We need to show that
∞∑

k=0

∥∥∥∥∥ t k

k !
Ak

∥∥∥∥∥
is finite. With our previous statement this is easy to see, since

∞∑
k=0

∥∥∥∥∥ t k

k !
Ak

∥∥∥∥∥=
∞∑

k=0

|t |k
k !

∥∥∥Ak
∥∥∥

=
∞∑

k=0

|t |k
k !

∥A∥k

= e |t |∥A∥

We also have the following lovely statements about matrix exponentials. Note that the first property is
often called the semigroup property and the latter property is an if and only if.

Lemma 8.3 Let s, t ∈R and A,B ∈Rn×n . Then

1. e(t+s)A = e t Ae s A

2. e t (A+B) = e t Ae tB if AB = B A

Proof. For the first statement (and for the second statement, the proofs are near identical), we see that

e(t+s)A =
∞∑

k=0

(
k !

∑
i+ j=k

si

i !

t j

j !

)
Ak

k !

=
∞∑

k=0

( ∑
i+ j=k

si

i !
Ai t j

j !
A j

)

=
( ∞∑

i=0

si

i !
Ai

)( ∞∑
j=0

t j

j !
A j

)
= e s Ae t A

6See https://en.wikipedia.org/wiki/Operator_norm
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The same proof works for the second case since we can use the binomial theorem again as the matrices
A,B commute.

A consequence of the second property is that the exponential of a matrix is always invertible (we take
B =−A).

Finally we want to make a comment on the differentiability of this map to make sure that it is what we
expect.

Lemma 8.4
d

d t
e t A = Ae t A

Proof.

d

d t
e t A = lim

h→0

exp((t +h)A)−exp(t A)

h

= lim
h→0

exp(t A)exp(h A)−exp(t A)

h

= exp(t A) lim
h→0

exp(h A)− I

h

= exp(t A) lim
h→0

1

h

(
h A+ h2

2
A2 + h3

3!
A3 + . . .

)
= exp(t A)A

Much like the exponential function with real numbers, matrix exponentiation gives us a unique solu-
tion to a differential equation. In particular, X (t ) = e t A x0 is the unique solution to the initial value prob-
lem X ′ = AX with X (0) = x0. The proof is the exact same as with real numbers: suppose Z (t ) is another
solution. Define W (t ) = Z (t )e−t A x0. Then

W ′(t ) = d

d t
(Z (t )e−t A x0)

= (−Z (t )Ae−t A)x0 + (Z ′(t )e−t A)x0

= (−Ae−t A Z (t )+e−t A AZ (t ))x0

= 0

(we use the fact that A commutes with its exponential). Therefore W (t ) is a constant x0. Since Z (0) =
e0A x0 = x0, Z and X agree everywhere and we are done.

9 Inhomogeneous Linear Systems

Suppose we have an equation of the form

X ′ = Ax + f (t ) (9.1)

Then we know from the superposition principle (see Subsection 5.2) that the general solution to this sys-
tem is given by

X (t ) = y(t )+e t A v

where y(t ) is a particular solution to the ODE and v is some arbitrary vector that is determined by the ini-
tial conditions. Thus our goal is to find just one solution to this ODE. This leads us to Duhamel’s Principle.
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9.1 Duhamel’s Principle

We will guess that y(t ) = e t A v(t ) is a solution where v(t ) is a function to be determined (this is the tech-
nique of variation of constants). Assuming y is a solution we can plug this in Equation 9.1 to find the left
and right hand sides are

y ′ = Ae t A v(t )+e t A v ′(t ) (LHS)

Ay + f (t ) = Ae t A v(t )+ f (t ) (RHS)

Equating the two we find that
v ′(t ) = e−t A f (t )

Hence by the Fundamental Theorem of Calculus we find that

v(t ) =
∫ t

0
e−s A f (s)d s

(recall we only need a particular solution so we can ignore the constant of integration by setting it to 0).
Therefore our particular solution y is given by

y(t ) = e t A v(t ) = e t A
∫ t

0
e−s A f (s)d s =

∫ t

0
e(t−s)A f (s)d s

Remark 9.1. Note that t − s is always positive. Although not particularly relevant to this example, this is
an important note in other contexts.

Remark 9.2. What we mean by integrating a vector-valued function is to integrate each of the component
functions and ‘stack’ them together to get another vector.

10 Linearisation

The idea with linearisation is to try and use the framework we’ve built up thus far to make statements
about non-linear systems. Suppose f : Rn → Rn is a smooth vector field and we have the differential
equation

x ′ = f (x) (10.1)

Although it’s hard to give an explicit solution to this, we can still try and determine it’s qualitative be-
haviour, at least locally. Let p ∈Rn be arbitrary. If f (p) is non-zero, then for q near p we are going to have
that f (q) is close to f (p). Therefore the flow is going to look like (almost) parallel lines in this neighbour-
hood. If f (p) is 0, we need to do a bit more work. One thing we can do is consider the Taylor expansion of
f . We know that

f (x) = f (p)+ f ′(p)(x −p)+O(|x −p|)︸ ︷︷ ︸
error

Since we assume f (p) = 0, the first term disappears and by substituting y = x −p, Equation 10.1 becomes

y ′ = D f (p)y +O(|y |)
Since D f (p) is a linear map, this looks just like the linear equations we have studied thus far, except there
is the added error term. The hope is that this error terms is going to be small so by studying the linear
system

y ′ = D f (p)y

we can get a pretty good idea of how the true system behaves. For example if there are sources or sinks
in the linearised system, they will also appear in the true system. The phase portraits will also be similar
(similarity will be defined more precisely later) if the origin is hyperbolic (recall this means that ℜ(λ) ̸= 0
for every eigenvalue λ of D f (p)).

This determines a procedure that we can use to study such equations
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1. Find the steady states/equlibria (the points where x ′ = f (x) is 0). These are points where the solu-
tions are constant and don’t change over time.

2. Linearise near these steady states
3. Tie everything up into a big picture

The cryptic ‘tie everything up into a big picture’ can be best illustrated with an example.

10.1 Example

We will consider the case of swinging a pendulum, kind of. More precisely we will look at the case when a
mass is attached to a (rigid) rod allowed to swing freely in a vertical circle (we use a rod instead of a string
because we don’t want to worry about cases where the string may fold onto itself or something).

Figure 13: Mass pendulum setup

The equation modelling this situation is given by

mx ′′+ r x ′ =−c sin x

where x is the angle made by the rod with the vertical. Here m is the mass of the mass (names are difficult
for physicists), r is the constant of friction (therefore r ≥ 0) and c is some arbitrary constant (the exact
details, such as length of the rod, strength of gravity, etc, are used to set c). To make the analysis a bit
simpler we will assume m and c to be 1. Then in particular we have the equation

x ′′+ r x ′+ sin x = 0 (10.2)

We can use our standard trick to convert this second order equation to a system of first order equation: let
v = x ′. Then we have {

x ′ = v

v ′ =−r v − sin x

We first find the the steady states or in other words where v is 0 (this implies that v ′ is 0 since v ′ = d f (x(t ))
d t =

f ′(x)x ′(t ) = f ′(x)v = 0. These are the points where sin x = 0 or in other words where x = kπ,k ∈Z. k being
even corresponds with the mass hanging on the bottom and k being odd is when the mass is at the top
in a perfectly vertical position. Simple intuition tells us that the the former equlibria should be stable (at
least if r > 0)and the latter should be unstable. Let us see if the equations agree with this. First we see that(

x

v

)′
= f (x, v), f (x, v) =

(
v

−r v − sin x

)
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Then

D f (kπ,0) =
(

0 1

−cos x −r

)∣∣∣∣
x=kπ

=



(
0 1

1 −r

)
, k odd(

0 1

−1 −r

)
, k even

Let us consider the case with k odd first. In this case the determinant of the matrix is −1 so the eigen-
values are real and of opposite sign. We know this will result in a saddle and hence be unstable. In fact
around these points we expect the phase portrait to (roughly) have a saddle as well. This lines up with our
intuition above.

Now let us consider the case with k even. Then we know the eigenvalues are

λ1,2 = −r ±
p

r 2 −4

2

If 0 < r < 2 then we will have complex eigenvalues implying that we will have a spiral. Since the real part is
positive, solutions are going to spiral in and by looking at the first column we can even infer that spiral is
going to be clockwise. This corresponds with the angle tending towards 0 and its speed decreasing, as we
would expect the pendulum to behave. If r > 2 then we get 2 real eigenvalues, both of which are negative.
In this case all equilibria will be stable. This corresponds with the friction becoming so strong that the
pendulum can actually become stuck and ‘stable’ at odd angles.

(a) Stable equilibrium (b) Unstable equilibrium

Figure 14: Equilibria in mass pendulum setup

We get some rather interesting behaviour at r = 0, in the frictionless case. In this case we get a center
which again should make sense. If there is no friction, then the pendulum continues swinging on its path
ad infinitium.

11 Dynamical Systems

Consider our go-to differential equation:
X ′ = AX

where A is some fixed matrix. We know the general solution is given by

X (t ) = e t A v

where v is determined by the initial conditions. There are two ways we may wish to study this equation.
We could fix v and consider how the equation behaves as we vary t . This gives us exactly the trajectory or
orbit of a solution.
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On the other hand, we could fix t and consider what happens as we vary v . Such a map is often denoted
Φt is known as the flow of the system (this function maps some initial point to where it would be sent by
the solution at time t ). What we get then is a map from v to e t A v , which in this case is simply a linear
isomorphism on Rn . We in fact have a family of isomorphisms {e t A}t∈R that satisfy the following property:
e0A = Id and e(t+s)A = e t Ae s A . A family of bijective maps {φt }t∈R on Rn that satisfies these properties (i.e.
φ0 = Id and φs+t = φs ◦φt ) is called a dynamical system. In different areas of math, we make different
assumptions on the properties that the φt must satisfy. For our purposes, we generally assume them all
to be smooth. In principle, instead of indexing over all of R, we could index simply over the positive reals
or the natural numbers (which would be like looking at discrete time). If we were feeling particularly
adventurous, we could replace Rn with a manifold instead. But for now, we leave things as they are.

It is perhaps useful to consider why the ‘semigroup property’ of dynamical systems (i.e. that φs+t =
φ(s)◦φ(t ) is important. The claim is that with this property, by only looking at the initial conditions, we
can in some sense study all solutions. This is because the semigroup property allows us to ‘stitch together’
solutions in a certain sense. Suppose we have a solution that begins at x and passes through y1 in time t .
Suppose we have another solution that starts at y1 and reaches y2 in time s. Then one would hope that
the original solution that began at x also reaches y2, but at time s + t (and in fact hopefully the path from
x to y2 would be given by combining/stiching together the two solutions in the obvious manner, should
this be possible). This is exactly the property characterised by the semigroup property.

Figure 15: The semigroup property of flow. Evolving for time s fromΦt (x) corresponds exactly with evolv-
ing for time s + t from x.

12 Existence and Uniqueness of solutions

The existence and uniqueness of solutions is of course a key point with differential equations. We have
already said that most differential equations can’t be solved explicitly. Part of the problem is that there may
be no analytic solution. However, the situation may be even more dire than that: there may genuinely be
no solution. Suppose we are given that

x ′ =
{
−1, x ≥ 0

1, otherwise

Consider the situation at x = 0. At this point, the point ‘wants’ to decrease due to it negative gradient.
However as soon as it does so, the derivative becomes positive causing it to move up. Hence why the
above differential equation has no solutions. We can argue more precisely using a statement in analysis
which tells us that the derivative of a function can never have a jump discontinuity (roughly speaking a
jump discontinuity means that the left and right hand limits of a function differ, however the derivative of
a function at a point is a limit so we know if it exists, the left and right hand limits are the same). Hence
we know that if a solution to x ′ = f (x) is to exist then f must at the very least be continuous.
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Sometimes solutions may exist but need not be unique. Suppose we have

x ′ = 3x2/3

with initial condition x0 = 0. Then x(t ) = 0 and x(t ) = t 3 are both solutions that satisfy this initial value
problem. The problem here is that f is continuous but not smooth (or even differentiable everywhere).
In fact what we will see is that given x ′ = f (x), we are guaranteed to have unique solutions to the ODE,
if f is continuously differentiable. However, it is hard to ensure that we have a solution that is defined
everywhere as is illustrated by equation

x ′ = x2

whose general solution is given by

x(t ) = x0

1−x0t

We see that this is not defined at t = x−1
0 . This leads us to the local uniqueness and existence theorem.

Theorem 12.1 (Local Existence and Uniqueness) Suppose we are considering the ordinary differential
equation X ′ = F (X ) where F : Rn → Rn is continuously differentiable. Then for all a ∈ Rn there exists an
interval I = (α,β) containing the origin such that X ′ = F (X ) has a unique solution X : I → Rn satisfying
X (0) = a.

Although we will get on to proving this theorem soon enough, let us consider some of its conse-
quences. For example, if we have two solutions where the corresponding intervals intersect, is it the case
that the solutions agree on the intersection? The answer is yes. This follows from uniqueness of the so-
lutions: take a point in the intersection and use this to define our initial condition. We know that both
solutions solve the differential equation, therefore must be equal (on the intersection). This suggests that
we can ‘patch’ together local solutions (as discussed previously) to get solutions defined on a larger inter-
val. By pasting together all the local solutions, we can get a maximal interval of existence (to be precise,
the interval can be found by taking union of the intervals guaranteed by the above theorem as we range
over all the point in Rn).

12.1 Preliminary Theory

There are several results we need before we can prove the local existence and uniqueness theorem. On
account of the author being too small brain, we largely only include the definitions and statements of the
theorems we need and omit the proofs.

Because we will refer to it many times, we also include the definition of uniform continuity and uni-
form convergence.

Definition 12.2 (Uniform Continuity). A function f : E → Rm is said to be uniformly continuous if for
every ϵ > 0 we can find a δ > 0 such that given x, y ∈ E satisfying |x − y | < δ, we have | f (x)− f (y)| < ϵ (in
particular the choice of δ is independent of x and y).

Definition 12.3. A sequence of functions { fn : E →Rm} is said to converge uniformly to a function f : E →
Rm if for every ϵ> 0 there exists some N ∈N such that

sup
x∈E

| fn(x)− f (x)| < ϵ

for every n ≥ N .

Recall that if a sequence of continuous functions converges uniformly then the function they converge
to is also continuous.

Definition 12.4 (Uniformly Bounded). Let { fα} be a family of functions where each fα is a map from
E ⊂Rn to Rm . Suppose there exists some M such that | fα(x)| < M for all x ∈ E and all α. Then we say that
the { fα} are uniformly bounded.
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Definition 12.5 (Equicontinuous). Let { fα} be a family of functions where each fα is a map from E ⊂Rn to
Rm . The { fα} are said to be equicontinuous if for every ϵ> 0 we can find some δ> 0 such that for all x, y ∈ E
and for all fα, if we have |x − y | < δ then | fα(x)− fα(y)| < ϵ (in particular the choice of δ is independent of
x, y and α).

Example 12.1. The family of functions fα(x) =αx for α ∈R is not equicontinuous. If we instead restrict α
to be in [3,5] (or any bounded interval) then the family of functions is equicontinuous. ■

Example 12.2. The family of functions fn(x) = xn defined on the unit interval [0,1] is not equicontinuous.
■

Example 12.3. A family of Lipschitz functions which share the same Lipschitz constant is equicontinuous.
■

Example 12.4. Any finite family of uniformly continuous functions is equicontinuous. ■

We can define the sup norm on a function space where if f : E →Rm then∥∥ f
∥∥∞ = sup

x∈E
| f (x)|

The space of continuous functions on [0,1] is often denoted C ([0,1]). We claim that that C ([0,1]) equipped
with ∥·∥∞ is a complete metric space. This is exactly the statement that the uniform convergence of a
sequence of continuous functions is also continuous.

Theorem 12.6 Suppose fn : E →Rn is a sequence of continuous maps. If E is compact and the { fn} converge
uniformly, then the { fn} are uniformly bounded and equicontinuous.

Proof. Let f denote the limit of the fn . We first show uniform boundedness. Since each fn is continuous
and E is compact, we know there exists some constant Mn such that

∣∣ fn(x)
∣∣≤ Mn (indeed we can take Mn

to be
∥∥ fn

∥∥∞). Since f is also continuous, it is also going to be bounded by some M0.
The idea is that eventually all the fn are going to be quite close to f therefore we should able to bound

(bind?) all but finitely many of them with M0 (or something close to it at least). Then we are only left with
finitely many bounds so the maximum of all of these should bound all the fn . Let us formalise this.

Let N be such that for all n ≥ N we have that
∥∥ f − fn

∥∥∞ < 1 (this is equivalent to saying that
∣∣ f (x)− fn(x)

∣∣<
1 for all x ∈ E). The existence of such an N is guaranteed by uniform convergence. Let M = max{M0 +
1, M1, . . . , MN }. We claim that M is a bound for all the fn . Clearly this holds true for n ≤ N . Suppose n > N .
Then ∥∥ fn

∥∥∞ ≤ ∥∥ fn − f
∥∥∞+∥∥ f

∥∥∞ < 1+M0

Thus the fn are uniformly bounded.
For equicontinuity, we again use the fact that we can use f to approximate all but finitely many of the

fn . In particular, we see that∣∣ fn(x)− fn(y)
∣∣≤ ∣∣ fn(x)− f (x)

∣∣+ ∣∣ f (x)− f (y)
∣∣+ ∣∣ fn(y)− f (y)

∣∣
Suppose ϵ > 0 is given. Then there exists some N ∈ N such that

∥∥ f − fn
∥∥∞ < ϵ for n ≥ N . Additionally

since f is continuous on a compact space, it is in particular uniformly continuous. Thus there exists a
δ0 such that if

∣∣x − y
∣∣ < δ0 then

∣∣ f (x)− f (y)
∣∣ < ϵ. Additionally, each of the fn are uniformly continuous

as well, thus there exist similar δn for each of them as well. It is then easy to see that the δ we need is
δ= min{δ0,δ1, . . . ,δn}.

We then get to the Ascoli-Arzelà theorem. Roughly speaking, Ascoli-Arzelà gives a complete descrip-
tion of compact subsets of function spaces (with some conditions) analogous to how Heine-Borel gives a
complete description of compact subsets of Rn .

Theorem 12.7 (Ascoli-Arzelà) Let F = { fα : E →Rm} where E is a compact subset ofRn be an infinite family
of continuous functions that is uniformly bounded and equicontinuous. Then there exists a sequence of
functions in F that converges uniformly on E.
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Proof. You can see my notes here or open any functional analysis textbook (I think).

Recall that we say a set A is relatively compact if its closure is compact which (for metric spaces) is the
same as saying every sequence in A has a convergent subsequence (although the limit may not be in A
itself).7 We then have the following theorem

Theorem 12.8 Let A ⊂ C (K ,Rm) (this is the set of continuous functions from K to Rm) where K ⊂ Rn is
compact. Then A is relatively compact if and only if it is uniformly bounded and equicontinuous.

Proof. Once again, my notes above or any functional analysis textbook should work.

We also need consider how we may extend functions defined on a subset to be defined on the whole
space.

Theorem 12.9 Let f : B(0,r ) →Rm (where B(0,r ) ⊂Rn) be continuous. Then f :Rn →Rm , where

f (x) =
{

f (x) if |x| ≤ r

f
(
r x
|x|

)
if |x| > r

is continuous as well.

Proof. Trust

Finally there are various fixed point theorems we should be aware of, none of which we prove.

Theorem 12.10 (Banach’s Contraction Mapping Theorem) Let E be a complete metric space and let T :
E → E be such that there exists some 0 ≤ q < 1 where d(T (x),T (y)) ≤ qd(x, y). Then T has a unique fixed
point. In other words there is exactly one point z ∈ E such that T (z) = z.

Remark 12.11. The proof of this theorem is constructive. In fact the construction is such that you can
start with any point in E and construct a sequence (by iteratively applying T ) that converges to the fixed
point.

Theorem 12.12 (Brouwer’s Fixed Point Theorem) Let B ⊂Rn denote the closed unit ball. Then if T : B → B
is continuous, it has a fixed point.

Remark 12.13. The proof of this theorem is a bit less nice unfortunately. Although we know a fixed point
exists, in general, we have no way of working out what it might be.

Theorem 12.14 (Schauder-Tychonoff Theorem) Let B be the (closed) unit ball in C ([0,1],Rn), equipped
with the usual supremum norm (in other words this is the set of continuous functions on [0,1] that take
values in the unit ball in Rn). Suppose T : B → B is continuous map where T (B) is relatively compact. Then
T has a fixed point.

Remark 12.15. We know that T (B) ⊂ B . Since B is bounded, T (B) is always going to be bounded. Thus,
by Theorem 12.8, we can equivalently assume T (B) to be an equicontinuous family of functions.

12.2 Existence of solutions

Given an initial value problem (IVP), there are 3 things we would like to have, the existence of a solution,
the uniqueness of a solution and a continuous dependence on its parameters. We begin by showing the
first of these. To be precise we want the following.

Suppose ξ0 ∈ Rn and f : [t0, t1]×Rn → Rn is continuous. We wish to find a function x : [t0, t1] → Rn ∈
C 1([t0, t1];Rn) such that

x ′(t ) = f (t , x(t ))

and x(t0) = ξ0.

7For a similar statement in general topological spaces, change the word sequence to net, see Wikipedia
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We call this the initial value problem of course. There is an equivalent way of formulating this problem,
in which we need to solve an integral equation. The statement is as follows.

Let f and ξ0 be as above. We wish to find x : C 1([t0, t1];Rn) such that for all t ∈ [t0, t1], we have

x(t ) = ξ0 +
∫ t

t0

f (s, x(s))d s

Using the fundamental theorem of calculus, we can see that the two problems are equivalent. (In other
words, if we find an x that solves the integral equation, then it will be a solution to the initial value problem
and vice verse). In general, we will work to solve the integral equation as integrating things makes them
nicer (discontinuous functions become continuous, continuous functions become differentiable, etc.).

Theorem 12.16 (Cauchy-Peano Theorem) Suppose f : [t0, t1]×Rn →Rn is continuous and bounded by M.
Suppose we are given the initial value problem{

x ′(t ) = f (t , x(t )) for all t ∈ [t0, t1]

x(t0) = ξ0

Then the IVP has at least one solution.

Proof. As mentioned previously, we will work to solve the integral equation

x(t ) = ξ0 +
∫ t

t0

f (s, x(s))d s

We first define an operator T : C 1([t0, t1];Rn) →C 1([t0, t1];Rn) where

T y(t ) = ξ0 +
∫ t

t0

f (s, y(s))d s

What we wish to find, then, is some x such that T x = x. As one can imagine, we will use the Schauder-
Tychonoff theorem to do this.

In order to apply the theorem, we need to verify that its conditions hold. So let B be the unit ball in
C 1([t0, t1];Rn) (in other words B = {y ∈C 1([t0, t1];Rn) : |y(t )| ≤ 1}; we use C 1 because we want the solution
to be C 1). We see that

|T x(t )| ≤ |ξ0|+
∣∣∣∫ t

t0

f (s, x(s))d s
∣∣∣

≤ |ξ0|+
∫ t

t0

| f (s, x(s))|d s

≤ |ξ0|+M(t − t0)

We split the remainder of the proof into two cases. First suppose |ξ0|+M(t1 − t0) ≤ 1. Then clearly T x ∈ B
implying that we do indeed have a map T : B → B . Now suppose t , t ′ ∈ [t0, t1]. Then

|T x(t )−T x(t ′)| =
∣∣∣(ξ0 +

∫ t

t0

f (s, x(s))d s

)
−

(
ξ0 +

∫ t ′

t0

f (s, x(s))d s

)∣∣∣
=

∣∣∣∫ t

t ′
f (s, x(s))d s

∣∣∣
≤ M |t − t ′|

This means that T (B) is a family of functions which all share the Lipschitz constant M . Therefore T (B) is
equicontinuous. Since we already know it to be bounded (we are assuming that T (B) ⊂ B), we have that
T (B) is relatively compact by Theorem 12.8. All that remains to show is that T is continuous. Since we are
working in metric spaces, it suffices to show that T maps convergent sequences to convergent sequences.
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So suppose {xk } is a sequence of functions in B that converge uniformly to some function x. In other
words, we have that ∥x −xk∥∞ → 0. Then

|T x(t )−T xk (t )| ≤
∫ t

t0

∣∣ f (s, x(s))− f (s, xk (s))
∣∣d s

By uniform convergence, the right hand side goes to 0. This is because f is uniformly continuous (this
follows from f being continuous on the compact set [t0, t1]× [−1,1]n . Since we are only concerned with
the set B , we only need consider f restricted to this domain) thus we can get the integrand to be as small
as we like given that the inputs are close enough and the inputs can be made as close as we like by uniform
convergence.

To be precise, suppose ϵ > 0. By uniform continuity of f , we know there is some δ > 0 such that
|(s1, x1)− (s2, x2)| < δ implies that

∣∣ f (s1, x1)− f (s2, x2)
∣∣ < ϵ

t1−t0
. By uniform convergence of xk , there is

some N ∈N such that for k ≥ N , we have ∥x −xk∥∞ < δ. Then |x(t )−xk (t )| < δ for all t . Thus for k ≥ N ,
we have ∫ t

t0

∣∣ f (s, x(s))− f (s, xk (s))
∣∣d s < ϵ

t1 − t0
(t1 − t0) = ϵ

With this we satisfy all the conditions of Schauder-Tychonoff which tells us there exists some x ∈ B
such that T x = x, the precise statement we were aiming for.

The second case to consider is when |ξ0|+M(t1 − t0) > 1. Let us call the quantity on the left H . Then
we define

g (t , x) = 1

H
f (t , H x),η0 = 1

H
ξ0

This gets us a new IVP which falls under case 1 and gets us a solution y(t ). Then x(t ) = H y(t ) solves the
original IVP.

There is a second proof of the Cauchy-Peano theorem that is inspired by Euler’s polygonal.

Proof. Just to make notation easier, suppose we take t0 = 0 and t1 = 1. Let k be some natural number.
Then we define

xk (t ) =
{
ξ0 if 0 ≤ t ≤ 1

k

ξ0 +
∫ t− 1

k
0 f (s, xk (s))d s otherwise

Note that x ′
k (t ) = f (t − 1

k , xk (t − 1
k )) which should be close f (t , xk (t )) provided that k is sufficiently large.

Hence the hope is that we can find a converging (sub)sequence among these xk that will satisfy the IVP.
We show that a converging subsequence exists by using Ascoli-Arzelà.

Since M is a bound for f , we see that

|xk (t )| ≤ |ξ0|+
∫ t− 1

k

0

∣∣ f (s, xk (s))
∣∣d s ≤ |ξ0|+M

Therefore |ξ0|+M is a uniform bound for the xk . Additionally

∣∣xk (t )−xk (t ′)
∣∣= ∣∣∣∣∣

∫ t− 1
k

t ′− 1
k

f (s, xk (s))d s

∣∣∣∣∣
≤ M

∣∣∣∣(t − 1

k

)
−

(
t ′− 1

k

)∣∣∣∣
= M

∣∣t − t ′
∣∣

This means that all the xk are Lipschitz with Lipschitz constant M and hence form an equicontinuous
family of functions. By Ascoli-Arzelà, we know there exists a convergence subsequence which we will
denote xk again and we denote their limit as x. All that remains to show is that x satisfies the integral
equation (this ends up being easier to show than proving it satisfies the IVP). We see that

xk (t ) = ξ0 +
∫ t

0
f (s, xk (s))d s −

∫ t

t− 1
k

f (s, xk (s))d s
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Consider what happens as we take the limit as k →∞. The left hand side goes to x(t ) by definition and
the final term clearly goes to 0 (it bounded by M

k ). Since the convergence of the xk is uniform, taking the
limit commutes with integration allowing us to conclude that

x(t ) = ξ0 +
∫ t

0
f (s, x(s))d s

Consider again the initial value problem

x ′(t ) = f (t , x(t ))

x(t0) = ξ0

We will try find an interval I = [t0, t0 +h] (for h > 0) and a solution x ∈ C 1(I ;Rn) such that x is a solution
to the IVP. In this case, we will say that x is a solution to IVP+. For now we only focus on moving time
forward, the theory for working backwards in time in near identical and will be discussed later.

If x is a solution to IVP+ on I , then we will say it can be continued to the right if there exists a pair (x, I )
such that I ⊃ I and x|I = x. We will say a continuation is strict if I ⊋ I . This allows us to define a preorder,
namely

(x1, I1) ≥ (x2, I2) ⇔ I1 ⊃ I2 and x1|I2 = x2

By Zorn’s lemma, there exists a maximal continuation (x∗, I∗) of (x, I ). Note that I∗ is a union of all inter-
vals on which we have continuations of x.

Theorem 12.17 Suppose we are given (t0,ξ0) ∈R×Rn . Let A = [t0−h, t0+h]×B(ξ0, a) for some h, a > 0. Let
f : A →Rn be continuous function bounded by M. Then the IVP

x ′(t ) = f (t , x(t ))

x(t0) = ξ0

has at least one solution x defined on

I = [t0 −min
{

h,
a

M

}
, t0 +min

{
h,

a

M

}
]

Moreover, any solution to the IVP defined on J ⊂ I , where J is a neighbourhood of t0 (i.e. J contains an open
set that in turn contains t0), can be continued to a solution on I .

Remark 12.18. Although the first statement is quite similar to Cauchy-Peano, note that f is now local in
space (we use a closed ball rather than all of Rn). Hence we will require a further bit of argument.

Proof. By Theorem 12.9, we can extend f to f defined on [t0−h, t0+h]×Rn . By definition of the extension,∥∥∥ f
∥∥∥∞ ≤ M (which is to say its values are contained in the cube of ‘radius’ M). By Cauchy-Peano, there

exists a solution x to the IVP

x ′(t ) = f (t , x(t ))

x(t0) = ξ0

Unfortunately x is not a solution to our original IVP since it may take values outside of A. However this
can be easily fixed by using the fact that x is continuous. Since x is continuous, there exists j > 0 (where
j ≤ h) such that if t ∈ [t0, t0 + j ] then |x(t )−x(t0)| = |x(t )−ξ0| ≤ a.

Hence we have a solution to the given IVP on I = [t0, t0 + j ] for some j . Now we want to show that
given a solution on any J ⊂ I , the solution can be extended to a solution on I (where of course J must be
a neighbourhood of t0).

Let (x, J ) be a solution to the IVP where J = [t0, t1] for some t1 ∈ [t0, t0 +h] (as mentioned, we will only
consider the case of moving forward in time for now). We extend it as described above to get a maximal
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solution (i.e. defined on the maximal time interval). Then we need show that if (x∗, J∗) is this maximal
solution, then J∗ ⊃ I .

First we claim that J∗ contains its right endpoint (in other words J∗ is a closed interval). Let t ′, t ′′ ∈ J∗
with t ′ < t ′′. Then, by considering the integral equation instead of the IVP, we get that

∣∣x∗(t ′′)−x∗(t ′)
∣∣≤ ∣∣∣∣∣

∫ t ′′

t ′
f (s, x∗(s))d s

∣∣∣∣∣
≤

∫ t ′′

t ′

∣∣ f (s, x∗(s)
∣∣d s

≤ M(t ′′− t ′)

This means that x∗ is uniformly continuous (indeed it is even Lipschitz). In particular then x∗ maps
a Cauchy sequence to a Cauchy sequence. By constructing a Cauchy sequence that converges to t1 :=
sup(J∗), we can either define x∗ on it or verify that it is continuous at that point. In principle we also
need to check that x∗(t1) ∈ B(ξ0, a). However this is clear since the set is closed (and even compact), so it
contains its limit points (and by the construction given, we know that x∗(t1) is indeed a limit point).

Remark 12.19. This means that any solutions (at least the ones obtained via this method) are defined on
closed intervals rather than open/half-open intervals.

Then we show that t1 ≥ t0 +min
{
h, a

M

}
. If t1 = t0 +h, we are done, so suppose t1 < t0 +h. We will

show that t1 ≥ t0 + a
M in this case. First we note that we must have x∗(t1) on the boundary of B(ξ0, a)

(if x∗(t1) was in the interior, we could run the proof again with x∗(t1) as our initial starting point and
obtain a solution on [t1, t1+b] for some b > 0. We could then combine these solutions to get a solution on
[t0, t1 +b], contradicting J∗ being the maximal interval). This means that

a = |x∗(t1)−ξ0|
= |x∗(t1)−x∗(t0)|
≤ (t1 − t0)

∥∥x ′∥∥
≤ M(t1 − t0)

The third line follows from the mean value theorem in higher dimensions (see Wikipedia). Therefore we
get that

t1 ≥ a

M
+ t0

All that remains to show then is that we can continue to the left of t0 in a similar manner. Of course we
could simply run through the proof again changing the signs where necessary to obtain solutions to the
left of t0. However, if we are clever (and mathematicians are nothing if not clever), we can use the theory
built up thus far to find the solution for negative time.

We define g : [t0 −h, t0 +h]×B(ξ0, a) → Rn where g (t ,ξ) = − f (2t0 − t ,ξ) (notice how as t increases
from t0 −h to t0 +h, the first input to f decreases from t0 +h to t0 −h). We then find a solution on some
J ′ = [t0, t0 +b] (where b is the minimum value asserted in the statement of the theorem) to the IVP

y ′(t ) = g (t , y(t ))

y(t0) = ξ0

By setting x(t ) = y(2t0 − t ) we obtain a solution on [t0 −b, t0] as desired.

Now that we shown a few existence theorems, we should give uniqueness a shot as well. We will in fact
give 2 proofs, related in essence but different in flavour.
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Theorem 12.20 Let D be an open subset of R×Rn with (x0, y0) ∈ D. Let f : D → Rn be a function that is
continuous in x and Lipschitz in y, with Lipschitz constant K . Then there exists some a > 0 such that the
initial value problem

y ′(x) = f (x, y(x))

y(0) = x0

has a unique solutions on (x0 −a, x0 +a).

Contraction Mapping. For the first proof, we will use Banach’s contraction mapping theorem.
First we choose a rectangle R ′ = [x0 − A, x0 + A]× [y0 −L, y0 +L] (if y0 ∈ Rn for n > 1, we do this for

every coordinate) that is contained in D . Since f is continuous and R ′ is compact, it is bounded by some
constant M . Let a be a positive real number that is less than min

{ L
M , A, 1

K

}
. Let R = [x0 −a, x0 +a]× [y0 −

L, y0 +L].
Now we define a space X := {y ∈ C ([x0 − a, x0 + a];Rn) :

∥∥y − y0
∥∥∞ ≤ L}. Note that if y ∈ X , then the

graph of y is contained in R ′ and since R ′ ⊂ D , in particular it is contained in D . Thus f (x, y(x)) makes
sense for every y ∈ X . We would like to apply the Banach contraction mapping theorem to X (note it is
complete as it is the closed subset of a complete metric space). Then we need a map Γ : X → X that is a
contraction from which we will get a fixed point. Remembering the integral equation, what we want is to
find a y ∈C ([x0 −a, x0 +a];Rn) such that

y(x) = y0 +
∫ x

x0

f (s, y(s))d s

This tells us how to define Γ. In particular,

Γ(y)(x) = y0 +
∫ x

x0

f (s, y(s))d s

If we can find a fixed point of Γ, we will have found a solution to our initial value problem. In order to do
so, all we need do is verify that the hypotheses of the Banach contraction mapping theorem hold.

First we want to know that Γ does indeed map X into itself (a priori, it is not obvious that the image of
y ∈ X under Γ is in X ). Luckily for us this indeed the case since

|Γ(y)(x)− y0| =
∣∣∣∫ x

x0

f (s, y(s))d s
∣∣∣

≤
∫ x

x0

| f (s, y(s))|d s

≤ M |x −x0|
≤ M a

≤ L

As this holds for all x, we get that ∥∥Γ(y)− y0
∥∥∞ ≤ L

The only thing that remains to be shown then, is that Γ is a contraction. What we will show is that∥∥Γ(y)−Γ(z)
∥∥≤ aK

∥∥y −Z
∥∥. By our choice of a, we know that aK < 1 and so the claim will be satisfied.

|Γ(y)(x)−Γ(z)(x)| ≤
∫ x

x0

| f (s, y(s))− f (s, z(s))|d s

≤
∫ x

x0

K |y(s)− z(s)|d s

≤ K
∫ x

x0

∥∥y − z
∥∥∞

= K
∥∥y − z

∥∥∞ (x −x0)

≤ aK
∥∥y − z

∥∥∞
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The second line follows from the fact that f is Lipschitz in the second component.
Thus we can safely apply the contraction mapping theorem and conclude the proof. Since the theorem

tells us that the fixed point is unique, we know that our solution y is unique.

Remark 12.21. Suppose y1 is any continuous map. Then functions Γ(y1), Γ2(y1) = Γ(Γ(y1)), Γ3(y1) =
Γ(Γ(Γ(y1))), . . . are known as the Picard iterates.

Now we present a second proof of the same theorem using Picard iterates. Arguably this is the same
thing, since if we were to follow through with the contraction mapping theorem, we would be applying
the contraction, i.e. Γ, repeatedly to our initial point which is exactly what the Picard iterates are. However
it’s still useful to consider different proofs to see the different techniques they employ. Additionally, our
solution will be defined on a slightly larger interval which is also nice.

Picard Iterates. Let R ′ be as before (in other words R ′ = [x0 − A, x0 + A]× [y0 −L, y0 +L] such that R ′ ⊂ D).
This time we choose our a to be less that min

{ L
M , A

}
(where, as a reminder, M is a bound for f ). As before,

we will take R = [x0 −a, x0 +a]× [y0 −L, y0 +L].
Let y1 ≡ y0. For n > 1, we define yn = Γ(yn−1) = Γn−1(y1). We claim that the yn converge uniformly to

some y ∈C ([x0 −a, x0 +a];Rn) where y is a solution to the integral equation (corresponding to the given
IVP).

Perhaps, we should first show that the above makes sense. Which is to say, we need that (x, yn(x))
is always in D so that we can evaluate f on it. But as shown in the previous proof,

∥∥Γ(y)− y0
∥∥∞ ≤ L if∥∥y − y0

∥∥∞ ≤ L. We know that
∥∥y1 − y0

∥∥∞ ≤ L (in fact it’s 0!), so its graph is contained in R (which in turn is
contained in D). By induction, this holds for all yn .

Now we get to the actual meat: showing that the yn converge. First we can immediately compute that

|y2(x)− y1(x)| ≤ M |x −x0|
This a calculation we have done many times previously. Then we see that for n ≥ 2

|yn+1(x)− yn(x)| ≤
∫ x

x0

| f (t , yn(t ))− f (t , yn−1(t )|d t ≤ K
∫ x

x0

|yn(t )− yn−1(t )|d t

By induction then what we get is that

|yn+1(x)− yn(x)| ≤ K n−1M
|x −x0|n

n!
≤ K n−1M

an

n!

Since this holds for all x ∈ [x0 −a, x0 +a] what we get is that∥∥yn+1 − yn
∥∥∞ ≤ M

K

(K a)n

n!

Since the right hand side denotes the terms of a convergent series, we can conclude that the yn form a
Cauchy sequence and hence converge to some y (to be precise, in order to show Cauchy, we should show
that |yn−ym | < ϵ eventually, as well let n,m →∞. However

∥∥yn − ym
∥∥∞ ≤ ∥∥yn − yn−1

∥∥∞+∥∥yn−1 − yn−2
∥∥∞+

·· ·+∥∥ym+1 − ym
∥∥∞ (assuming n > m). Each of these terms can be made arbitrarily small by the above es-

timate and so we are done).
The final thing we wish to show is that y does indeed solve the integral equation. We know that

yn(x) = y0 +
∫ x

x0

f (t , yn−1(t ))d t

We can consider what happens as we let n tend to infinity on both sides. The left hand side goes to y(x)
by definition. As for the right hand side, what we see is that∣∣∣∫ x

x0

f (t , yn−1(t ))d t − f (t , y(t ))d t
∣∣∣≤ K

∫ x

x0

|yn−1(t )− y(t )|d t ≤ K a
∥∥yn−1 − y

∥∥
Therefore the right hand side approaches

y0 +
∫ x

x0

f (t , y(t ))d t

and we are done.
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12.3 Uniqueness of solutions

The reader has the right to complain because the previous theorem guarantees not only the existence of a
solution but also its uniqueness. This was quietly swept under the rug for the second proof (and arguably
swept under the rug of another theorem for the first one!). We remedy that over here. In fact to make up
for it, we will provide 2 proofs of uniqueness.

Proposition 12.22 The solution found using Picard iterates for Theorem 12.20 is unique.

Proof 1. Suppose z is another solution to the IVP on [x0 −a, x0 +a]. Then again we have that the graph of
z is contained in R = [x0 −a, x0 +a]× [y0 −L, y0 +L] (all the quantities are as defined in the proof). This is
because

|z(x)− y0| = |z(x)− z(x0)|
≤ ∥∥z ′∥∥ |(x −x0)|
≤ M a

≤ L

where M , as before, is a bound for f and a is chosen to be smaller than L
M (

∥∥z ′∥∥ means the operator norm
of z ′).

We will show that |y(x)− z(x)| = 0 for every x ∈ [x0 −a, x0 +a]. Immediately, computing this quantity,
what we find is that

|y(x)− z(x)| =
∣∣∣∫ x

x0

f (t , y(t ))− f (t , z(t ))d t
∣∣∣≤ K

∫ x

x0

|y(t )− z(t )|d t ≤ 2LK |x −x0|

Then

|y(x)− z(x)| ≤ K
∫ x

x0

|y(t )− z(t )|d t

≤ K
∫ x

x0

2LK (t −x0)d t

≤ 2LK (x −x0)2

2

By induction what we find is that

|y(x)− z(x)| ≤ 2LK (x −x0)n

n!

for all n. Clearly the right hand side goes to 0 as n →∞ (the series converges to an exponential for exam-
ple), thus y(x) = z(x).

Proof 2. For the second proof, we once again reach the same estimate as before

|y(x)− z(x)| ≤ K
∫ x

x0

|y(t )− z(t )|d t

Now we define u(x) = |y(x)− z(x)| which we will show is 0. Note that by assumption u statisfies the fol-
lowing property

u(x) ≤ K
∫ x

x0

u(t )d t

This is known as Grönwall’s inequality.
Define

U (x) =
∫ x

x0

u(t )d t

Then we know that
U ′(x) = u(x) ≤ KU (x)
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If we had an equality here, we could say that U (x) =U (x0)eK (x−x0). Grönwall tells us that the statement re-
mains true if we replace the equalities with inequalities. Intuitively this is because U (x0) =U (x0)eK (x0−x0),
so they ‘start’ at the same point but the right hand side grows faster (has larger gradient) so must always
be greater than the left hand side. For more rigorous reasons, consider the following argument(

U (x)

eK (x−x0)

)′
= U ′(x)−KU (x)

eK (x−x0)
≤ 0

This means that the function is non-increasing so must reach its maximum at x0 (we only consider the
case for x > x0 the other case is near identical). Therefore

U (x)

eK (x−x0)
≤ U (x0)

eK (x0−x0)

U (x) ≤U (x0)eK (x−x0)

Since U (x0) = 0, we know that U (x) ≤ 0 for all x. However, U is also the integral of a non-negative
function, so U (x) must always be non-negative as well. This must mean that U is 0 which in turn implies
that u is 0.

Grönwall’s inequality exists in different levels of generality. A slightly more general case (than the one
used above) is as follows.

Theorem 12.23 If U ′(x) ≤ K (x)U (x) where K (x) is continuous and U (x) is (of course) differentiable, then

U (x) ≤U (x0)exp

(∫ x

x0

K (t )d t

)
Proof. Exercise for the student :(

We have seen that under sufficiently good conditions, we can get unique solutions on intervals of
the form [x0, x0 +δ1] for some δ1 > 0. We can then run the proofs again so that our new solutions are
on [x0 +δ1, x0 +δ1 +δ2]. Thus we obtain a sequence of δi . There are then 2 possibilities: either the δi

form a convergent series or they don’t. Since they are all positive, if the δi don’t converge, then we get a
solution defined on [x0,∞). Otherwise the endpoint is simply the value that the series converges to. One
such example of ‘good conditions’ is when the function is C 1, which means that function is at least locally
bounded (and indeed even has a locally bounded derivatives so is locally Lipschitz). We have seen an
example of the latter phenomena with the differential equation

x ′ = x2

which we noted blew up in finite time.

There also exists a more general uniqueness theorem called Osgood’s Uniqueness Theorem.

Theorem 12.24 (Osgood’s Uniqueness Theorem) Suppose D ⊂ R×Rn is open and contains some (x0, y0).
Assume that for all (x, y1), (x, y2) ∈ D we have that

| f (x, y1)− f (x, y2)| ≤ϕ(|y1 − y2|)
where ϕ : [0,∞) → [0,∞) is continuous and ϕ(0) = 0. It also has the properties that for every a > 0, we have
ϕ(a) > 0 and ∫ a

0

1

ϕ(u)
du =∞

Then the initial value problem

y ′ = f (x, y(x))

y(x0) = y0

has no more than one solution.
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Before proving the theorem, a few remarks need to be made. First we will only prove the theorem for
n = 1. With some more tools and techniques, the given proof can be modified to work in the general case,
but we won’t worry about that here.

Another important point is that we are not assuming f to be continuous, so we cause the Cauchy-
Peano theorem to assert the existence of a solution. Indeed, we will not prove that a solution exists; only
that if it does, it is unique. However, if we had ϕ(x) = K x for some K > 0, then f would be Lipschitz
continuous and we reduce back to previous cases. Thus this theorem is certainly more general than what
we seen thus far.

Proof. We will prove this using contradiction. Suppose we have two distinct solutions y1(x), y2(x) on some
interval (α,β) (containing x0 of course). We define z(x) = y1(x)− y2(x). This function satisfies the IVP

z ′(x) = f (x, y1(x))− f (x, y2(x))

z(x0) = 0

If z(x) = 0 everywhere then we are done. So suppose that there is some x1 such that z(x1) ̸= 0. Then
importantly

z ′(x1) ≤ϕ(|z(x1)|) < 2ϕ(|z(x1)|)
We now proceed using a comparison argument which we split into cases. The first (and only) case we
consider is when x1 > x0 and y1(x1) > y2(x1) (the remaining cases are left as exercises for the student(s) :(
).

Let v be the solution to the IVP

v ′(x) = 2ϕ(v)

v(x1) = z(x1) =: z1

Note that z1 > 0 by the assumption that y1(x1) > y2(x1). We see that v and z are functions that agree on
x1 but v ′ > z ′. Thus the graphs of v and z cannot intersect anywhere else. We will show this leads to
a contradiction. In particular we will show that v is an increasing, positive function defined at least on
(−∞, x1] but since z(x0) = 0, this means there must be another intersection for some x < x1.

In order to verify the above statements for v , it would be nice to have a slightly more explicit formula
for it. Since the differentiation equation for v is separable, we can at least get part of the way there. By
separating the variables, we know that∫ v(x1)=z1

v(x)

1

ϕ(v)
d v =

∫ x1

x
2d x = 2(x1 −x)

Or at least this is what v should satisfy as the solution (consider substituting v(x) on the right hand side).
Thus we define the map v so that it makes the above statement true. This only makes sense, however, if
for every x there exists exactly one vx such that∫ z1

vx

1

ϕ(v)
d v = 2(x1 −x)

However this must be the case since 1
ϕ is positive so the integral is going to be monotone.

We claim that v(x) is defined for all x < x1. We first define

Φ(y) =
∫ z1

y

1

ϕ(u)
du

Then in particular v(x) is the implicit solution to the equation

Φ(v(x)) = 2(x1 −x)

By assumption, Φ(y) →∞ as y → 0 (recall this was one of the properties of ϕ). Additionally Φ(z1) = 0 so
Φ : (0, z1] → [0,∞). SinceΦ′ =− 1

ϕ , we can conclude thatΦ is decreasing. This mean thatΦ is in particular
invertible, allowing us to write

v(x) =Φ−1(2(x1 −x))
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The domain of Φ−1 is [0,∞) thus the above formula is define whenever x1 − x > 0 or in other words when
x < x1.

Clearly v is increasing (there are 2 ways of seeing this: for one it is the composition of two decreasing
maps and secondly, we can look at the IVP defining it and use the fact that ϕ is positive on non-zero
values). Additionally, since Φ−1 takes values in (0, z1], v must also be positive. As discussed previously,
this implies that the graphs of v and z intersect (at least) twice: once at z1 and once prior, leading to the
desired contradiction.

Remark 12.25. There is a simpler proof ifΦwere concave up which would occur ifφwere non-decreasing.
There is a standard way of turning any function into a non-decreasing function, define

ϕ̃(u) = sup
ũ∈[0,u]

ϕ(ũ)

Unfortunately, it is not true that ∫ a

0

1

ϕ(u)
du =∞⇒

∫ a

0

1

ϕ̃(u)
du =∞

Remark 12.26. If ϕ : [0,∞) → [0,∞) such that ϕ(0) = 0, ϕ(a) > 0 for a > 0 and ϕ′(0) exists, then∫ a

0

1

ϕ(u)
du =∞

for all a > 0

Theorem 12.27 Let (X ,d) be a complete metric space. Suppose F : X × I → X (where I is any interval) is
such that F (·,λ) is a uniform contraction. In other words, there exists some 0 ≤ q < 1 such that for every
λ ∈ I and every x, y ∈ X , we have that

d(F (x,λ)−F (y,λ)) ≤ qd(x, y)

Then there exists a unique fixed point x∗
λ

. This defines a map λ 7→ x∗
λ

that satisfies

d(x∗(λ), x∗(λ′)) ≤ 1

1−q
d(F (x∗(λ),λ),F (x∗(λ),λ′))

If F is continuous in λ then the map x∗ is continuous (in λ) as well.

Remark 12.28. The word continuous in the final sentence can be replaced with Lipschitz, differentiable,
C k , etc.

Proof. The first statement for the bound on d(x∗(λ), x∗(λ′)) can be seen by

d(x∗(λ), x∗(λ′)) = d(F (x∗(λ),λ),F (x∗(λ′),λ′))

≤ d(F (x∗(λ),λ),F (x∗(λ),λ′))+d(F (x∗(λ),λ′),F (x∗(λ′),λ′))

≤ d(F (x∗(λ),λ),F (x∗(λ),λ′))+qd(x∗(λ), x∗(λ′))

From this it is clear that continuity of F (in λ) implies continuity of x∗. It is not clear how this would
generalise for smooth or C k F . So we present another proof that will give these to us readily.

Suppose F is C 1. We seek to solve for x such that

x = F (x, v)

More precisely we know that for every v there is a solution and we wish to decide how these solutions
depend on v . Taking everything to one side and taking derivatives what we find is that

I −Dx F = 0

where I is the identity. Since ∥Dx F∥ ≤ q < 1 what we find is that this is invertible (see following lemma).
Therefore we can use the inverse function theorem to conclude that the dependence on solutions is
smooth/C K /etc.
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Lemma 12.29 If A ∈Rn×n such that ∥A∥ < 1 then I − A is invertible.

Proof. The inverse of I − A is given by
∞∑

k=0
Ak

(note similarity to geometric series). The series converges absolutely since

∞∑
k=0

∥∥∥Ak
∥∥∥≤

∞∑
k=0

∥A∥k

Then we see that

(I − A)
∞∑

k=0
Ak = lim

N→∞
(I − A)

N∑
k=0

Ak

= lim
N→∞

N∑
k=0

Ak −
N∑

k=0
Ak+1

= lim
N→∞

I − AN+1

Since AN converges to 0 (check norms), we get the desired statement.

Remark 12.30. A remark that is entirely unrelated to ODEs but also so delightful that I cannot help but
mention it here. We’ve seen that plugging matrix into ex and 1

1+x kind of makes sense (admittedly the
latter only working for some matrices). In both cases we used the fact that these functions can be ap-
proximated via polynomials. Thus as you might imagine, any time we can approximate a function via
polynomials, we can consider what happens if we input a matrix! The even more amazing fact is that any
continuous function on a compact interval can be approximated via polynomials. So in fact we can apply
any continuous function to a matrix. This is what leads to the so-called functional calculus.

Definition 12.31 (Locally Lipschitz). A map f : A →Rn is said to be locally Lipschitz, if for every compact
set K ⊂ A there exists a constant L (which may depend on K ) such that | f (x)− f (y)| ≤ L|x − y | for all
x, y ∈ K .

We will finish with a global existence and uniqueness theorem. Essentially, what we want to say is that
if we have a solution on the maximal time interval then the solution blows up (in norm) or the solution
approaches the boundary of the domain (or both).

Theorem 12.32 Suppose D ⊂ Rn is open and connected and f : D → Rn is a locally Lipschitz vector field.
Let v be some vector in D. Then there exists a unique maximal interval of existence Imax = (T ,T ) ∋ 0 such
that

1. The IVP

x ′ = f (x)

x(0) = v

has a unique solution on Imax and

2. if T <∞ then

lim
t→T

|x(t )|+ 1

d(x(t ),∂D)
=∞

Proof. We already know that the solution exists and is unique so we only need to verify the second state-
ment. We do so by showing the contrapositive. In particular we will show that if T < T such that limt→T |x(t )| ̸=
∞ and limt→T d(x(t ),∂D) ̸= 0 then there is a solution that goes past T .

Let T > 0 be arbitrary and suppose the two limit conditions from the previous paragraphs hold (that is
|x(t )|doesn’t tend to infinity and x(t ) always remains some distance from the boundary). Then there exists
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a sequence (t j ) j∈N that converges to T such that M := sup j∈N |x(t j )| is finite and S := inf j∈Nd(x(t j ),∂D) is
positive (or in other words is not 0). Define

K = {z ∈ D : |z| ≤ M ,d(z,∂D) ≥ S}

K is closed and bounded, hence it is compact (note that the fact that K is closed might not be as apparent
as it seems. In particular K = D ∩B(0, M)∩ {z ∈Rn : d(z,∂D) ≥ S}. The final set is certainly closed however
since D is open, it is not clear that the intersection should also be closed. Nevertheless it is true that K
is closed because D ∩ {z ∈ Rn : d(z,∂D) ≥ S} = {z ∈ Rn : d(z,Dc ) ≥ S} which is obviously closed being the
preimage of a closed set under a continuous function).

On K , then we have a Lipschitz constant L and hence by theory we have built up so far (see Theo-
rem 12.20) we know there is some τ> 0 such that for every w ∈ K we have a unique solution to the IVP

y ′ = f (y)

y(0) = w

on [−τ,τ] (to be fair we started with an open subset of Rn+1 in that proof whereas we have a compact set
here. However, we only needed the fact that the set contained a rectangle. Given the definition of K , we
can see that this should be true).

Let y j be the solutions for w = x(t j ) for the above IVP. Then y j (t − t j ) is defined on [τ− t j ,τ+ t j ] which
agrees with x(t ) at t j (note that since K contains all the t j by its definition, this τ holds for all t j ). Since x
is maximal and unique, we conclude that x is defined at least until t j +τ. Now suppose we pick some t j

such that T − t j < τ (we can definitely do so since t j converge to T ). But this means that x(t ) is defined at
least till t j +τ> T . This holds for all T so x(t ) is defined on [0,∞).

Now that we have some knowledge of the existence and uniqueness of solutions, we can ask some
question about these solutions. For example, how do the solutions depend on the initial condition x0?
What if we have a parameter in our differential equation, how do solutions vary as we vary the parameter?
If we have solutions on some bounded interval, how and when can we extend the solutions to the maximal
time interval and what is the behaviour at the end point of this interval, especially if the endpoint is finite?

We begin by first making our lives easier, i.e. removing questions that are equivalent. We claim that
looking at the dependence on initial conditions is entirely equivalent to looking at dependence on pa-
rameters. For example suppose f is a function that depends on a parameter λ ∈ Rm . We would then be
attempting to solve the IVP

x ′(t ) = f (t , x(t ),λ)

x(t0) = x0

Let x be a solution of this IVP. Then we can define

z(t ) =
(

x(t )

λ

)

which satisfies the IVP

z ′(t ) = g (t , z(t ))

z(t0) = w

where

g (t , z(t )) =
(

f (t , x(t ),λ)

0

)
, w =

(
x0

λ

)
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13 Continuous Dependence

We know now that under certain conditions solutions exist and are unique and we even have that so-
lutions vary continuously as the initial conditions (or parameters) vary continuously. This means, for
example then, if we have a sequence vk in Rn that converge to some v then the solution to

x ′ = f (t , x)

x(0) = v

can be found by taking the appropriate limits with the vk . In particular, if we use xk to denote the solutions
to

x ′ = f (t , x)

x(0) = vk

Then the solution to the original IVP can be found by x(t ) = limk→∞ xk (t ) (again, assuming suitable con-
ditions for f ). This is easier to express using flow notation as we can equivalently express the above as
limk→∞Φt (vk ) =Φt (v) for all t . (see Section 11 for definition of the flow map). Although this is lovely, it
would be even more lovely if we could have an estimate for how fast the convergence is. To get there, we
first need a generalised version of Grönwall’s lemma.

Theorem 13.1 (Grönwall’s Lemma (Generalised)) Suppose we have continuous functions f : [a,b] →R and
g : [a,b] →R+. Suppose y : [a,b] →R is continuous and satisfies

y(t ) ≤ f (t )+
∫ t

a
g (s)y(s)d s

for all t ∈ [a,b]. Then we have that

y(t ) ≤ f (t )+
∫ t

a
f (s)g (s)exp

(∫ t

s
g (u)du

)
d s

In particular if f (t ) ≡ k for some constant k, then

y(t ) ≤ k exp

(∫ t

a
g (u)du

)
First let us verify that the statement works for f (t ) ≡ k. In other words we wish to show that

k +k
∫ t

a
g (s)exp

(∫ t

s
g (u)du

)
d s ≤ k exp

(∫ t

a
g (u)du

)
We see that the above expressions are equal at t = a. Thus if we had that the derivative of the left hand
side was always less than the right, we would have the desired inequality.

First we rewrite the left hand side as

k +k
∫ t

a
g (s)exp

(∫ t

s
g (u)du

)
d s = k +k

∫ t

a
g (s)exp

(∫ t

a
g (u)du −

∫ s

a
g (u)du

)
d s

= k +k exp

(∫ t

a
g (u)du

)
·
∫ t

a
g (s)exp

(
−

∫ s

a
g (u)du

)
d s

Substituting this into the the desired inequality and multiplying both sides by 1
k exp(−∫ t

a g (u)du), we see
that the inequality is equivalent to

exp

(
−

∫ t

a
g (u)du

)
+

∫ t

a
g (s)exp

(
−

∫ s

a
g (u)du

)
d s ≤ 1
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Thus we will show that this inequality is true. Once again, it is clear that we have agreement on t = a, so
we only need argue that the inequality remains with derivatives. Taking derivatives on the left hand side
(with respect to t ) we get

exp

(
−

∫ t

a
g (u)du

)
·−g (t )+ g (t )exp

(
−

∫ t

a
g (u)du

)
= 0

Therefore the expression on the left is actually constant! Thus rather than having inequality we have
equality.

There is in fact another we can verify equality that is a bit more straightforward and in fact employs
a simple technique for computing such double integrals that we will use soon so is worth mentioning.
Recall we are trying to evaluate

k +k
∫ t

a
g (s)exp

(∫ t

s
g (u)du

)
d s

We define

M(s) =
∫ t

s
g (u)du =−

∫ s

t
g (u)du

Then

k +k
∫ t

a
g (s)exp

(∫ t

s
g (u)du

)
d s = k +k

∫ t

a
−M ′(s)exp(M(s))d s

= k −k(exp(M(s)|ta)

= k −k(exp(M(t ))−exp(M(a)))

= k exp(M(a))

= k exp

(∫ t

a
g (u)du

)
Having verified the theorem in some ways, we can try proving it.

Proof 1. For the first proof we will iterate the the assumed inequality. We will see that doing so gives us
the Taylor series of an exponential with an additional term that goes to 0 as we continually iterate the
inequality.

First note that without loss of generality we can assume |y(t )| ≤ 1 (y is continuous on a compact set
so supt∈[a,b] |y(t )| is finite. Dividing by this quantity, we see that the assumed inequality is maintained).
Additionally we will only show the case for when f is a constant (the general case is left as an exercise).

By assumption we know that

y(t ) ≤ k +
∫ t

a
g (s)y(s)d s

Applying this inequality to the integral what we conclude is that

y(t ) ≤ k +
∫ t

a
g (s)y(s)d s ≤ k +

∫ t

a
g (t1)

[
k +

∫ t1

a
g (s)y(s)d s

]
d t1

Expanding the right hand side, what we get is

k +
∫ t

a
g (t1)

[
k +

∫ t1

a
g (s)y(s)d s

]
d t1 = k +k

∫ t

a
g (t1)d t1 +

∫ t

a
g (t1)

∫ t1

a
g (s)y(s)d s d t1

Unfortunately we need to apply the inequality again to get something useful. Doing so and expanding it
like above, what we find is that

y(t ) ≤ k +k
∫ t

a
g (t1)d t1 +k

∫ t

a
g (t1)

∫ t1

a
g (t2)d t2 d t1 +k

∫ t

a
g (t1)

∫ t1

a
g (t2)

∫ t2

a
g (t3)y(t3)d t3 d t2 d t1

Although this is quite a mess, we won’t worry about all of it (for now). Instead just focus on the double
integral term. As a first step we will name it (very often a useful first step)

I =
∫ t

a
g (t1)

∫ t1

a
g (t2)d t2 d t1 =

∫ t

a
M ′(t1)M(t1)d t1
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where

M(t1) =
∫ t1

a
g (s)d s

Therefore

I = 1

2
[M(t )]2 − 1

2
[M(a)]2

However, M(a) = 0 so

I = 1

2
[M(t )]2 = 1

2

(∫ t

a
g (s)d s

)2

With a bit of working out or a bit of faith, we conclude that repeatedly applying the inequality to the
integrals gets us

y(t ) ≤ k +k
∫ t

a
g (t1)d t1 + k

2!

(∫ t

a
g (t1)d t1

)2

+·· ·+ k

n!

(∫ t

a
g (t1)d t1

)n

+
∫ t

a
g (t1)· · ·

∫ tn

a
g (tn+1)y(tn+1)d tn+1 . . .d t1

For completeness, we can verify this holds for the triple integral term which would appear after we
apply the inequality to the integral again. In other words we are trying to evaluate

J =
∫ t

a
g (t1)

∫ t1

a
g (t2)

∫ t2

a
g (t3)d t3 d t2 d t1

Using our previous notation and result, we see that

J =
∫ t

a
M ′(t1) · 1

2
[M(t1)]2d t1

Therefore

J = 1

3!
[M(t )]3

as was claimed. Hopefully we can convince ourselves now that the above summation is correct. We can
see the desired exponential term appearing (as a Taylor series). Thus if the claim is to hold true then we
should find that the final term goes to 0 as we repeatedly apply the inequality. Now we verify that this
happens.

Since g is always positive what we find is that∣∣∣∫ t

a
g (t1)· · ·

∫ tn

a
g (tn+1)y(tn+1)d tn+1 . . .d t1

∣∣∣≤ ∫ t

a
g (t1)· · ·

∫ tn

a
g (tn+1)

∣∣y(tn+1)
∣∣d tn+1 . . .d t1

We assumed that |y(t )| ≤ 1 for all t ∈ [a,b]. Therefore the right hand side above is less than or equal to∫ t

a
g (t1)· · ·

∫ tn

a
g (tn+1)d tn+1 . . .d t1

However we already know that this is equal to

1

(n +1)!

(∫ t

a
g (s)d s

)n+1

Clearly this goes to 0 as n → ∞ (it is a term of a convergent infinite series for example). Therefore we
conclude that

y(t ) ≤ k exp

(∫ t

a
g (s)d s

)

As usual there is a second proof of the theorem. This one, a bit more indirect.
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Proof 2. We define

z(t ) =
∫ t

a
g (s)y(s)d s

By assumption we have that

y(t ) ≤ f (t )+
∫ t

a
g (s)y(s)d s

By multiplying both sides by g (t ) (remember g is positive) and rearranging what we find is that

g (t )y(t )− g (t )
∫ t

a
g (s)y(s)d s ≤ g (t ) f (t )

Therefore
z ′(t )− g (t )z(t ) ≤ f (t )g (t )

Seeing the left hand side one is reminded of linear exact differential equations and integrating factors (see
Subsection 17.3). In particular, we can write the left hand side as the derivative of a product if we multiply
both sides by

exp

(
−

∫ t

a
g (u)du

)
(note the inequality is maintained since the exp is always positive). The inequality now becomes

z ′(t )exp

(
−

∫ t

a
g (u)du

)
− z(t )g (t )exp

(
−

∫ t

a
g (u)du

)
≤ f (t )g (t )exp

(
−

∫ t

a
g (u)du

)
Although the left hand side looks like something of a mess, we know (by construction) that it is equal to
w ′(t ) where

w(t ) = z(t )exp

(
−

∫ t

a
g (u)du

)
Hence we get ∫ t

a
w ′(s)d s ≤

∫ t

a
f (s)g (s)exp

(
−

∫ s

a
g (u)du

)
d s

z(t )exp

(
−

∫ t

a
g (u)du

)
≤

∫ t

a
f (s)g (s)exp

(
−

∫ s

a
g (u)du

)
d s

z(t ) ≤
∫ t

a
f (s)g (s)exp

(∫ t

s
g (u)du

)
d s

f (t )+
∫ t

a
g (s)y(s)d s ≤ f (t )+

∫ t

a
f (s)g (s)exp

(∫ t

s
g (u)du

)
d s

where for the second line we use the fact that w(a) = 0 (which follows from the fact that z(a) = 0). Since
the left hand side is greater or equal to y(t ) by assumption, we are done.

Now that we have Grönwall’s Lemma, we can use it to to provide estimates for how much solutions
can differ, if we only change the initial conditions slightly. In particular, we have the following theorem.

Theorem 13.2 Let x1 : [a,b] →Rn and x2 : [a,b] →Rn be differential functions such that |x1(a)−x2(a)| ≤ δ.
Let f : [a,b]×Rn →Rn be function that is Lipschitz in the second variable with Lipschitz constant L. Suppose

|x ′
1(t )− f (t , x1(t ))| ≤ ϵ1

|x ′
2(t )− f (t , x2(t ))| ≤ ϵ2

Then

|x1(t )−x2(t )| ≤ δeL(t−a) + (ϵ1 +ϵ2)
eL(t−a) −1

L
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Remark 13.3. Suppose ϵ1 = ϵ2 = 0. Then x1 and x2 satisfy the same differential equation but with slightly
different initial conditions. In this case the conclusion of the theorem is that |x1(t )− x2(t )| ≤ δeL(t−a),
which is to say that the solutions can differ at most by some exponential term. If we also have δ = 0, we
get yet another proof of uniqueness.

Proof. Let ϵ = ϵ1 + ϵ2. We define g (t ) = x1(t )− x2(t ). We want to show that g is bounded by some kind
of exponential term and as we said we want to use Grönwall. For this we need a bound on g in terms of
some kind of integral. First we will find an estimate for g ′ (as you can imagine this will be easier since we
have some strong conditions on f which approximates x ′

1 and x ′
2 fairly well) and then use this to find an

estimate for g .

|g ′(t )| = |x ′
1(t )−x ′

2(t )|
= |(x ′

1(t )−x ′
2(t ))− f (t , x1(t ))+ f (t , x1(t ))− f (t , x2(t ))+ f (t , x2(t ))|

≤ | f (t , x1(t ))− f (t , x2(t ))|+ |x ′
1(t )− f (t , x1(t ))|+ |x ′

2(t )− f (t , x2(t ))|
≤ L|g (t )|+ϵ

Now that we have an estimate for g ′ we can try to find an estimate for g as well. In particular we get

|g (t )| =
∣∣∣g (a)+

∫ t

a
g ′(s)d s

∣∣∣
≤ |g (a)|+

∫ t

a
|g ′(s)|d s

≤ δ+
∫ t

a
L|g (s)|+ϵd s

= δ+ϵ(t −a)+
∫ t

a
L|g (s)|d s

Using Grönwall then what we conclude is that

|g (t )| ≤ δ+ϵ(t −a)+
∫ t

a
L(δ+ϵ(s −a))eL(t−s)d s

Computing the right hand side8, we find it to be equal to

δeL(t−a) + ϵ

L
(eL(t−a) −1)

giving us the stated inequality.

We now make a statement about solving (nonautomous) linear systems that could have been stated
earlier but is here because we will use it shortly.

Corollary 13.3.1 Let (t0, x0) ∈ I ×Rn be arbitrary, where I is some interval in R. Let A(t ) be a continuous
family of n ×n matrices. Then the IVP

x ′(t ) = A(t )x

x(0) = x0

has a unique solution on all of I . Moreover this solution is given by

x(t ) = e
∫ t

t0
A(s)d s x0

Proof. We already know that the solution exists and is unique from everything we’ve done. We can check
that the solution is as given by verifying that it satisfies the ODE. Indeed we see that

x ′(t ) = A(t )e
∫ t

t0
A(s)d s x0 = A(t )x

and x(t0) = x0. By uniquness, this is the solution to the IVP.
8There’s some integration by parts nonsense. If you really want to, feel free to give it a go.
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14 Flow of Dynamical Systems

Suppose f :Rn →Rn is C 1. Then we for every x ∈Rn there is a unique solution satisfying the IVP

y ′ = f (y)

y(0) = x

Suppose also that the solution is defined for all t ∈R. Then we defineΦt (x) = y(t ) (where y is the (unique)
solution to the IVP). In effect Φt maps initial points x to where the differential equation sends them at
time t . As mentioned in Section 11, the flow map satisfies the semigroup property: Φs+t =Φs ◦Φt (note
this property does not hold if we do not have uniqueness of solutions).

Sometimes we alternatively use the notationΦ(t , x). This is especially useful when we wish to take the
derivative with respect to time for example. In fact let us do exactly this to try and calculate the so-called
time derivative ∂Φ

∂t . This means that we hold the initial value x constant and vary t . Clearly this must be
the solution y(t ). Therefore

∂Φ

∂t
(t , x) = f (Φ(t , x))

Additionally, it is clear by definition thatΦ0(x) =Φ(0, x) = x, soΦ0 is the identity. From these two facts we
can conclude thatΦt is a bijection for all t with inverseΦ−t . The injectivity ofΦt is exactly equivalent to a
previous statement we have made of how the uniqueness of solutions implies that the solutions can never
intersect. The surjectivity is a confirmation of a long held suspicion of ours that the general solution for
y ′ = f (y) where f :Rn →Rn is an n−dimensional space.

Now that we have considered the time derivative, we should also consider its sibling the space deriva-
tive ∂Φ

∂x . First note we know this exists and is continuous by Theorem 12.27 (or more precisely by the
remark following it). As you can imagine however, computing it will be harder.

Consider our standard IVP

x ′(t ) = f (x(t ))

x(0) = x0

for t ∈ J where J is a closed interval containing 0 and f is C 1. For t ∈ J , we define A(t ) = D f (x(t )) (this
is the Jacobian of f at x(t )). Since f is C 1, we know that A is continuous function. We then define the
variational equation along the solution x(t ) to be the unique solution u(t ) to

u′ = A(t )u

u(0) = u0

(recall we know that unique solutions exist for every u0 and are defined on all of J by Corollary 13.3.1).
Note that this is a (admittedly non-autonomous) linear system of equations, hence the linearity principle
still holds. What we will show is that if u0 is small the map t 7→ x(t )+u(t ) (with x(t ) as above) is a good
approximation to the solution of

x ′ = f (x)

x(0) = x0 +u0

We formalise this in the following proposition.

Proposition 14.1 Let D ⊂ Rn and f : D → Rn be C 1. Let J be a closed interval containing 0 and x(t ) is the
solution to x ′ = f (x) with x(0) = x0. Let u(t ) be the solution to u′ = D f (x(t ))u satisfying u(0) = ξ (in other
words u is the variation equation along x(t )) and let y(t ) be the solution to x ′ = f (x) satisfying y(0) = x0+ξ.
Then

lim
ξ→0

|y(t )−x(t )−u(t )|
|ξ|

converges uniformly to 0.
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Remark 14.2. Uniform convergence in this context means that for every ϵ> 0 there exists some δ> 0 such
that if |ξ| ≤ δ then |y(t )−x(t )−u(t )| ≤ ϵ|ξ| for every t ∈ J .

Proof. As usual we go to integral equations. We have

x(t ) = x0 +
∫ t

0
f (x(s))d s

y(t ) = x0 +ξ+
∫ t

0
f (y(s))d s

u(t ) = ξ+
∫ t

0
D f (x(s))u(s)d s

Then

|y(t )−x(t )−u(t )| ≤
∫ t

0
| f (y(s))− f (x(s))−D f (x(s))u(s)|d s (14.1)

Let us denote the left hand side as g (t ). Finding the Taylor expansion of f centered at x what we find is
that

f (y) = f (x)+D f (x)(y −x)+R(y −x)

where R(y −x) is the remainder term such that

lim
y→x

R(y −x)

|y −x| = 0

Substituting this expansion of f into the above inequality, we get

g (t ) ≤
∫ t

0

∣∣ f (x(s))+D f (x(s))(y(s)−x(s))+R(y(s)−x(s))− f (x(s))−D f (x(s))u(s)
∣∣d s

≤
∫ t

0
|D f (x(s))(y(s)−x(s)−u(s))|d s +

∫ t

0
|R(y(s)−x(s))|d s

Since J is a closed interval it is in particular compact hence |D f (x(s))|s∈J achieves its maximum. Let N be
this maximum. Then N serves as a Lipschitz constant for f . Let ϵ> 0 be given. By uniform convergence

of R(y−x)
|y−x| to 0, we know there is some δ1 > 0 so that |y − x| < δ1 then |R(y − x)| ≤ ϵ|y − x|. But recall that y

and x are solutions to the same differential equation with the differing initial condition. We already have
an estimate for how far these can differ, by Theorem 13.2. We know f is C 1 so it is locally Lipschitz. Thus
for every compact set C , we can find a constant K such that f restricted to C is Lipschitz with Lipschitz
constant K . There is a compact set containing the images of x and y (we can in particular take the union of
their images). Let K be the Lipschitz constant for this compact set. Then we know by the aforementioned
theorem that

|y(s)−x(s)| ≤ |ξ|eK s

for every s ∈ J . Since J is compact the right hand attains some maximum. Thus by choosing an appropriate
δ > 0 we can ensure that if |ξ| < δ then |ξ|eK s < δ1. Thus if |ξ| < δ, then we know that |R(y(s)− x(s)| ≤
ϵ|y(s)−x(s)| ≤ ϵ|ξ|eK s for every s ∈ J . Under this condition, what we find then is that

g (t ) ≤
∫ t

0
|D f (x(s))(y(s)−x(s)−u(s))|d s +

∫ t

0
|R(y(s)−x(s))|d s

≤
∫ t

0
|D f (x(s))|g (s)d s +

∫ t

0
ϵ|ξ|eK s d s

≤
∫ t

0
N g (s)d s +ϵ|ξ|

∫
J

eK s d s

Note that the integral in the second term is simply a constant which we will denote c. Thus using Grönwall
(specifically the case when f is a constant function), we conclude that

g (t ) ≤ cϵ|ξ|eN t
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Thus

lim
ξ→0

g (t )

|ξ|
goes to 0 uniformly since ϵ was chosen arbitrarily.

Why is this proposition important? Well, as we’ve said it is often impossible to solve differential equa-
tions explicitly. However, perhaps we can find x(t ) for some special x0 (for example, we might be able to
find equilibria, which would would correspond to the zeroes of f ). This means that we can approximate
solutions near these special x0 to get at least get some idea of the behaviour. In fact we can compute ∂Φ

∂x
a bit more explicitly now. Then y(t ) and x(t ) in the above proposition are simply Φ(t , x0 +ξ) and Φ(t , x0).
We think of u(t ) as a function of 2 variables: namely we define u(t ,ξ) to be the solution to the variational
equation along x(t ) (or Φ(t , x0)) satisfying u(0,ξ) = ξ. The linearity principle (see Subsection 5.2) ensures
that u is linear in ξ. The definition of the differential of f is the (unique) linear map A that satisfies

lim
h→0

| f (x −h)− f (x)− Ah|
|h| = 0

Therefore the map ξ 7→ u(t ,ξ) is the partial derivative of Φ(t , x) with respect to x, which we may also
denote DΦt (x). In fact since we have an explicit solution for u, we can write

DΦt (x0) = e
∫ t

0 D f (x(s))d s x0

We can then verify that DΦt (x) satisfies the following IVP

∂

∂t
(DΦt (x)) = D f (Φt (x))DΦt (x)

DΦ0(x) = I

where I is the identity map. This matches the IVP for u as well (we use the fact that A(t ) = D f (x(t )) =
D f (Φt (x0)) and u(0, x0) = x0).

To recap, we have managed to find some formulae and descriptions of the variation equation. The rea-
son we wanted to solve the variation equation is because it lets us approximate solutions around known
solutions. The question then is, have we actually done this? We can find u(t ) by solving an integral or by
solving an initial value problem, neither of which is particularly easy in general. And indeed, what we’ve
done is converted one difficult problem into another (hurrah.). However there are some important cases
where we can solve for things and are hence worth exploring.

Suppose the known solution x(t ) is an equlibrium point. In other words x(t ) ≡ a for some a. Then
A(t ) = D f (a) for all t . Hence what we find is that

u(t ) = DΦt (a) = e tD f (a)

Therefore we conclude that in a neighbourhood around equilibria, we can approximate the flow using a
linear system.

14.1 Classification of Flow

Much like we did with linear systems in the plane, we want to classify all (possibly non-linear) systems in
any number of dimensions. This as daunting a task as it sounds. At the very least, we first need to start
with how this classification will work, namely when can we say that two flows are ‘the same’? This leads
us to the notion of similarity.

We will say that two flows Φ and Ψ are similar (or more precisely conjugate) when there is a bijection
h such that

h−1 ◦Φ◦h =Ψ

Remark 14.3. Note how similar this is to similarity of matrices: we say two matrices A,B are similar if
there is an invertible T such that T −1 AT = B .
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Note how we have not made any assumption about h being continuous/differentiable/smooth/etc.
Such assumptions can vary based on the field of study. Taking h to be a homeomorphism is quite com-
mon (and as we will show, somewhat easy to achieve). If h is indeed just a homeomorphism, we say we
have topological conjugacy. Getting h to be a diffeomorphism is much nicer, but also a lot harder.

Now that we have the general overview, let’s try and be a bit more precise. Suppose x is a solution to
the non-linear system

x ′ = f (x)

x(0) = v

and z is its linearization. In other words, z is the solution to

z ′(t ) = D f (x(t ))z

z(0) = w

(where w is taken to be small). As we’ve discussed, x + z is an approximation solution to x ′ = f (x) with
x(0) = v + w (this is exactly Proposition 14.1). Thus we would like to say that x is conjugate to x + z.
Unfortunately in general this is not true, even in the simplest case where we approximate near a steady
state. Consider the following example.

14.1.1 Example 1

Suppose we are given the differential equation (
x

y

)′
=

(
x2

y2

)

Clearly, the only equilibrium point is the origin and

D f (0,0) =
(

0 0

0 0

)

Thus the linearised system has constant solutions. And indeed, if we were to look in a small neighbour-
hood near the origin the solutions (on a small time interval) do look roughly constant (see here). However,
and this is the key, the constant solution is not conjugate to the non-linear system. Intuition is enough to
guide us here: if the flow of a system is constant, then there is no motion. We really should not consider
this equivalent to a system that does have motion. It might be a useful exercise to prove to yourself that
constant systems cannot be conjugate to non-constant ones, before I do that right now.

Quite simply, the key is that if the solutions to a system are constant then the flow map Φt is simply
the identity for all t . Thus h ◦Φt ◦h−1 must be the identity as well.

Neverthenonetheless, there will be cases where we do get conjugacy, as in the following example.

14.1.2 Example 2

Consider the system

x ′ = x + y2

y ′ =−y

Then f (x, y) = (x + y2,−y). Clearly we have only one equilibrium point, which is at the origin again. Thus
the linearisation around it is given by (

x

y

)′
=

(
1 0

0 −1

)
︸ ︷︷ ︸

A

(
x

y

)
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Without any further work, we can conclude that the linearised system is unstable and has a saddle. Note
that if y is small, then y2 would be even smaller. Thus we would expect the non-linear system to look
quite similar to its linearisation around the origin.

Figure 16: Phase portrait of linearised system, source

In this case we can actually solve the nonlinear system, allowing us to test our hypotheses. We can
easily solve for y to get

y(t ) = y0e−t

Then we need to solve
x ′ = x + y2

0 e−2t

We know that the general solution is going to be of the form

x(t ) = ce t +xp (t )

where xp (t ) is a particular solution. We will guess xp to be of the same form as the inhomogeneity (this is
often not a bad first guess), so in particular we will guess

xp (t ) = be−2t

where b is a constant to be determined. Substituting this into the ODE (for x), we find

b =− y2
0

3

thus

x(t ) =
(

x0 +
y2

0

3

)
e t − y2

0

3
e−2t

(the coefficient of e t is of that form so that x(0) = x0). Plotting this we get the phase portrait in Figure 17.
The parabola going through the origin is given by x =− 1

3 y2. If our initial conditions lie on this parabola,
we get

x(t ) =− y2
0

3
e−2t , y(t ) = y0e t
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Figure 17: Phase portrait of non-linear system, source

which draws out the above parabola.
Comparing phase portraits of the two systems, we can maybe convince ourselves of a certain simi-

larity. The hope is that there is a way of ‘translating’ one to the other (this is after all exactly what the
homeomorphism would do). In fact in this case we can check that the change of variables given by

T (x, y) =
(

x + 1

3
y2, y

)
maps the flow of the linear system onto the non-linear one.

T −1e t AT (x0, y0) = T −1e t A
(

x0 + 1

3
y2

0 , y0

)
= T −1

(
e t

(
x0 + 1

3
y2

0

)
, y0e−t

)
=

(
e t

(
x0 + 1

3
y2

0

)
− y2

0

3
e−2t , y0e−t

)
which we know is exactly the flow of the non-linear system. In this case, the map T linearised the sys-
tem globally and was a diffeomorphism. Most of the time, this is not the case; usually, we only get local
homeomorphisms as we see in the following example.

14.1.3 Example 3

Suppose (
x

y

)′
=

(
1
2 −1

1 1
2

)(
x

y

)
− 1

2
(x2 + y2)

(
x

y

)
Once again we see that the (only) steady state is at the origin and we can easily find that the differential at
the origin is

A := D f (0,0) =
(

1
2 −1

1 1
2

)
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thus the linearisation is given by

e t A = e
t
2

(
cos t −sin t

sin t cos t

)
Hence we conclude that the linearised system is a (counterclockwise) unstable spiral.

With a slight change of variables, we will be able to see the qualitative behaviour of the non-linear
system more easily. In particular, we will change to polar coordinates, x(t ) = r cosθ, y(t ) = r sinθ. Using
some combinations of the product and chain rules, we find

x ′ = r ′ cosθ− r (sinθ)θ′

y ′ = r ′ sinθ+ r (cosθ)θ′

Multiplying and rearranging things appropriately, we get

xx ′+ y y ′ = r r ′

−x ′y + y ′x = r 2θ′

Therefore

r ′ = 1

r
(xx ′+ y y ′)

where upon substituting things from the given ODE, we find

r ′ = 1

2
r − 1

2
r 3

Similarly we find

θ′ = 1

r 2 (−x ′y + y ′x) = 1

We see that r is stable when r = 0,1 or −1. Obviously r cannot be negative and we are ignoring the case
of r = 0 (polar coordinates don’t work here anyway and we’ve divided by r too many times to give that a
go), so the only interesting case is when r = 1. In this case, the solution is given by the unit circle since θ is
a simple linear function.

Note that when 0 < r < 1, r ′ > 0 thus r is increasing and when r > 1, we have r ′ < 0 so r is decreasing.
Thus solutions that begin inside the unit circle grow towards it and solutions that begin outside decay
towards it.

Certainly then we cannot get a global homeomorphism to a linear system because no linear system
has dynamics where it grows near the origin but shrinks far away from it. However we can get a local
homeomorphism around the origin. Let Φ be the flow for the non-linear system and Ψ the flow for the
linearised system. Fix some r0 < 1. Then for every x ∈ Br0 (0) there is some unique time τ such thatΦt (x) ∈
Br0 (0) (this is because the radius r is increasing on such solutions). Thus we can think of τ as a function
of the initial point x. Then we define the homeomorphism h by h(x) =Ψ−τΦτ(x). We will show that this
is a homeomorphism later.

14.1.4 Example 4

Consider the system (
x

y

)′
=

(
−y +ϵx(x2 + y2)

x +ϵy(x2 + y2)

)
As usual, the only equilibrium point is at the origin where the differential is

D f (0,0) =
(

0 −1

1 0

)
The flow of the linearised system is therefore a center. In order to compare this with the original, non-
linear system we write the original system in polar coordinates to get

r ′ = ϵr 3,θ′ = 1
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Therefore when ϵ> 0, we have a source at the origin and when ϵ< 0, we have a sink. Neither of these can
be conjugate to a center (if they were, then we would conclude that a sink and source are conjugate and
certainly no reasonable system of classification should consider such systems to be equivalent).

14.1.5 Example 5

Consider the system (
x

y

)′
=

(
x2

−y

)
Then the linearisation around the equilibrium at the origin is

D f (0,0) =
(

0 0

0 −1

)

In this case the linearisation produces an entire line of stability. However clearly this cannot be the case
with the non-linear system, as at least one of y ′ and x ′ is non-zero everywhere (besides the origin). Indeed
the origin is an unstable equilibrium since solutions on the x-axis for example always move to the right.

14.2 Stability

We’ve mentioned stability and instability quite a few times so far, without defining precisely what they
mean (although we have an intuitive idea already). Let us remedy this now.

Definition 14.4 (Stable/Unstable Equilbria). Let (Φt )t≥0 be a dynamical system on a domain D ⊂Rn . Let
a be an equilibrium point. Then a is said to be stable if for every ϵ > 0 there exists some δ > 0 such that
|x −a| < δ implies that supt≥0 |Φt (x)−a| < ϵ.

We can equivalently define stable equilibria in the language of open sets: an equilbrium point a is
said to be stable if for every neighbourhood V of a there is a neighbourhood U of a such that if x ∈U then
Φt (x) ∈V for all t ≥ 0.

An equilibrium is said to be unstable if it is not stable. This is equivalent to saying that there exists
some ϵ> 0 and a sequence (x j ) j∈N in D that converges to a such that

sup
t≥0

∣∣Φt (x j )−a
∣∣≥ ϵ

for all j .

Remark 14.5. The fact that Φt is a dynamical system means that Φ0 = I d and Φs+t = Φs ◦Φt . This is
effectively the flow of a system. See Section 11 for more details.

Remark 14.6. In order to see why the above definition of instability is equivalent to the negation consider
the following argument: if an equilibrium point is not stable then there is some ϵ> 0 such that for all δ> 0
we have some x such that |x −a| < δ and supt≥0

∣∣Φt (x j )−a
∣∣≥ ϵ. Taking the x j to be the corresponding x

for δ= 1
j we get the desired sequence.

Definition 14.7. An equilibrium point a is said to be asymptotically stable (or attractive) if a is stable and
there is some δ> 0 such that

lim
t→∞ |Φt (x)−a| = 0

for all |x −a| < δ.

Remark 14.8. The condition that a be stable is necessary. You can construct counterexamples where a is
not stable but the second condition still holds.

We have topological conjugacy between a system and its linearisation if hyperbolicity holds (which is
to say, if the eigenvalues of the linearised system have non-zero real part). Although we will not prove this
statement in general, we will state it and prove some special cases of it.
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Theorem 14.9 (Hartman-Grobman) Consider x ′ = f (x) for f ∈C 1 and suppose f (a) = 0 (i.e. x(t ) ≡ a is an
equilibrium). Let A := D f (a) be hyperbolic. Let Φt be the dynamical system for the ODE and let Ψt := e t A

be the dynamical system for the linearisation. Then, there is a neighbourhood U of a and neighbourhood V
of 0 and a homeomorphism h : U →V such that

Φt = h−1 ◦Ψt ◦h

provided t is sufficiently small.

What can be learn by applying this theorem? Well for one thing, we can determine the stability or even
asymptotic stability of equilibria. This is quite useful when analysing systems in the real world (gross).
We also get the so-called stable/unstable curve theorem, which roughly says that if the linearisation (of
a planar system) has a saddle then so will the nonlinear system. In particular there will be two curves:
the solutions starting on one curve will approach the origin as t → ∞ (known as the stable curve) and
solutions starting on the other curve will approach the origin as t →−∞ (known as the unstable curve).
In Figure 17, the stable curve is the ‘parabola’ seen in the left half of the plane and the unstable curve is
the x-axis (not drawn). This generalises to the stable/unstable manifold theorems for higher dimensional
systems.

Unfortunately, the filter of topological conjugacy is quite broad. For example, all sinks are topolog-
ically conjugate to one another (as are all sources). Thus for example, you wouldn’t be able to tell the
difference between a spiral sink or a stable node. In some cases that is fine, in some cases it is not. We
could perhaps say a bit more if we instead had that h was a diffeomorphism. When can we get diffeomor-
phic conjugacy then? We need a certain non-resonance condition to hold.

Nevertheless, the Hartman-Grobman theorem is indicative of a more general principle, if the lin-
earised system is ‘structurally stable’ (in this instance, structurally stable means hyperbolic, although this
may change in other contexts), then the non-linear system will look like the linear system, at least locally.

We will only prove Hartman-Grobman in the special case when we have n distinct, negative eigenval-
ues. But first we need the following lemma.

Lemma 14.10 Consider x ′ = f (x) where f is C 1 with an equilibrium at a. If A := D f (a) has n distinct,
negative (hence real) eigenvalues. Then a is asymptotically stable for the non-linear system (or equivalently,
it is a sink).

Proof. Suppose A = D f (a) has distinct, negative real eigenvalues. Then we claim that we can assume
A to be a diagonal matrix without loss of generality. This can be achieved by doing a change of basis if
necessary.

Suppose D is the diagonalisation of A. In other words, there exists an invertible T such that A =
T DT −1. Suppose y is a solution to y ′ = Ay . Then substituting y = T ỹ , we find that (T ỹ)′ = T ỹ ′ = AT ỹ or
in other words

ỹ ′ = D ỹ

We can similarly assume a = 0, by taking f̃ (x) = f (x + a) and considering D f̃ instead (then of course
D f̃ (0) = D f (a)).

Using the Taylor expansion, we have

f (x) = f (0)+ f ′(0)x +o(|x|)

where o(|x|) contains the higher order terms for the error (see Wikipedia on little-o notation. If you want
to see what exactly the remaining terms looks like, consider the following article). Thus the ODE reduces
to

x ′ = Ax +o(|x|)
Now we define a function L :Rn →Rwhere

L(x) = 1

2
|x|2
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Suppose y is a solution to the linearisation. Intuitively, it is quite clear that the origin is asymptotically sta-
ble for the linearisation: we have a basis of eigenvectors and along each of these, the solutions decay. Since
the general solution is a linear combination of these, it must decay as well. We will prove the statement
formally using the technique of Lyapunov functions (to be discussed shortly), a very useful technique that
can be used in very general contexts.

We find that

d

d t
L(y(t )) = d

d t

(
1

2

∣∣y(t )
∣∣2

)
= yT · y ′ = yT Ay =λ1 y2

1 +·· ·+λn y2
n ≤ max{λ1, . . . ,λn} · |y |2

where yT · y ′ refers to the dot product of the two vectors. In particular we find that if we let c denote the
above maximum, then

d

d t
L(y) ≤ 2cL(y) ≤ cL(y)

where the second inequality holds because c is negative. Then a consequence of (an easy case of) Grön-
wall is that

L(y(t )) ≤ L(y(0))ect

Since c is negative, we know all such solutions decay.
Now suppose x is a solution to the non-linear system. Then

d

d t
L(x(t )) = xT · x ′ = xT (

Ax +o(|x|)
≤ c |x|2 +o(|x|2)

We choose a neighbourhood V of 0 so that for x ∈V we have

|x|2 ≤ |c|
2

= −c

2

Then by definition of little-o, we find that for x(t ) ∈V

d

d t
L(x(t )) ≤ c |x(t )|2 +o(|x(t )|2) ≤ c |x(t )|2 − c

2
|x(t )|2 = 1

2
c |x(t )|2 = cL(x)

By Grönwall again, what we find is that

L(x(t )) ≤ L(x(0))ect

Since c is negative, this goes to 0 as t →∞. Since L(x) = 1
2 |x|2, the same holds true for |x| as well. Thus all

solutions that start in V , approach the origin as t →∞, proving the claim that the origin is asymptotically
stable for the non-linear system as well.

Of course, the fact that the two flows are sinks does not (immediately) show that they are conjugate.
We will do so shortly. However, before that a comment on the techniques used above. As mentioned, one
of the key ingredients was the Lyapunov function.

Definition 14.11 (Lyapunov functions). Consider the differential equation x ′ = f (x) with an equilibrium
at a. Then a Lyapunov function is a real-valued, differentiable function on a neighbourhood of a such
that it is 0 on a and positive everywhere else and also satisfies

d

d t
L(x(t )) ≤ 0

whenever x(t ) is a solution to the ODE.
If we have

d

d t
L(x(t )) < 0

for all non-constant solutions, then L is said to be a strict Lyapunov function.
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In general it is difficult to find Lyapunov functions, however in certain cases this can be done by con-
sidering things like conservation of energy/momentum/etc (certainly any solution to an ODE in physics
is going to satisfy the fact that energy is non-increasing with time).

Now we show that in the case of sinks, the non-linear system is indeed conjugate to its linearisation.
This is a special case of Hartman-Grobman

Proposition 14.12 Consider the differential equation x ′ = f (x) where f is C 1 and a is an equilibrium point.
Suppose A := D f (a) has n distinct, negative eigenvalues. LetΦt denote the flow of the differential equation.
Then there exist open neighbourhoods V and U of the origin and a respectively and a map h : V →U such
that

Φt = h ◦e t A ◦h−1

Proof. As before, without loss of generality, we can assume that A is diagonal and a = 0. By the previous
lemma, Lemma 14.10, we know there is a ρ > 0 such that for all x ∈ Bρ(0), we haveΦt (x) → 0 as t →∞. We
define Bρ(0) to be our U . Since all solutions in U , tend toward 0, we conclude that the vector field is always
pointing inward, (roughly) toward the origin (to be precise what we want to say is that the dot product of
the vector field at a point with the point itself is always negative. This is clear from the fact that solutions
tend toward the origin but can also be verified rigorously in a very similar manner to the previous lemma.
The dot product of a point (x1, . . . , xn) with its corresponding vector is exactly λ1x2

1 + . . .λn x2
n + o(

∣∣x2
∣∣).

By making the error small, we can ensure this quantity is negative.). In particular this means that − f is
always pointing outward (away from the origin). Thus for every x ∈U , there is some (unique) time t < 0
such that |Φt (x)| = ρ. This means that {t < 0 :Φt (x) ∉U } is always non-empty (there is some time in ‘the
past’ where the solution was on the boundary hence not in U ) and is of coursed bounded above (by 0 for
example). This means that the supremum always exists, allowing us to define the map

τ : U \{0} →R

x 7→ sup{t < 0 :Φt (x) ∉U }

In particular, τ(x) corresponds to the first time that the solution starting at x entered U . Then we define

h−1(x) = e−τ(x)AΦτ(x)(x)

with h−1(0) = 0. We want to show that
h−1 ◦Φt = e t A ◦h−1

for all t ≥ 0. We claim that τ(Φt (x)) = τ(x)− t . Intuitively, this is clear. We know that τ(x) is the first time
that the solution starting at x entered U (again, remembered that this happened in the past so to speak,
so τ(x) is in fact negative). So if we evolve the system (forward) by time t , in order to find the first time
we entered U from this new point Φt (x) we must go back time t and then go further back τ(x). Thus
τ(Φt (x)) =−t +τ(x) = τ(x)− t . Luckily, this is one of (the painfully few) times in math when intuition can
be converted almost exactly into formulaic manipulations.

τ(Φt (x)) = sup{s < 0 :Φs (Φt (x)) ∉U } = sup{s < 0 :Φs+t (x) ∉U } = sup{s < 0 :Φs (x) ∉U }− t = τ(x)− t

We then compute that

h−1(Φt (x)) = e−τ(Φt (x))A ◦Φτ(Φt (x))(Φt (x))

= e−(τ(x)−t )AΦτ(x)−t (Φt (x))

= e t A ◦e−τ(x)Φτ(x)(x)

= e t A ◦h−1(x)

The fact that h−1 is invertible is clear, we could swap around things appropriately in the construction
above. All that remains to check is that it is continuous.

We define the function
f (t , x) = |Φt (x)|− r0
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Note this function is 0 exactly when the solution starting at x passed through the ball of radius r0 (some
time in the past). We know this function is C 1 if we ignore the origin. Moreover,

∂ f

∂t
= ∂

∂t
(
√

x1(t )2 +·· ·+xn(t )2) = 1

|x(t )|


x1(t )

...

xn(t )

 ·


x ′

1(t )
...

x ′
n(t )


The dot product is always non-zero (the vector field always points inward toward the origin/solutions

intersect the boundary of the ball transversely). Since ∂ f
∂t ̸= 0, we can use the Implicit Function Theorem

to find the x that solve f (t , x) in terms of t and conclude that this map is C 1. This is exactly the map τ.
This shows continuity (and even differentiability) of h−1 everywhere besides the origin. So let’s check

continuity at the origin as well. Recall we have h−1(x) = e−τ(x)AΦτ(x)(x). By definition of τ(x), we have
that |Φτ(x)(x)| = ρ. Convince yourself that limx→0τ(x) =−∞. Since the linear system causes all systems to
(exponentially) decay as we move forward in time, we get continuity at the origin as well.

Although we assumed that the eigenvalues were real in the above proof, them having negative real
part is sufficient. (The only thing we need to check is that the system is still a sink and this can be done by
considering the same Lyapunov function).

We also assumed that A was diagonalisable, but even this is not necessary. Suppose A is a Jordan block
like so

A =
(
λ 1

0 λ

)
We claim that A is conjugate to the matrix

Ã :=
(
λ ϵ

0 λ

)
for all ϵ> 0 (this is sometimes called the ϵ-Jordan form). This is easily verified by taking

T =
(

1 0

0 ϵ

)

and computing T −1 AT . Suppose y is a solution to y ′ = Ãy . Then

d

d t

(
1

2

∣∣y
∣∣2

)
=λ(y2

1 + y2
2 )+ϵy1 y2

We know that for any two real numbers a,b we have

0 ≤ (a2 +b2)−2ab ⇒ 0 ≥λ(a2 +b2)−2λab

where the inequality flips since λ < 0 (which also implies that −2λ > 0). Thus by taking 0 < ϵ < −2λ,
we can ensure that d

d t ( 1
2 |y |2) < 0 on all non-equlibria solutions, allowing us to use this as a Lyapunov

function (as before) and then proceeding with the proof as before. In this manner, we can show that
Hartman-Grobman holds in the case of Jordan blocks as well (provided that all eigenvalues are real and
negative).

Although we won’t prove the Hartman-Grobman theorem in general, we briefly outline the strategy
for doing so. The generalisation of the above to n×n Jordan blocks is clear (we replace all the off diagonal
1’s with ϵ). We can construct very similar arguments for sources by going back in time. For saddles we can
decompose our space into a direct sum of sources and sinks (that is we write our total space as the sum of
subspaces where solutions approach the equilibria as t →∞ and solutions that approach the equilibria
as t →−∞) and argue on these subspaces separately.

The final idea leads us to the following two definitions.
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Definition 14.13 (Stable/Unstable manifold). Given an equilibrium a, the stable manifold W s (a) as

W s (a) := {x ∈Rn : lim
t→∞Φt (x) = a}

Similarly, the unstable mainfold W u(a) is defined to be

W u(a) := {x ∈Rn : lim
t→−∞Φt (x) = a}

The fact that these sets are manifolds is in fact a consequence of the stable manifold theorem. A
property that readily follows from the definitions is that the two manifolds are positively invariant (that
is if x is an element of either the stable or the unstable manifold then Φt (x) is an element of the same
manifold for all t ≥ 0). Moreover, these manifolds are tangent at x = a.

15 Techniques for non-linear systems

We have discussed plenty about how to classify flows and such. So we can know (in certain cases) how
the flow of a certain system behaves, up to homeomorphism. Unfortunately, when dealing with systems
in the real world (gross) one would like to know how a given system behaves without having to construct
homeomorphisms and such (indeed the homeomorphism defined in Proposition 14.12 required one to
know the flow of the non-linear system which rather defeats the purpose). So we briefly discuss some
techniques for determining qualitative/rough behaviour of dynamical systems.

15.1 Nullclines

Nullclines are perhaps the simplest idea one may think of when trying to determine the qualitative be-
haviour of some given system. Namely, we find when the different components of the solutions will have
derivative 0. This allows us to partition the space into subdomains where we know the signs of the com-
ponents of the solution. This gives a rough idea as to how initial points in these domains behave and
with a bit of creativity and guesswork, one can stitch these together to sketch out the phase portrait of the
system.

Definition 15.1 (Nullcline). Given a system x ′ = f (x) on D ⊂Rn , the j -th nullcline is the set

{x ∈ D : f j (x) = 0}

15.1.1 Example 1

Consider the system

x ′ = x(a −by)

y ′ = y(−c +d x)

Remark 15.2. This is the famous Lotka-Volterra system

We see that the x-nullcline is at x = 0 and y = a
b . Similarly the the y-nullcline is at y = 0 and x = c

d .
This splits the upper right quadrant (which is our domain if we are indeed thinking of this as the Lotka-
Volterra system). Then for x < c

d we have y ′ < 0 and for x > c
d we have y ′ > 0. Similarly for y < a

b we see
x ′ > 0 and for y > a

b we have y ′ < 0. Plotting this information we conclude, the system evolves at least
somewhat circularly. We don’t immediately see that the solutions are periodic (as we know them to be),
which already tells us that nullclines aren’t too informative, but something is better than nothing so one
can hardly complain.
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15.2 Lyapunov functions

We have already defined Lyapunov functions in the previous section. Here we show why they are so use-
ful. They allow us to find stable and asymptotically stable equilibria (especially useful if solving for them
directly is difficult).

Theorem 15.3 (Lyapunov’s Theorem) Let x∗ is an equlibrium point for x ′ = f (x). Suppose L : D →R (where
D ⊂ Rn , as usual, is open) is a differentiable function such that L(x∗) = 0 and L(x) > 0 for all x ∈ D\{x∗}. If
DL(x)( f (x)) ≤ 0 for all x ∈ D\{x∗} then x∗ is stable and if the inequality is strict, then x∗ is asymptotically
stable.

Remark 15.4. We don’t strictly need the fact that L(x∗) = 0 and L(x) > 0 for x ̸= x∗; we only need x∗ to be
a strict local minimum. However, we can always assume this to be the case by shifting L appropriately.

Remark 15.5. As a fun little fact, DL(x)( f (x)) is exactly the push forward of the tangent vector f (x) at x
via L. Perhaps someday I will be able to tell you whether this should be painfully obvious or not.

Proof. We first show stability. That is given a neighbourhood U of x∗, we want to find a neighbourhood V
of x∗ such that x ∈V implies thatΦt (x) ∈U for all t ≥ 0.

Without loss of generality, we can assume that U is bounded and that x∗ is the only critical point in U
(if either of these does not hold, we can always consider a smaller subset where this does hold and since
the solutions will always lie in this subset, the same will hold true for the larger one). Let m := min{L(x) :
x ∈ ∂U }. Since x∗ is the (only) local minimum, we must have that L(x∗) < m. Then x∗ ∈ V := {x ∈ D :
L(x) < m}. Then if x(0) ∈ V , then L(x(t )) < m for all t > 0 since L is non-increasing along solutions (note
(L ◦x)′ = DL(x)◦x ′ = DL(x)( f (x)) giving us the non-increasing property by hypothesis of the theorem).

Suppose now that the inequality is strict. In other words, DL(x)( f (x)) < 0 for all x ∈ D\{x∗}. We wish
to show that x∗ is asymptotically stable. We know that L(x(t )) is a decreasing function for every (non-
constant) solution. Thus limt→∞ L(x(t )) is bounded below by L(x∗) implying that the limit exists and is
greater than or equal to L(x∗).

We choose some x0 ∈ V and let x(t ) be the solution to the differential equation satisfying x(0) = x0.
Since V is compact, we can find an increasing sequence t j such that lim j→∞ x(t j ) = y0 for some y0 ∈ V .
Clearly we must have that L(x(t )) > L(y0) for all t . We will show that this leads to a contradiction. The idea
is that L will decrease along the solution starting at y0. Continuous dependence implies that L of solutions
that begin close to y0 will also be bounded above by L(y0). But since x(t j ) lie close to y0 (for sufficiently
large j ) leading to the desired contradiction. Now we write this formally.

Suppose y0 ̸= x∗ (if they are equal, we are done). Let y(t ) be a solution to the differential equation
satisfying y(0) = y0. We know then that for all t > 0, we get L(y(t )) < L(y0) (this is where we use y0 ̸= x∗).
We fix some τ> 0. Then of course L(y(τ)) < L(y0) implying that there is a neighbourhood Wτ of y(τ) such
that for all w ∈Wτ, we have L(w) < L(y0) (we can take L−1((−∞,L(y0)) for example).

Continuous dependence of solutions implies that solutions with similar initial conditions will evolve
similarly. Thus we can find a neighbourhood W0 of y0 such that Φτ(w) ∈ Wτ for all w ∈ W0. Since W0

is a neighbourhood of y0, we know there is some x(t j ) ∈ W0 (by definition of convergence). Therefore
Φτ(x(t j )) = x(t j +τ) ∈ Wτ. But this means that L(x(t j +τ)) < L(y0) by construction of Wτ, leading to the
desired contradiction.

In fact the above statement, has a converse. Namely if x∗ is a sink for a system x ′ = f (x), then there
exists a Lyapunov function L(x) on a neighbourhood of x∗ that satisfies all the above hypotheses which
would allow us to conclude that x∗ is a sink (i.e. we have x∗ is a strict local minimum, derivative along
non-constant solutions is negative, etc.).

Sometimes one finds that the Lyapunov function is actually constant along solutions. In this case,
one finds solutions to the differential equation very easily: they are simply the level sets of the Lyapunov
function. This occurs, for example, with the Lotka-Volterra system if we take

L(x, y) = d · x − c log x +b · y −a log y
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15.3 Gradient Systems

As mentioned in general it is rather difficult to find Lyapunov functions. However one instance, where the
Lyapunov function is particularly nice and easy to find is with gradient systems.

Definition 15.6 (Gradient System). A gradient system is a differential equation of the form x ′ = −∇V (x)
where V : D →R is a C 2 function.

In this case we can take L(x) =V (x) since

d

d t
V (x(t )) = DV (x) · x ′ =∇V · (−∇V ) =−|∇V |2

Of course this is 0 exactly on the equilibrium and negative everywhere else, as we would expect.
With gradient systems, one often imagines the graph of V as forming a surface (say if D ⊂ R2) and

solutions to x ′ =−∇V (x) correspond to travelling down this surface according to gravity.

15.4 Hamiltonian Systems

Hamiltonian systems are quite analogous to gradient systems, at least in terms of definitions. Although
they are a bit more general, we will restrict out attention to Hamiltonian systems on R2.

Definition 15.7 (Hamiltonian systems). A Hamiltonian system is a differential equation of the form

x ′′ =−∇V (x)

where V : D →R is a C 2 function.
Equivalently a system z ′ = f (z) is Hamiltonian if there exists a map H : D →R such that

x ′ = ∂H

∂y
(x, y), y ′ =−∂H

∂x
(x, y)

These are another class of systems where the Lyapunov function is easy to find. Namely we define

L(x, y) = 1

2
|y |2 +V (x)

(where V is as in the first definition). Then if (x(t ), y(t )) is a solution, we get

d

d t
L(x(t ), y(t )) = y y ′+∇V (x)x ′ = 0

Thus we find that L is actually constant along solutions. Since L is continuous, if solutions get closer and
closer together with time then they must have the same constant. To be precise, we have the following
statement.

Suppose Γ is a closed orbit that solves the equation and suppose y ∈ D is such that d(Φt (y),Γ) → 0 as
t →∞. Suppose L|Γ ≡ cΓ and L|β ≡ cβ where β is the orbit of y . Then continuity of L implies that cΓ = cβ.

15.5 Wronskian

The Wronskian is another tool that can be used to compare solutions of a differential equation (or even
compare solutions of similar differential equations).

Definition 15.8 (Wronskian). Given two differentiable functions f , g we define their Wronskian W ( f , g )
to be a function where

W ( f , g )(x) = f (x)g ′(x)− f ′(x)g (x) = det

(
f (x) g (x)

f ′(x) g ′(x)

)
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In order to see how useful this tool is, consider the equation

u′′(x)+p(x)u′(x)+q(x)u(x) = 0 (15.1)

where p(x) and q(x) are some continuous functions. Clearly if f , g are linearly dependent functions then
W ( f , g ) = 0. However the converse also holds to some extent: if f , g are linearly independent solutions to
Equation 15.1 then W ( f , g ) is never 0.

Lemma 15.9 Suppose f , g are linearly independent solutions to Equation 15.1 then W ( f , g ) is never 0.

Proof. If we write Equation 15.1 as a linear system of first order equations, we get(
u(x)

v(x)

)′
=

(
0 1

−q(x) −p(x)

)(
u(x)

v(x)

)
If f and g are linearly independent solutions to Equation 15.1, then they are linearly independent solu-
tions to the first-order system above as well (to be precise u(x) = f (x), v(x) = f ′(x) and u(x) = g (x), v(x) =
g ′(x) form the pair of linearly independent solutions). This exactly means that(

f (x)

f ′(x)

)
,

(
g (x)

g ′(x)

)
are linearly independent for all x which in turn is equivalent to saying that the determinant above is never
zero.

This fact allows for an easy proof of the following theorems.

Theorem 15.10 (Sturm Separation Theorem) Suppose f , g are linearly independent solutions to (15.1).
Then f must vanish between any two successive zeroes of g . In other words the zeroes of f and g occur
alternately.

Proof. Let a,b be 2 successive zeroes of g with a < b. Suppose g > 0 on (a,b). Then g ′(a) > 0 and
g ′(b) < 0 (in principal we only have g ′(a) ≥ 0 rather than have the strict inequality. However if g ′(a) = 0
then W ( f , g )(a) = 0 which we know cannot happen. The same is true for g ′(b)). Note that W ( f , g )(a) =
f (a)g ′(a) and W ( f , g )(b) = f (b)g ′(b). Since W ( f , g ) never vanishes, it must maintain its sign. Since g ′(a)
and g ′(b) have opposing signs, the same must be true for f (a) and f (b). Then the Intermediate Value
Theorem implies that f is 0 somewhere on (a,b) as desired. A symmetric argument holds if g < 0 on
(a,b).

Remark 15.11. By noting that sin(kx) and cos(kx) are linearly independent solutions to u′′+k2u = 0, we
find that their zeroes alternate (as we know them to).

Theorem 15.12 (Sturm Comparison Theorem) Let f (x) and g (x) be non-trivial solutions to u′′+p(x)u = 0
and v ′′+q(x)v = 0 where p(x) ≥ q(x). Then f (x) vanishes at least once between successive zeroes of g , unless
p(x) = q(x) and f is a constant multiple of g .

Proof. Let a < b be two successive zeroes of g like before and suppose f does not vanish on (a,b). By
replacing f and/or g with their negatives (those also satisfy the same ODE’s), we can assume without loss
of generality that f , g are positive on (a,b). As before, this means that g ′(a) is non-negative and g ′(b)
is non-positive (because f and g no longer solve the same differential equation, we cannot use the same
argument to conclude that the inequalities are strict). Thus what we find is that W ( f , g )(a) = f (a)g ′(a) ≥ 0
and W ( f , g )(b) = f (b)g ′(b) ≤ 0.

Then we compute that

d

d x
W ( f , g )(x) = f ′g ′+ f g ′′− g ′ f ′− g f ′′

= f (−qg )− (−p f )g

= (p −q) f g

If p ̸= q , then the above is positive on some neighbourhood so W ( f , g ) is increasing on that neighbour-
hood (and remain non-decreasing outside it). But this contradicts W ( f , g )(b) ≤ 0 (since W ( f , g )(a) ≥ 0).
Since we have covered the case with p = q in the previous theorem, we are done.
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16 Limit Sets

Limit sets are useful for understanding the ultimate behaviour of a given solution and thereby gaining
insight into the limiting behaviour of the flow.

Definition 16.1 (Limit sets). Given a solution x(t ) to the differential equation x ′ = f (x) with f : D → Rn

(with D ⊂Rn open), we define the ω-limit set of x as

ω(x) = {y ∈ D : exists an increasing sequence t j to ∞ such that lim
j→∞

x(t j ) = y}

Equivalently we can write
ω(x) = ⋂

s>0
{x(t ) : t ≥ s}

Analogously, we define the α-limit set of x as

α(x) = {y ∈ D : exists a decreasing sequence t j to −∞ such that lim
j→∞

x(t j ) = y}

or
α(x) = ⋂

s<0
{x(t ) : t ≤ s}

Proposition 16.2 The two definitions of ω(x) (and α(x)) are equivalent.

Proof. Clearly if there is an increasing sequence t j such that x(t j ) → y then y is going to be in the closure
of all {x(t ) : t ≥ s} (one could take this to be the definition of closure (in metric spaces)). Thus we wish to
show inclusion in the other direction. This is also fairly easy to do. For every j ∈ N, we find t j such that
t j ≥ j and |y −x(t j )| < 1

j (both of these are possible by definition of the sets and the definition of closure).
Then by construction x(t j ) → y .

Remark 16.3. For the second definition of ω(x), we could equivalently take s ∈R or s ∈N instead of s > 0.
The same holds true for the second definition of α(x) (i.e. we could have s ∈R or s ∈−N instead of s < 0).

Note that limit sets could be empty. For example if x ′ = 1, then we know solutions are of the form
x(t ) = t + c and clearly both limit sets will be empty in this case. This is in fact typical of unbounded
solutions or solutions that leave D . However, if x(t ) is a bounded solution that remains in D for all t > 0,
then ω(x) will be non-empty. This is easily seen by considering a compact set that contains x(R+) and
verifying that the finite intersection property holds for the family of sets in the (second) definition ofω(x).
An entirely analogous argument holds for α(x).

16.1 Examples

Consider Figure 18. In this case we have ω(x) = {
p

}
and α(x) = {

q
}
. The situation is reversed for y(t ),

namely we have ω(x) = {
q
}

and α(x) = {
p

}
. Such solutions that connect different equilibrium points

to one another are called heteroclinic solutions. Solutions that connect the same equilibria are called
homoclinic.

We see that z(t ) has a closed orbit so, in fact, we get ω(z) = α(z) = {z(t ) : t ∈R}. Finally we have r (t )
with ω(r ) = {z(t ) : t ∈R} and α(r ) = {a}. Finally Figure 19 highlights another case that may occur with
ω(w) = {x(t ) : t ∈R}∪ {

y(t ) : t ∈R}∪ {p, q} and α(w) = {a}. Roughly speaking, these examples illustrate
what all bounded limit sets in the plane look like.

Limit sets have some nice properties as well.

Proposition 16.4 Suppose x(t ) be a bounded solution to x ′ = f (x) and let ω(x) denote the ω-limit set of x.
Then ω(x) is always closed and if y ∈ω(x), then y(R) ⊂ω(x). Moreover ω(x) is connected.

Proof. We show ω(x) is closed by showing it contains its limits points (where by limit points, we mean
the topological notion). Let yn be a sequence in ω(x) that converges to some y . We want to show that
y ∈ω(x). The procedure will be exactly what you expect: since the yn converge to y , they come arbitrarily
close to y and since each yn is aω limit point, the solution through x also gets arbitrarily close to them. By
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Figure 18: Example of limit sets, assume p, q, a are equilibria

Figure 19: Example of limit sets, assume p, q, a are equilibria

combining these two facts (perhaps you can already see the triangle inequality lurking around the corner),
we can find a sequence of points in x that converges to y . All that remains is to translate this into precise
mathematics.

By definition of limit sets, for every n, there exists a sequence (tk,n)k∈N such that

lim
k→∞

x(tk,n) = yn

For each n ∈ N, define ln be such that
∣∣yn −x(tk,n)

∣∣ < 1
n for all k ≥ ln . We then define sn = tln ,n . In

particular this means that ∣∣yn −x(sn)
∣∣< 1

n

Let ϵ> 0 be given. We find n0 such that for all n ≥ n0 we have
∣∣y − yn

∣∣< ϵ
2 . Then for n ≥ n0, we get

∣∣y −x(sn)
∣∣≤ ∣∣y − yn

∣∣+ ∣∣yn −x(sn)
∣∣< ϵ

2
+ 1

n

Thus by taking n to be larger than n0 and 2
ϵ , we get

∣∣y −x(sn)
∣∣< ϵ.

Suppose y ∈ ω(x) and let t ∈ R be arbitrary. Then there exists an increasing t j to infinity such that
lim j→∞ x(t j ) = y . Then

Φt (y) = lim
j→∞

Φt (x(t j )) = lim
j→∞

x(t j + t )

where the final term is an element of ω(x) by definition.
We can prove this using the second definition of ω(x) as well.

Φt (ω(x)) =Φt

(⋂
s>0

{x(r ) : r ≥ s}

)
⊂ ⋂

s>0
Φt ({x(r ) : r ≥ s})

⊂ ⋂
s>0
Φt ({x(r ) : r ≥ s})

⊂ ⋂
s>0

{x(t + r ) : r ≥ s}

=ω(x)
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Recall that a closed set C ⊂Rn is connected if for any partition C =C1∪C2 where C1,C2 are closed with
C1 ∩C2 =; we have that C1 =; or C2 =;.

Now suppose ω(x) is not connected. Let C1,C2 form a partition of ω(x). In other words C1,C2 are
both disjoint, non-empty closed sets whose union is equal to ω(x). Let y1 ∈ C1 and y2 ∈ C2. Note that C1

and C2 are bounded as well and are thus compact. Thus there exists m > 0 such that |z1 − z2| ≥ m for all
z1, z2 ∈C1,C2 respectively. By definition of ω(x), we know there exist increasing sequences s j and t j such
that lim j→∞ x(s j ) = y1 and lim j→∞ x(t j ) = y2. Without loss of generality we can assume that s j < t j for all
j . Consider the construction of the sequences in Proposition 16.2. We first construct the s j , then when
constructing the second sequence, we just always ensure to choose t j to be larger than s j .

Consider the map on [s j , t j ] (for every j ) where we map r in this open interval to d(x(r ),C1) (note that
this distance function is well-defined since C1 is closed and even compact). We see that d(x(s j ),C1) = 0
and d(x(t j ),C1) ≥ m. Thus by the Intermediate Value Theorem, there exists some r j ∈ (s j , t j ) such that
d(x(r j ),C1) ≥ m

2 . Similarly, we can argue that r j are such that d(x(r j ),C2) ≥ m
2 (in fact there needs to be

a slight argument for why we can pick the same r j to satisfy both inequalities. It’s not a terribly difficult
argument but is besides the point. Quite frankly all we need is that x(r j ) is some positive distance from
both C1 and C2 and clearly this can be done). We now have another increasing sequence r j so we must
have p := lim j→∞ x(r j ) ∈ω(x) (if the limit does not exist, we can always pass to a convergent subsequence
by sequential compactness). But p cannot be in either of C1 or C2 since it is a positive distance away from
both (follows from the fact that the map defined above on [s j , t j ] is actually continuous). This contradicts
ω(x) =C1 ∪C2.

Remark 16.5. The above properties are also held by α-limit sets. This can be verified by tweaking the
proofs where appropriate (in the obvious manner) or realising thatα(x) =ω(y) where y = x(−t ) (i.e. going
back in time) is a solution to y ′ =− f (y).

16.2 Poincaré-Bendixson Theorem

In general, limit sets can be pretty messy. However, on the plane limit sets are (relatively) well-behaved.
In fact, we have the Poincaré-Bendixson (not a typo) theorem, which roughly says that ω(x) will either
contain equilibrium points or will be a periodic solution to the differential equation. Before we prove this
statement (or even state it precisely), a definition.

Definition 16.6. A section γ for the flow of x ′ = f (x) is a curve segment (i.e. a continuous map on R)
such that it intersects the vector field transversally. That is det(γ′(s), f (γ(s))) ̸= 0 (where each entry is the
column in the matrix).

Note that γ′(s) tells us the “direction” of the section at γ(s) (the push forward of the tangent vector at
s if you want) and f (γ(s)) is the vector field at γ(s) so if the determinant is non-zero, we know the two
vectors are linearly independent, giving the transversal intersection of γ with the vector field. In fact by
reversing the parameterisation of γ if necessary, you can always assume the determinant to be positive.

Theorem 16.7 (Poincaré-Bendixson) Let f : D ⊂ R2 → R2 be C 1 and x(t ) a solution to x ′ = f (x) that is
contained entirely in D. Suppose that ω(x) contains no equilibrium points and is contained in a compact
set. Thenω(x) is a periodic solution to the ODE. In other words, there is some τ> 0, such that y(t ) = y(t +τ)
for all t . Moreover, we have that ω(x) = {

y(t ) : 0 ≤ t ≤ τ}.

Proof. Let y ∈ ω(x). Since ω(x) does not contain any equilibria we know that that f (y) ̸= 0. Then by
continuity of f , we can find a small section through y on which f is non-zero (in fact if we take γ to be
small enough then the vector field is going to be roughly parallel on the section). The first part of this proof
is roughly about understanding how solutions of the ODE behave, where the section γwill be a very useful
tool for doing so. To be a bit more precise, we will see that if a solution intersects a section multiple times,
then it must do so in a very particular way. We will then find a section which y will intersect repeatedly but
then argue that this is always through the same point (curiously, it’s only this last point that will require
the fact that y ∈ω(x)). This will allow us to conclude that the orbit of y is periodic and contained in ω(x).
Finally we will show that this inclusion is in fact an equality.
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Now suppose x̃(t ) is any solution to the ODE that intersects the section γ at times t1, t2, t3, . . . with
ti < ti+1. That is there are some s1, s2, s3, . . . such that x̃(t1) = γ(s1), x̃(t2) = γ(s2), . . . . Then we claim that
si < si+1 for all i or si > si+1 for all i (in other words either s1 < s2 < s3 < . . . or s1 > s2 > s3 > . . . ). In order to
verify this consider Figure 20.

Figure 20: Solutions are trapped inside C after entering it

Let C be the region bounded by {x̃(t ) : t ∈ [t1, t2]}∪S where S is the portion of the section that is be-
tween x̃(t1) and x̃(t2) (in other words S = {

γ(s) : s ∈ [s2, s1]
}

assuming s2 < s1 as in the figure). It is clear
that the region C is positively invariant: solutions cannot exit by crossing the solution curve x since this
would violate uniqueness and they cannot exit via S since the vector field is pointing into C (this also
highlights why it’s important that we’re in the plane, clearly the argument above breaks down for higher
dimensions). Thus if x̃(t ) intersects γ again at γ(s3), it must do so inside C implying that s3 < s2. There
remain 3 other cases to consider (1 other if we ignore mirror images) and the arguments for all other cases
are near identical.

Figure 21: Other cases for showing monotonicity. Note in the second two cases it is the ‘complement’ of C
that is positively invariant.

We now have some understanding of how solutions behave if they intersect a section multiple times.
We are interested in the solution that passes through y . So in order to study it further, let us try and find a
section that this solution (the one through y) will intersect repeatedly.

Let z ∈ω(y) and let γ̃ be a section through z (note how we are using sections and limit sets to under-
stand the behaviour of the solution through y . Hopefully this serves as motivation for why these are useful
tools). We define a map h :R2 →R2 by h(s, t ) =Φt (γ̃(s)). In other words, we use the first coordinate to say
where on the section we are and the second coordinate to say how far forward (or backward) we evolve in
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time. Note that
∂h

∂s
=Φ′

t (γ̃(s))γ̃′(s),
∂h

∂t
= f (Φt (γ̃(s)))

This means that
Dh(0,0) =

(
γ̃′(0) f (γ̃(0))

)
which, by construction of γ̃, is invertible. Thus we can apply the Inverse Function Theorem to conclude
that h is at least locally a homeomorphism (and in fact this holds for every point (s,0) since Φ0 is always
the identity).

Let V be the neighbourhood of z upon which h acts homeomorphically. Since y(tn) → z, we can easily
pick tn such that y(tn) ∈ V . By applying the inverse of h, we find there is some (s, t ) near the origin such
that h(s, t ) = Φt (γ̃(s)) = y(tn). This means that Φ−t (y(tn)) = Φ−t (Φt (γ̃(s))) = γ̃(s) which of course lies on
the section. Since Φ−t (y(tn)) = y(tn − t ) we see that the solution through y intersects γ̃ (geometrically
what we’re doing is finding a neighbourhood of the section where flow is essentially parallel. We find y(tn)
is in this neighbourhood and then flow it forward or backward until it reaches the section). By repeating
this for all other y(tn) which lie in V , of which there are infinitely many, we see that y(t ) intersects this
section infinitely many times. All that remains to show is that all of these points are in fact the same.9

The claim is as follows: if a solution through y where y ∈ ω(x) intersects a section multiple times,
then it must do so at the same point each time. Suppose not. In other words, suppose y1 and y2 are
distinct points on the solution through y that also lie on the section γ̃. Notice that since y ∈ω(x) we have
y1, y2 ∈ω(x) as well.

Like in the previous paragraph, we find neighbourhoods V1,V2 of y1 and y2 respectively where the
homeomorphisms can be found and without loss of generality we can assume that these are disjoint (sim-
ply consider smaller neighbourhoods if not). The intersections of V1 and V2 with the section γ̃ are going
to form sections of their own. By using the homeomorphisms as in the previous case if necessary, we can
assume that x(tn) intersect γ̃ for all (sufficiently large) n. Thus x must intersect the entire section γ̃ as well
as the smaller, disjoint sections monotonically in all cases. Clearly this cannot be done, see Figure 22.

Figure 22: x(tn) must eventually be in the top box but this breaks monotonicity on γ

Thus all the intersections pass through the same point which immediately implies (by uniqueness)
that the solution through y is periodic. By Proposition 16.4, we know that the orbit of y is contained in
ω(x). What remains to show is that this is in fact the entirety ofω(x). In fact there is a slightly more general
statement that holds. If ω(x) contains a closed orbit Γ, then ω(x) = Γ.

9Note that we are only trying to find a section that the solution through y intersects repeatedly. Since x intersects γ, the original
section, repeatedly and x(tn ) is close to y , one would hope that you can show that y must intersect γ repeatedly as well (so we
wouldn’t have to look at another section to make the above argument). Unfortunately it’s not clear to me how to make this argument,
but perhaps you, my dear reader, are clever enough to think of something.
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We will show that d(Φt (x),Γ) → 0 as t →∞. By everything we have done thus far, we know there exists
an increasing sequence tn such that Φtn (x) ∈ γ, Φtn (x) → y and Φt (x) ∉ γ if tn < t < tn+1. We will use Γ to
denote the orbit of y where y ∈ω(x) as before.

By definition, we know that xn := x(tn) come arbitrary close y , so we would like to say the distance
between Φt (x(tn)) and Φt (y) is pretty small.10 We know for any fixed t , we could prove this rigorously
using continuous dependence on initial conditions (for example we know that solutions can only differ
by some exponential amount as time evolves. Unfortunately, this bound is not uniform; it depends on
t ). This is where we use the fact that the solution through y is periodic, say with period τ. Since the xn

are pretty close to y , they should also be roughly periodic with a period of about τ. In fact this is exactly
what is captured by the choice of tn : these are the times when the solution x comes back to the section
(and since the x(tn) converge we know that x(tn+1) is close x(tn) which illustrates the ‘rough periodicity’).
Since y has period τ, we should expect that tn+1 and tn differ by about τ as well. But notice how we are
basically done now: any t is going to lie between some tn and tn+1 so we only ever need to evolve by τ
(or whatever the largest difference between all the tn+1 and tn is). Since we have a maximal time interval
to look at, we can use continuous dependence to determine how close the initial point needs to be to y
in order to ensure we remain close to y for all time in this interval. After evolving xn by this amount (at
most), we will be even closer to y , so continuous dependence will still hold! Now all that remains to do is
turn the above into precise mathematics (buckle up?).

As is typical in math proofs, we will work backwards. First we find the bound for tn+1 − tn . Let V be
a neighbourhood of y such that we have the homeomorphism h from previous paragraph(s) on it. Let ϵ
such that a closed rectangle of height 2ϵ centered on the x-axis and is contained in h−1(V ) (in other words
ϵ is such that J × [−ϵ,ϵ] is contained in h−1(V ) where J is some closed interval itself). Let Vϵ be the image
of this rectangle under h. Since Φτ(y) = y ∈ Vϵ (we take the closed interval J appropriately so y remains
in Vϵ), we know that for xn sufficiently large we will have Φτ(xn) ∈ Vϵ. Therefore Φτ+t (xn) ∈ γ for some
t ∈ [−ϵ,ϵ]. Since the tn are chosen so that successive ones intersect γ while everything between tn and
tn+1 doesn’t, we find that tn+1 − tn ≤ τ+ϵ.

Now we have a bound for tn+1 − tn . From here, as outlined above, the procedure is quite simple.
Suppose β > 0 is given. By continuous dependence there exists some δ such that

∣∣z − y
∣∣ < δ implies that∣∣Φt (z)−Φt (y)

∣∣<β. Moreover, we can choose δ so that this holds for all t where |t | ≤ τ+ϵ (I turn especially
to Theorem 13.2. We are working with a C 1 function on a compact set so we know it is Lipschitz and
we’re working in the simpler case with ϵ1 = ϵ2 = 0). Since the xn converge to y , we find some n0 such that
|y −xn | < δ for all n ≥ n0. Then for t ≥ tn0 we find n such that

tn ≤ t < tn+1

With this n, we find that

d(Φt (x),Γ) ≤ ∣∣Φt (x)−Φt−tn (y)
∣∣

= ∣∣Φt−tn (xn)−Φt−tn (y)
∣∣

<β
Here we use the fact that t − tn ≤ τ+ ϵ. Thus by taking t to be sufficiently large, we can make d(Φt (x),Γ)
arbitrarily small, finally, finally, proving the theorem.

I apologise, the previous proof should probably have been split into multiple lemmas. But then again,
if I was good at making decisions, this wouldn’t exist so :)

17 Techniques for solving ODES

17.1 Separation of variables

Suppose we have a differential equation of the following form

d x

d t
= f (t )g (x)

10Side note: Φt (x(tn )) =Φtn+t (x). So by renaming variables, the statement above is equivalent to saying thatΦt−tn (xn ) is close to
Φt−tn (y). This is not terribly important but we will use this at the very end so hopefully it won’t seem too mysterious.
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where f , g are continuous. Suppose we are also given that x(0) = x0 as our initial condition.
If g (x0) = 0 then x(t ) ≡ x0 is a solution. So suppose that g (x0) ̸= 0, implying that g is non-zero in some

neighbourhood around x0. We can thus do the following

d x

d t
= f (t )g (x)

x ′(t )

g (x(t ))
= f (t )∫

x ′(t )

g (x(t ))
d t =

∫
f (t )d t∫

1

g (u)
=

∫
f (t )d t

G(x) = F (t )+ c

where in the penultimate line we substitute u = x(t ) and in the final line we take G to be the anti-derivative
of 1

g and F to be the anti-derivative of f . Recall we are solving around (0, x0) and we know that g is non-

zero in non-zero in a neighbourhood of it. Thus G ′(x) = 1
g (x) is also non-zero (either all positive or all

non-negative) implying that G is invertible on this neighbourhood. We can thus take x = G−1(F (t )+ c).
The solution passing through (t0, x0) corresponds to c =G(x0)−F (t0).

Remark 17.1. The concrete construction of the solution implies that the solution to a differential equa-
tion with separable values is unique in a small neighbourhood of (t0, x0), given than g (x0) ̸= 0.

The above steps are often written more simply as

d x

d t
= f (t )g (x)

1

g (x)
d x = f (t )d t∫

1

g (x)
d x =

∫
f (t )d t

G(x) = F (t )+ c

17.1.1 Example

A simple example of using separation of variables is Equation 2.3 (no more guesswork required!). A more
interesting example can be found in Section 4.

17.2 Homogeneous Functions

We say a function F on R2 is homogeneous of degree α (with α ∈R) if F (t x, t y) = tαF (x, y).
Suppose we are given

P (x, y)d x +Q(x, y)d y = 0 (17.1)

Where P and Q are homogeneous and of the same degree. Then substituting y = xu (giving us d y =
ud x+xdu) or x = y v (giving us d x = vd y+ yd v) changes our differential equation into one where we can
separate variables.

17.2.1 Example

Suppose we have the following equation[
xe

y
x − y sin

( y

x

)]
︸ ︷︷ ︸

P (x,y)

d x +x sin
( y

x

)
︸ ︷︷ ︸

Q(x,y)

d y = 0 (17.2)
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It is easy to verify P and Q are homogeneous functions (of degree 1). We substitute y = xu (either sub-
stitution works but often one is easier that the other. In this case it seems quite apparent that one would
want to replace y

x ). The substitution gives us

[xeu −xu sin(u)]d x +x sin(u)(ud x +xdu) = 0

eud x +x sin(u)du = 0

(note we divide by x without worry since the original equation Equation 17.2 doesn’t allow for x = 0) The
variables can now clearly be separated.

17.3 Exact Differential Equations

Suppose we have an ODE of the form

P (x, y)d x +Q(x, y)d y = 0

is exact if there exists a function f (x, y) such that

∂ f

∂x
= P (x, y),

∂ f

∂y
=Q(x, y)

The general solution to such ODEs is given by the one-parameter family

f (x, y) = c

It would be nice to know when an ODE is exact. Luckily we have the following theorem which not only
tells us when an equation is exact but even gives a construction for the function f .

Theorem 17.2 Suppose we have an ODE of the form

P (x, y)d x +Q(x, y)d y = 0

where P,Q are defined on a simply connected region and are C 1. Then the equation is exact if and only if

∂P

∂y
= ∂Q

∂x

Proof. The forward direction follows from a theorem in analysis. Namely if a function f is smooth (or
even just C 1) then

∂2 f

∂x∂y
= ∂2 f

∂y∂x

Thus we need show the reverse direction. Thus we assume that

∂P

∂y
= ∂Q

∂x

Suppose such an f were to exist. Then we know that f must satisfy

∂ f

∂x
= P (x, y) ⇒ f (x, y) =

∫ x

x0

P (x, y)d x +R(y)

Typically we get a constant term when integrating, but in this case the constant term depends on y , hence
why R becomes a function of y . By assumption the derivative of f with respect to y is Q. Thus we get that

Q(x, y) = ∂ f

∂y
= ∂

∂y

(∫ x

x0

P (s, y)d s +R(y)

)
=

∫ x

x0

∂

∂y
P (s, y)d s +R ′(y)

=
∫ x

x0

∂

∂x
Q(s, y)d s +R ′(y)

=Q(x, y)−Q(x0, y)+R ′(y)
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where of course x0 is some arbitrary constant in the domain. We then conclude that R ′(y) = Q(x0, y).
Therefore

R(y) =
∫ y

y0

Q(x0, s)d s

(we ignore the integration constant for now since account for it later when giving the general solution to
the ODE). Therefore

f (x, y) =
∫ x

x0

P (s, y)d s +
∫ y

y0

Q(x0, s)d s

All that remains to check is that this f does indeed satisfy the conditions. Now it is clear that

∂ f

∂x
= P (x, y)

The other one takes slightly more work

∂ f

∂y
= ∂

∂y

∫ x

x0

P (s, y)d s +Q(x0, y)

=
∫ x

x0

∂

∂y
P (s, y)d s +Q(x0, y)

=
∫ x

x0

∂

∂x
Q(s, y)d s +Q(x0, y)

=Q(x, y)−Q(x0, y)+Q(x0, y)

=Q(x, y)

17.3.1 Example

Suppose we have the equation

(2x + y cos x)d x + (2y + sin x − sin y)d y = 0 (17.3)

In this case we have P (x, y) = 2x + y cos x and Q(x, y) = 2y + sin x − sin y . Since

∂P

∂y
= cos x = ∂Q

∂x

we can conclude using the previous theorem that the differential equation is exact. Thus we can construct
f as given by the proof as well. We start with

f (x, y) =
∫

P (x, y)d x +R(y) = x2 + y sin x +R(y)

Then we know that

∂ f

∂y
=Q(x, y)

sin x +R ′(y) = 2y + sin x − sin y

Therefore
R(y) = y2 +cos y

Finally we conclude that the general solution to Equation 17.3 is

f (x, y) = x2 + y sin x + y2 +cos y = c
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17.3.2 Integrating Factors

Sometimes an equation is not exact, but we can make it exact by multiplying it with a function. Such a
function is called the integration factor. As an example consider the equation

(t 2x − t )d x +xd t = 0 (17.4)

Suppose there was some function h(t ) (we assume h is a function of t because we know this works. In
general it’s difficult to know what the integration factor should be a function of). Then we would have

(h(t )(t 2x − t ))d x + (xh(t ))d t = 0

which we assume to be exact. This means that

∂

∂t
(h(t )(t 2x − t )) = ∂

∂x
(xh(t ))

h′(t )(t 2x − t )+h(t )(2t x −1) = h(t )

h′(t )

h(t )
= 2−2t x

t 2x − t

=−2

t

Since the right hand side is a function of t , we can integrate to conclude that

log(h(t )) =−2log t

or in other words that

h(t ) = 1

t 2

Similar manipulations can be performed if h is function of x, xt , x
t , t

x , etc. Often it is not obvious what
h should be a function and requires some trial and error. Hence why although we know that any ODE
x ′ = f (x, t ) with f ∈ C 1 in a neighbourhood of (x0, t0) admits an integration factor, in principle this is a
useless technique because it is incredibly hard to find the integration factor.

However there do exist some special cases where integration factors can be found and these serve as
useful examples. Suppose we have an equation of the form

d y

d x
+P (x)y =Q(x) (17.5)

Since the derivative and y are raised to the power of 1, we call this a linear differential equation and specifi-
cally a linear differential equation of order 1. One way of solving this equation is to solve the homogeneous
version (i.e. set Q = 0) using separation of variables and then solve the ODE using variation of constants.
A second method, however, is to use integration factors.

We can first rewrite the equation to get

[P (x)y −Q(x)]d x +d y = 0

Suppose we had an an integrating factor u(x) (in this case we know that the integrating factor is always a
function of the dependent variable, in this case x). Then we would have

∂

∂y
[u(x)P (x)y −u(x)Q(x)] = ∂

∂x
u(x)

u(x)P (x) = u′(x)

u′(x)

u(x)
= P (x)

u(x) = e
∫

P (x)d x
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Note that when integrating the exponent we don’t need to worry about the integration constant since we
don’t need the general solution. Substituting this integration factor into Equation 17.5 we get

e
∫

P (x)d x d y

d x
+P (x)e

∫
P (x)d x y = e

∫
P (x)d xQ(x)

d

d x
(ye

∫
P (x)d x ) = e

∫
P (x)d xQ(x)

y = e−
∫

P (x)d x
(∫

e
∫

P (x)d xQ(x)

)
+ ce−

∫
P (x)d x

We apologise for the horror we have bestowed upon the reader.

17.3.3 Bernoulli Equations

Bernoulli equations are slight variations of the linear differential equations seen before which aren’t them-
selves linear equations but can be turned into ones. Specifically, a Bernoulli equation is of the form

d y

d x
+P (x)y =Q(x)yn (17.6)

In the case of n = 1 we can solve by separation of variables so let us assume that n ̸= 1. Then we multiply
both sides with (1−n)y−n to get

(1−n)y−n d y

d x
+ (1−n)y1−nP (x) = (1−n)Q(x)

Now if we define u = y1−n we see the above equation becomes

du

d x
+ (1−n)P (x)u = (1−n)Q(x)

which is a linear differential equation of order 1 we know how to solve.
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