
MAT415: Algebraic Number Theory

Rishibh Prakash

Jan 2024

Contents

1 Preface 2

2 Introduction 2
2.1 Field Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Galois Theory 3

4 Traces and norms 6

5 Number Fields 9

6 Lattices 12

7 Ring of integers as Dedekind Domains 17

8 Fractional Ideals and Class Group 18

9 Real and complex embeddings 29

10 Embedding map 30
10.1 Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11 Class Group 33

12 Unit Groups 37
12.1 Dirichlet’s Unit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12.2 Example: Finding group of units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12.3 Relative Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

13 Ramification 39
13.1 Decomposition and ramification groups . . . . . . . . . . . . . . . . . . . . . . . . . . 47

14 Cyclotomic fields 55

1



1 Preface

These notes are based on lectured delivered by Professor Jacob Tsimerman during the Winter semester
of 2024.

2 Introduction

The main goal will be to understand the field of algebraic numbers. An algebraic number is a number
that is the root of a polynomial with rational coefficients.

Recall a field is a set equipped with two operations + and · where (F,+, 0) and (F ∗, ·, 1) form
commutative groups (where F ∗ := F \ {0}). The two operations are linked via the distributive law

a · (b+ c) = a · b+ a · c

Equivalently, a field is a commutative ring where every non-zero element is a unit. Some examples of
fields are R,C,Q,Z/pZ( for prime p),Q[

√
2].

2.1 Field Extensions

If E is a field and contains a subfield F then we say E is an extesion (field) of F . This is typically
denoted E/F (note this is not a quotient!). Notice that since we can scale elements of E by elements of
F (this is simply multiplication) we can in fact view E as a vector space over F . We call the dimension
(as a vector space) of E over F the degree of the extension and denote if [E : F ]. We say E is a finite
extension if its degree (as an extension of E) is finite.

Example 2.1. C is a field extension of R. In fact it has degree 2 so is a finite extension.

Example 2.2. R is a field extension of Q. However, this extension is not finite (in fact the dimension
of R over Q is not even countably infinite!).

Often we are working with polynomials over fields. Sometimes these polynomials are irreducible and
the natural question we ask is whether there exists a (finite?) extension which contains a root. In fact
the answer is yes and one can do so in a fairly simple way. Let p(x) be an irreducible polynomial over
F . Then F [x]/(p(x)) is a field (because p(x) is irreducible) containing a copy of F (namely the images
of the constant polynomials). The image of x in the quotient is a root of p(x). In fact quotienting by
irreducible polynomials will be the primary way we construct field extensions.

Definition 2.3 (Algebraic extensions). Given an extension E/F we say α ∈ E is algebraic over
F if one of the following equivalent conditions hold:

(i) There exists an irreducible polynomial f(x) ∈ F [x] such that f(α) = 0.

(ii) F (α) is a finite degree extension over F where F (α) is the (sub)field (of E) generated by
α and E

We say E/F is an algebraic extension if every α ∈ E is algebraic over F .
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Theorem 2.4 The algebraic elements in E over F form a field.

Proof. Given α, β algebraic over F , we want to show α−1, α+ β and αβ are algebraic over F . We will
do so by considering F (α, β).

Since α, β are algebraic over F we know [F (α, β) : F (α)] and [F (α) : F ] are finite. Notice that

[F (α, β) : F ] ≤ [F (α, β) : F (α)] · [F (α) : F ]

This inequality holds because we construct a basis of F (α, β) over F by first finding a basis of the former
field over F (α) and then find a basis of F (α) over F . Thus α−1, α+ β, αβ are algebraic.

Definition 2.5 (Algebraically closed fields). A field F is said to be algebraically closed if every
polynomial in F [x] factors into linear factors. Equivalently every irreducible polynomial in F [x] is
linear.

Theorem 2.6 Every field F has an algebraically closed extension. Moreover this extension can
be chosen to be algebraic over F . In fact, such an extension is essentially unique since any two
algebraic algebraically close extensions of F are isomorphic.

Remark 2.7. The isomorphism at the end can be chosen to be an F -isomorphism so that when
restricted to F , we get an isomorphism of F .

Given a field F , let F be the (unique) algebraic algebraically closed field extension of F . As suggested
by the notation, we call F the algebraic closure of F .

3 Galois Theory

The motivation of Galois theory comes from the fact that often roots of polynomials are algebraically
indistinguishable. For example any polynomial over Q with i as a root also has −i as a root. In other
words there is no way to canonically label one of the roots as i and the other one as −i, just algebraically.
In fact we have the same issue with

√
2 and −

√
2 as well.

Theorem 3.1 Let E/F is a field extension and αinE. If f(x) is a minimal polynomial of α over
F then

F (α) ∼= F [x]/(f(x))

Definition 3.2 (Conjugate elements). Two elements α1, α2 are said to be conjugate is they satisfy
the same minimal polynomial.
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Theorem 3.3 Let α1, α2 ∈ F be conjugate. Then there exists an F -automorphism ϕ : F → F
such that ϕ(α1) = α2.

This is what we mean when we say that conjugate elements are ‘algebraically indistinguishable’.

Definition 3.4 (Normal extension). An algebraic extension E/F is normal if any of the following
equivalent conditions hold:

(i) E contains all the conjugates of α for every α ∈ F .

(ii) The minimal polynomial of α factors into linear factors over E.

(iii) If f(x) is an irreducible polynomial in F [x] then f has a root in E if and only if f splits
completely in E.

(iv) Every F -map ϕ : E → F sends E to E

Example 3.5. C/R is a normal extension (in particular because C is algebraically closed).

Example 3.6. The extension Q( 3
√
2)/Q is not normal because although it contains a root of x3 − 2

it does not contain all of them.

Theorem 3.7 If E/F is an algebraic extension then every α ∈ F is contained in a finite normal
extension E ′ over F .

Proof. Let α1, . . . , αn be conjugates of α (in F ). Then E ′ := F (α1, . . . , αn) is the desired finite normal
extension.

Definition 3.8 (Separable extensions). An algebraic extension E/F is separable if for all α ∈ E
if f(x) is a minimal polynomial of α then α has deg(F ) different conjugates.
An equivalent formulation is to say that whenever E0 is a subfield of E containing F (in other E0

is an extension of F and E is an extension of E0) the number of F -maps from E0 to F is exactly
[E0 : F ].

Example 3.9. The extension Q[
√
2]/Q is separable. Any element in Q[

√
2] is of the form α+ β

√
2

for α, β ∈ Q. If β = 0 then the element is a rational number and nothing needs to be checked (its
minimal polynomial is the linear polynomial x − α). If β is non-zero then a minimal polynomial is
(x− α)2 − 2β2. But this has two roots, namely α± β

√
2.

Example 3.10. This is an example of a non-separable extension. Let F := Fp(t) be the field of all
rational functions in t (which is to say all quotients of polynomials in t with non-zero denominators).
The polynomial f(x) = xp− t is irreducible in F [x]. Thus we can take E := F/(f(x)). Let α be the
image of x which is to say that α is a root of f . Then we know E = Fp(α). However the minimal
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polynomial of α, namely f itself, can be factored in E as

xp − t = xp − αp = (x− α)p

This shows the minimal polynomial has repeated roots and hence this extension is not separable.

As one can see above, we had to work a bit to find a non-separable extension. The following theorem
shows why.

Theorem 3.11 If char(F ) = 0 or F is finite then all algebraic extensions E/F are separable.

Remark 3.12. A field such that every finite extension is separable is called perfect.

Definition 3.13 (Galois extension). A finite extension E/F is Galois if any of the following
equivalent conditions hold

(i) E/F is separable and normal

(ii) |Aut(E/F )| = [E : F ]

(iii) E ⊗F F ∼=
∏

[E:F ] F

Definition 3.14. If E/F is a Galois extension then we define its Galois group

Gal(E/F ) := Aut(E/F ) = {σ : E → E : σ is a field isomorphism such that σ|F = id}

Theorem 3.15 (a) The map

{subgroups of Gal(E/F )} → {subfields of E containining F}
H 7→ EH := {x ∈ E : h(x) = x for every h ∈ H}

is an inclusion reversing bijection.

(b) Gal(E/EH) = H and EH/F is Galois if and only if H is a normal subgroup of Gal(E/F ).
In this case Gal(EH/F ) = Gal(E/F )/H

A simple example to consider are quadratic extensions.

Proposition 3.16 If F is a field of characteristic different from 2 then any quadratic extension
is Galois with Galois group Z/2Z.

Proof. By completing the square, we see that if E/F is a quadratic extension then it is of the form
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E = F [x]/(x2 − a) for a nonsquare a ∈ F . Then E = ⟨1, x⟩ is an F -vector space with Galois group
{id, σ} where σ(1) = 1 and σ(x) = −x.

Example 3.17. Let F = Q and E be the splitting field of x3 − 2. Notice that is a Galois extension
(splitting fields are normal essentially by definition and its separable because x3 − 2 has 3 distinct
roots).
The fundamental theorem of Galois theory gives a correspondence between subfields of E (containing
Q) and subgroups of the Galois group. Let’s see if we can use this correspondence to deduce the
Galois group. A good first step is to determine the order of the Galois group. It is easy to see that
a Q-basis for E is {1, θ, ω, θ2, ωθ, ωθ2} where θ is a cube root of 2 (so θ3 = 2) and ω is a cube root
of unity (so ω3 = 1). Therefore |Gal(E/Q)| = 6.
There are only 2 groups of order 6: S3 and C6 (the cyclic group of order 6). In fact we claim that
Gal(E/Q) cannot be C6. In order to see this, consider the subfield ⟨1, θ, θ2⟩ (if θ = 3

√
2 then this

subfield is Q[ 3
√
2]) which is not normal (as a field extension). Therefore Gal(E/Q) contains a non-

normal subgroup so in particular could not be abelian. In other words, automorphisms of E fixing Q
are exactly the isomorphisms that permute the cube roots of 2, namely θ, ωθ, ω2θ.

4 Traces and norms

Let E/F be a finite (separable) extension with [E : F ] = n. Let α ∈ E. Then we have an F -linear map
on E given by multiplication by α

mα : E → E

β 7→ αβ

We can then define the trace and norm of α using this map.

Definition 4.1 (Traces and norms). Given α ∈ E we define

trE/F (α) := trF (mα|E)
nmE/F (α) := detF (mα|E)

Example 4.2. Take F = R and E = C. If we take α = i then mα (with respect to the 1, i basis) is
given by the matrix (

0 −1
1 0

)
Then trC/R(i) = 0 and nmC/R(i) = 1.

Example 4.3. Take F = Q, E = Q( 3
√
2) and α = 1 + 3

√
2. If we take α = 1 + 3

√
2 then mα, with

respect to the usual 1, θ, θ2 basis, is given by1 0 2
1 1 0
0 1 1


Then trE/F (α) = 3 and nmE/F (α) = 3.
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Lemma 4.4 Let E,F as above. Let M = F (α). If e := [E :M ] then

trE/F (α) = e · trM/F (α)

Proof. Let β1, . . . , βe be an M -basis for E. Let ϕ : M e → E be an isomorphism of M -vector spaces
given by (m1, . . . ,me) 7→

∑
miβi (this is exactly what it means to have an M -basis of E). Then since

the trace commutes with ϕ we have

trE/F (mα) = trF (mα|Me)

= trF (mα|⊕e
1M

)

= e · trF (mα|M)

= e · trM/F (α)

The penultimate equality follows from the fact that M e is just a direct sum of M e times. As mα

acts identically on each summand, the trace over the sum is exactly e times the trace on a single
summand.

Lemma 4.5 Let f(x) ∈ F [x] be a minimal polynomial of α over F . Then f(x) is the charac-
teristic polynomial of mα|M (where as before we have M = F (α)).

Proof. Let g(x) be the characteristic polynomial of mα|M . Then by the Cayley-Hamilton theorem we
have g(mα|M) = 0. On the other hand, it is a direct computation that g(mα|M) = mg(α)|M . This
means that 0 = mg(α)|M(1) = g(α). Since g is monic and deg(f) = deg(g), we conclude f = g.

Corollary 4.6 The eigenvalues of mα|M are exactly the conjugates of α in F . In particular then,

trM/F (α) =

[M :F ]∑
i=1

αi

nmM/F (α) =

[M :F ]∏
i=1

αi

where αi are the conjugates of α.

We can verify the previous examples using this corollary.

Example 4.7. Suppose E = C, F = R and α = i. Then the (only) conjugate of α is −i. Therefore
trE/F (α) = i+ (−i) = 0 and nmE/F (α) = i · (−i) = 1.

Example 4.8. Suppose E = Q( 3
√
2) and F = Q with α = 1 + 3

√
2. The conjugates of α are

1 + 3
√
2, 1 + ω 3

√
2 and 1 + ω2 3

√
2 where ω is a cube root of unity (the conjugates of a sum are the

sum of the conjugates). Then the trace is the sum of the conjugates is 3 + (1 + ω + ω2) 3
√
2 = 3 and
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the norm is
3
√
2(1 + ω

3
√
2)(1 + ω2 3

√
2) = 3

Proposition 4.9 Let E/M and M/F be separable field extensions with α ∈ E. Then

trM/F trE/M(α) = trE/F (α)

nmM/FnmE/M(α) = nmE/F (α)

Proof. Recall that we can find all the conjugates of α by considering all the field homomorphims that
preserve the base field. To be preices, if F is the algebraic closure of F then the conjugates of α
over M are {ϕ(α) : ϕ ∈ HomM(E,F )}. Similarly, given β ∈ M the conjugates of β over F are
{ψ(β) : ψ ∈ HomF (M,F )}. Therefore

trE/M(α) =
∑
ϕ

ϕ(α)

trM/F trE/M(α) =
∑
ψ

ψ

(∑
ϕ

ϕ(α)

)

We can extend each ψ (non-uniquely) to a homomorphim on E. Once we do such an extension we
have

trM/F trE/M(α) =
∑
ψ,ϕ

(ψ ◦ ϕ)(α)

=
∑

ρ∈HomF (E,F )

ρ(α)

= trE/F (α)

The same argument works for the norms by replacing all the sums with products.

Proof 2. We can give a second proof for the traces that is much more down to earth. We simply evaluate
both sides of the equality with respect to some bases.

Let a1, . . . , ad be an F -basis forM and b1, . . . , be be anM -basis for E. Then {aibj} form an F -basis
for E. Suppose we have

αbi =
e∑
t=1

mi,tbt

for mi,t ∈M so

trE/M(α) =
e∑
i=1

mi,i

Now suppose

mi,iaj =
d∑
s=1

f
(i,i)
j,s as
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with f
(i,i)
j,s ∈ F . Then

trM/F (mi,i) =
d∑
j=1

f
(i,i)
j,j

This means that

trM/F trE/M(α) = trM/F

(
e∑
i=1

mi,i

)
=
∑
i

trM/F (mi,i)

=
∑
i

∑
j

f
(i,i)
j,j

Now we evaluate the right hand side with respect to the basis {biaj}. Then we see

αbiaj =

(
e∑
t=1

mi,tbt

)
aj

=

(
e∑
t=1

mi,taj

)
bt

=

(
e∑
t=1

d∑
s=1

f
(i,t)
j,s as

)
bt

=
e∑
t=1

d∑
s=1

f
(i,t)
j,s btas

Then the trace of mα|E over F is sum over the entries where s = j and t = i. In other words,

trE/F (α) =
n∑
i,j

= f
(i,i)
j,j

which is exactly what we computed for the left hand side.

5 Number Fields

We can now introduce the primary objects of study in this course.

Definition 5.1 (Number field). A number field is a field F of characteristic 0 such that [F : Q] <
∞. Equivalently a number field is a finite field extension of Q.

These are the fields we really want to study. One way of understanding these fields is by looking at
how the algebraic integers sit within them.
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Definition 5.2 (Algebraic integer). An element α in a number field F is called an algebraic integer
if the minimal polynomial of α over Q has integer coefficients.

Lemma 5.3 If α ∈ F then exists a positive integer n such that nα is an algebraic integer.

Proof. Let f(x) be the minimal polynomial of α. Let d be its degree. Then the minimal polynomial of
nα is ndf(x/n). It is clear that f(x/n) = 0 for x = nα. No polynomial of lower degree can have nα
as a root since we could use that to find a polynomial of lower degree that has α as a 0.

If

f(x) = xd +
d∑
i=1

cix
d−i

then

ndf
(x
n

)
= nd

(
xd

nd
+

d∑
i=1

ci
xd−i

nd−i

)
Therefore once nd is large enough to clear out the denominators of the ci, all the coefficients will be

integral.

We also have other, arguably more useful, characterisations of algebraic integers.

Lemma 5.4 Let F be a number field and α ∈ F . Then the following are equivalent

1. α is an algebraic integer

2. Z[α] is a finitely generated free abelian group

3. α is an element of a subring R of F , where R forms a finitely generated free abelian group
with respect to addition

Proof. (1) ⇒ (2). Let d = deg(f). Since f has integral coefficients, we conclude that αd ∈〈
1, α, . . . , αd−1

〉
(where

〈
1, α, . . . , αd−1

〉
is the abelian group/Z-module generated by these elements).

But this means all higher powers of α also lie in this finitely generated Z-module. Therefore Z[α] ⊂〈
1, α, . . . , αd−1

〉
. The reverse inclusion is of course also true which means Z[α] =

〈
1, α, . . . , αd−1

〉
.

Hence Z[α] is finitely generated.
(2) ⇒ (3). Take R = Z[α].
(3) ⇒ (1). Let β1, . . . , βn be a Z-basis for R (such βi exist because R is finitely generated and a

free abelian group). Let M := Q · R, which is a subfield of F . We can consider mα acting on M .
Notice that mα|M is completely determined by how it acts on the βi. Since α ∈ R and R is a ring, we
know αβi ∈ R for every i. Moreover since R is a finitely generated free abelian group, we know that
αβi can be expressed as an integral linear combinations of the β1, . . . , βn. This is exactly saying that the
matrix for mα|M with respect to the βi basis has integer entries. Therefore the characteristic polynomial
of mα|M has integral coefficients. By Gauss’s lemma (recall that the characteristic polynomial is monic
so is automatically primitive), this polynomial is irreducible over Q[x] if and only if it is irreducible over
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Z[x]. Since the minimal polynomial of α is a factor of the characteristic polynomial, this means that will
also be integral.

Corollary 5.5 If α, β are algebraic integers then α + β and αβ are algebraic integers.

Proof. Since α, β are algebraic integers, we know by above that Z[α] and Z[β] are finitely generated free
abelian groups. Let a1, . . . , ad and b1, . . . , be be their respective Z-bases. Then Z[α, β] ⊂ ⟨aibj⟩ (and
the reverse inclusion always holds) which means that Z[α, β] is a finetely generated free abelian group.
Since α+β and αβ are contained in this ring by the third characterisation above, we conclude that they
are also algebraic integers.

We get a few immediate corollaries from this corollary.

Corollary 5.6 The set of algebraic integers OF forms a ring, called the ring of integers of F .

Corollary 5.7 If α ∈ OF then trF/Q(α) and nmF/Q(α) are integers.

Proof. This is mostly evident from the proof of (3) ⇒ (1) in Lemma 5.4. Specifically, with respect to a
basis for Z[α] we know mα has integer entries so its trace and determinant are also integers.

In some simple cases, one can directly compute the ring of integers.

Example 5.8. Suppose F = Q(i) and we want to find OF . We know α ∈ F are of the form a+ bi
for a, b ∈ Q. If b = 0 then the minimal polynomial is x− a. This has integral coefficients if and only
if a is an integer. In particular this means that integers are algebraic integers (phew!).
If b ̸= 0 then the minimal polynomial of α is

(x− α)(x− α) = x2 − 2ax+ (a2 + b2)

Hence in order for this to be an integral polynomial we need 2a ∈ Z and a2 + b2 ∈ Z. In fact we
will show that a must be an integer due to the second constraint. Suppose a = n/2 for n some odd
integer. As squares of integers are always congruent to 0 or 1 mod 4, we conclude the fractional part
of n2/4 is necessarily 1/4. This means b2 must have fractional part 3/4 in order to have n2/4 + b2

be an integer. But this cannot happen as that would require the numerator of b2 to be congruent to
3 mod 4.
Therefore a must be an integer which forces b to be an integer as well. In this case, we therefore
conclude that OF = Z[i].

The ring of integers is not always ‘the obvious one’ as the following example illustrates.

Example 5.9. Let F = Q(
√
5). Then α ∈ F is of the form a+ b

√
5 for a, b ∈ Q. The case of b = 0

is the same as above. If b ̸= 0 then the minimal polynomial of α is

(x− (a+ b
√
5))(x− (a− b

√
5)) = x2 − 2ax+ (a2 − 5b2)

Once again we need 2a to be an integer but this time we also have a2 − 5b2 ∈ Z.
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6 Lattices

Lattices will be a nice way of studying the ring of integers.

Definition 6.1 (Lattice). If V is a finite-dimensional Q-vector space, then L ⊂ V is a lattice if
L ∼= ZdimQ V as abelian groups.

Lemma 6.2 L ⊂ V is a lattice if and only if L is finitely generated (as an abelian group) and L
contains a basis for V .

Proof. Let n = dimQ V . Suppose L is a lattice. We already know L is finitely generated since L ∼= Zn.
The isomorphism also implies there exist α1, . . . , αn such that L = ⟨α1, . . . , αn⟩Z. In fact, we claim that
α1, . . . , αn also form a basis for V . If this were not the case then there would be Q-relations between
them. But by clearing denominators we would get Z-relations between them. But this contradicts the
fact that the αi form a Z-basis for L.

Now we show the converse. So suppose L is finitely generated and L contains a basis for V . We
want to show that L is in fact a free abelian group (of the appropriate rank). Let α1, . . . , αn be a basis
for V in L and let β1, . . . , βm be generators for L. Since the αj form a basis for every βi we can find
cij ∈ Q such that

βi =
n∑
j=1

cijαj

Let N be the product of all the denominators of the cij (if you wish to be less wasteful you can take
their LCM instead). Then each βi is contained in

βi ∈
〈α1

N
, . . . ,

αn
N

〉
Since this holds for all βi we have

⟨α1, . . . , αn⟩ ⊂ L ⊂
〈α1

N
, . . . ,

αn
N

〉

Recall that a bilinear form on a K-vector space V is a map Q : V × V → K such that Q is
(separately) linear in each component. We say Q is symmetric if Q(x, y) = Q(y, x). Such forms are
also sometimes called quadratic forms.

Example 6.3. If V = K then muliplication itself is a (symmetric) bilinear form (in fact some sense
every bilinear form can be understood as a product of some kind).

Example 6.4. Given a vector space V and l ∈ V ∗, the map Q(x, y) = l(x)l(y) is also a symmetric
bilinear form.
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Definition 6.5 (Discriminant (of a lattice)). Let V be a Q-vector space of dimension n. Let
α1, . . . , αn be a basis and Q : V × V → Q a bilinear form. Let L be the lattice generated by
the αi. Then we define the discriminant of L with respect to Q as det(Q(αi, αj)) (i.e. take the
determinant of the matrix formed by taking Q(αi, αj) to be the (i, j) entry) and denote it DiscQL.

Lemma 6.6 The discriminant DiscQL is well-defined.

Proof. This is essentially the same reason that the determinant of a linear map can be defined via its
matrix with respect to some basis. Let {β1, . . . , βn} be another basis for L. Then we want to show that
the discriminant remains well defined under this change of basis. Let M be the change of basis matrix.
Notice that M has entries in the integers because we are working with bases of the abelian group L.
Then

(Q(βk, βl))
n
k,l=1 =

(
Q

(
n∑
i=1

ck,iαi,

n∑
j=1

cl,jαj

))n

k,l=1

=

(
n∑

i,j=1

ck,icl,jQ(αi, αj)

)n

k,l=1

=M(Q(αk, αl))
n
k,l=1M

t

Then det(Qβ) = det(Qα) det(M)2. Since M ∈ GL(n,Z) we know det(M) = ±1.

Lemma 6.7 Suppose L1 ⊃ L2 are lattices in V such that [L1 : L2] = m (as abelian groups)
then

DiscQL2 = m2 · DiscQL1

Proof. We simply compute. Let α1, . . . , αn be a basis for L1. Since L2 is a sublattice, there are (integers)
mi so that m1α1, . . . ,mnαn forms a basis for L2.

DiscQ(L2) = det
(
(mimjQ(αi, αj))

n
i,j=1

)
=

(
n∏
i=1

mi

)2

det((Q(αi, αj))
n
i,j=1) = m2DiscQ(L1)

The first equality is a definition. In order to verify the second equality, recall scaling a row or column
of a matrix by a matrix by a also scales the determinant by a. Notice that (mimjQ(αi, αj)) is formed
from (Q(αi, αj))

n
i,j=1 by scaling row i and column i by mi. The determinant is scaled by m2

i for every
i, giving the second equality. The penultimate equality follows form the fact that

∏
mi = m. One way

to see this is to count the cosets of L2 (this is, after all, exactly the index of L2 in L1). There are mi

cosets in the i-th direction so taking a product tells us how many ‘fundamental domains of L1’ fit inside
a single fundamental domain of L2 (see Figure 1).

Here are some examples and non-examples of lattices to keep in mind

1. Z ⊂ Q is a lattice

13



Figure 1: Example of lattice containing sublattice with m1 = 3 and m2 = 2

2. Q ⊂ Q is not a lattice (as it is not finitely generated)

3. Z[1/p] ⊂ Q for a prime p is not a lattice

4. ⟨1/p1, 1/p2, . . . ⟩ where p1, p2, . . . form a sequence of primes is not a lattice

Definition 6.8. The trace pairing trK/Q : K ×K → Q given by

trK/Q(x, y) = trK/Q(xy)

is a bilinear form on K.

Lemma 6.9 The form trK/Q is non-degenerate. In other words, for every x ∈ K \ {0} there is
some (non-zero) y such that trK/Q(x, y) ̸= 0.

Proof. The proof is quite easy. Since x is non-zero we can take y = 1/x to get

trK/Q(x, y) = trK/Q(1) = dimQ(K)

Although a fairly trivial lemma, it is important in view of the following result.

Lemma 6.10 If V is an n-dimensional Q-vector space and Q : V × V → Q is a non-degenerate
quadratic form, then DiscQ(L) ̸= 0 for any lattice L ⊂ V .

Proof. Let ψQ : V → V ∗ be such that (ψQ(x))(y) = Q(x, y) (one can think of ψQ(x) as filling one of
the components of Q so ψQ(x) = Q(x, ·)). Then

Q non degenerate ⇔ ∀x ∈ V \ {0}∃y ∈ V such that Q(x, y) ̸= 0

⇔ ∀x ∈ V \ {0}ψQ(x) ̸= 0

⇔ ψQ injective

⇔ ψQ isomorphism

14



Let α1, . . . , αn be a basis for V and α∨
1 , . . . , α

∨
n its dual basis in V ∗. Recall that given a basis and its

dual we can express any φ ∈ V ∗ with respect to this dual basis by φ =
∑

j φ(aj)a
∨
j . Thus taking

φ = ψQ(αi) we have

ψQ(αi) =
n∑
j=1

ψQ(αi)(αj)α
∨
j =

n∑
j=1

Q(αi, αj)α
∨
j

Therefore (Q(αi, αj))
n
i,j=1 is the matrix for ψQ : V → V ∗ with respect to the αi and its dual basis.

Since ψQ is an isomorphism this matrix must have non-zero determinant which is exactly saying that the
discriminant of the lattice L = ⟨α1, . . . , αn⟩ with respect to Q is non-zero.

Finally we have the following proposition to justify the discussion of lattices and discriminants.

Proposition 6.11 Let K be a number field. The ring of integer OK forms a lattice in K.

Proof. Let α1, . . . , αn be a Q-basis for K. Recall we can scale each αi (by an integer in fact) so that it
lies in OK . Thus we can assume that α1, . . . , αn themselves lie in OK . This tells us that OK definitely
contains a basis of K. It remains to show that OK is finitely generated.

Let α∨
1 , . . . , α

∨
n be the dual basis to α1, . . . , αn. Since trK/Q is a non-degenerate bilinear form, we

know that ψtrK/Q defines an isomorphism from V to V ∗. In particular then, there exist β1, . . . , βn such
that βi is sent to α

∨
i . This means that

ψtrK/Q(βi)(αj) = δij

which just means
trK/Q(βiαj) = δij

Now suppose γ ∈ OK . Then since γαi ∈ OK so the trace of the product is integral for every i. On the
other hand, we know β1, . . . , βn form a basis of K so γ =

∑
ciβi for some rational numbers ci. We

show that in fact the ci must be integers. This is easy to do since the αj essentially allow us to pick out
the j-th component.

Z ∋ trK/Q(γαj) = trK/Q

(
n∑
i=1

ciβiαj

)
=

n∑
i=1

ciδi,jαj = cj

This holds for all j so γ ∈ ⟨β1, . . . , βn⟩. Thus we conclude

⟨β1, . . . , βn⟩ ⊃ OK ⊃ ⟨α1, . . . , αn⟩

But this means that OK must also be isomorphic to Zn. Thus OK is a lattice.

Definition 6.12 (Discriminant of a number field). The discriminant of a number field DiscK (or
sometimes simply DK) is DisctrK/Q(OK).

In fact the discriminant can be useful a tool for calculating the ring of integers.
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Example 6.13. Let K = Q(
√
7). We want to find the ring of integers which we know is a lattice.

Consider the lattice L =
〈
1,
√
7
〉
. Since 1,

√
7 are both algebraic integers, it follows that L ⊂ OK .

The question becomes whether this containment is strict. If it is, then L is a sublattice of OK and
so by Lemma 6.7 we know

DisctrK/QL = DisctrK/Q(OK) · [OK : L]2

In particular we can compute the left and hand side and consider the squares dividing it to restrict
the possibilities for [OK : L].
The trace pairing matrix with respect to the basis {1,

√
7} is(

2 0
0 14

)
which has determinant 28. Therefore DisctrK/Q(L) = 28. The only squares dividing it are 1 and 4
which means [OK : L] = 1 or 2. Suppose the index is 2. Then the possibilities for OK are

〈
1/2,

√
7
〉
,

〈
1,

√
7

2

〉
,

〈
1,

1 +
√
7

2

〉

(consider how you could parallelograms from the fundamental domain of L with ‘half the area’. The
notion of area is mostly for intuition here but we will make it more precise later!). However we can
immediately rule out the first 2 since 1/2 and

√
7/2 are not algebraic integers (notice the square of√

7/2 si not an integer). For 1+
√
7

2
we can see it satisfies 2x2−2x−3 and thus its minimal polynomial

is not integral. Therefore [OK : L] = 1 implying that L = OK .

Theorem 6.14 (Stickleberger) If K is a number field with discriminant DK then

DK ≡ 0, 1 mod 4

Proof. Let α1, . . . , αn be a basis for OK . Let {σ1, . . . , σn} = HomQ(K,C) (i.e. homomorphisms from
K to C that fix Q). Recall that the trK/Q(α) can also be found as the sum of the conjugates of α. But
the σk exactly allow us to find the conjugates of α! Thus combining these things we get

trK/Q(αiαj) =
n∑
k=1

σk(αiαj) =
n∑
k=1

σk(αi)σk(αj) (6.1)

Then consider the matrix

M :=

σ1(α1) · · · σn(α1)
...

. . .
...

σ1(αn) · · · σn(αn)

 = (σj(αi))
n
i,j=1

Then from (6.1) it follows that the trace pairing matrix (with respect to the αi basis) is given by MM t.
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Therefore DK = det(M)2. But we can compute det(M) directly to get

det(M) =
∑
τ∈Sn

∏
i

(−1)τσi(ατ(i))

=
∑
τ∈Sn

∏
i

σi(ατ(i))

︸ ︷︷ ︸
A

−2
∑
τ∈Sn

(−1)τ=−1

∏
i

σi(ατ(i))

︸ ︷︷ ︸
B

= A− 2B

Therefore DK = (A− 2B)2. Both A and B are algebraic integers since they are sums and products of
algebraic integers. In fact A must be rational (and therefore an integer) since A is fixed by the Galois
group. Then DK = A2 − 4AB + 4B2 = A2 + 4(B2 − AB). We know that B2 − AB is an algebraic
integer since A and B are. Moreover, since DK ∈ Z this means that B2−AB is also a rational number.
Therefore we conclude B2 − AB ∈ Z allowing us to conclude that

DK ≡ A2 mod 4 ≡ 0, 1 mod 4

7 Ring of integers as Dedekind Domains

In this section, we show that the ring of integers form a Dedekind domain. There are 3 properties that
Dedekind domains must satisfy. The first of these is integral closure.

Definition 7.1 (Integral closure). Let R be an integral domain and K be its fraction field. Then
α ∈ K is said to be integral over R if there exists a monic polynomial f(x) ∈ R[x] such that
f(α) = 0. We say R is integrally closed in K if α ∈ K being integral implies that α ∈ R.

Here are a few equivalent characterisations, analogous to what we had for algebraic integers.

Lemma 7.2 Let R be an integral domain and α an element of its fractional field K. Then the
following are equivalent:

1. α is integral over R

2. α is contained in a ring S ⊂ K which is finitely generated over R

3. R[α] is a finitely generated R-module

Example 7.3. As one might expect Z is integrally closed over its field of fractions Q

Example 7.4. For a non-example, consider R = Z[2i]. Its field of fractions is K := Q(i). In this
case, R is not integrally closed over K because i ∈ K is integral (it satisfies x2 + 1) but i /∈ R.
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Theorem 7.5 Let K be a number field. Then OK is integrally closed in K.

Proof. Let α ∈ K be integral over OK . Then by Lemma 7.2, we know that OK [α] is a finitely generated
OK-module. But OK itself is a finitely generated Z-module so OK [α] is a finitely generated Z-module.
Therefore by Lemma 5.4, α is an algebraic integer.

The second property that Dedekind domains have is that they are Noetherian.

Definition 7.6 (Noetherian Rings). A ring R is Noetherian if every ascending chain of ideals
stabilises. In other words, if

I1 ⊂ I2 ⊂ I3 ⊂ · · ·

is a chain of ideals in R then there some k ∈ Z such that Ik = Ik+1 = Ik+1 = · · · .

Lemma 7.7 The ring of integers OK is Noetherian.

Proof. Let I ⊂ OK be a non-zero ideal. Then I contains a basis for K as a Q vector space. This is
because we know OK contains a basis and then multiplying this basis by some i ∈ I \ {0} gets us a
basis for K in I as multiplication by a non-zero element maintains linear independence. Let β1, . . . , βn
be this basis in I then.

Definition 7.8 (Norm). Given a non-zero I ⊂ OK , we define

Nm(I) := [OK : I]

Lemma 7.9 Every non-zero prime ideal in OK is maximal.

Proof. Let P ⊂ OK be a non-zero prime ideal. Then OK/P is an integral domain which is finite (as a
set) due to the finite index. We know finite integral domains are fields so P must be maximal.

Definition 7.10. A Dedekind domain R is an integral domain such thata

8 Fractional Ideals and Class Group

Definition 8.1 (Fractional ideal). A fractional ideal in K is a subset I ⊂ K such that I is finitely
generated as an OK-module. Equivalently, I is a fractional ideal if it is an OK-module and is
finitely generated over Z.

Example 8.2. The simplest (and fundamental) example is with K = Q. In this case we know that
all the non-zero ideals are {nZ : n ∈ Z>0}. Then given any q ∈ Q, we see that qZ forms a fractional
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idea. In fact more generally, if I ⊂ OK is an ideal and α ∈ K∗ then αI is a fractional ideal.

Remark 8.3. Throughout this section, it will be useful to think of ideals as actual integers and
fractional ideals as actual fractions/rational numbers to orient yourself and get a sense for what
is actually going on.

In fact every fractional ideal can be scaled version to form an actual (or integral) ideal (analogous to
how one can always scale a rational number to get an integer).

Lemma 8.4 If I ⊂ K is a non-zero fractional ideal then there exists an ideal J ⊂ OK and
α ∈ K∗ such that I = αJ .

Proof. The proof follows more or less immediately from the fact that I is finitely generated as an OK

module and that any element of K can be scaled to form an algebraic integer.
By definition I is finitely generated as an OK module, so let α1, . . . , αn be a finite set of generators.

Each αi can be written in the form αi = ci/di for ci, di ∈ OK (we know every element can be scaled
to be an algebraic integer so we can take this quotient for the ci, di. In fact the di can be taken to be
actual integers, see Lemma 5.3). Take α to be the product of all the denominators so α =

∏
di. Then

J := αI is an OK-module contained in OK . But this is exactly saying that J is an ideal.

We have all the same operations with fractional ideals that we do with regular (or integral) ideals.

Lemma 8.5 If I, J are fractional ideals then I + J , IJ and I ∩ J are all also fractional ideals,
where recall

I + J := {i+ j : i ∈ I, j ∈ J}
IJ := ⟨ij : i ∈ I, j ∈ J⟩OK

I ∩ J = {i : i ∈ I and i ∈ J}

Proof. There exist α1, α2 such that α1I and α2J are integral ideals of OK . But we can take α = α1α2

to get the same conclusion for αI and αJ . In other words, we can scale both I and J by the same
element to get them to be actual ideals in OK . With this we are done since

I + J = α−1(αI + αJ)

IJ = α−2(αI · αJ)
I ∩ J = α−1(αI ∩ αJ)

To continue the theme that fractional ideals are just like fractions, notice how their addition is just
like how addition of fractions works.

In the case whereK = Q, we see that the set of fractional ideals is {qZ : q ∈ Q>0} which interestingly
forms a group (under multiplication of course). In fact this is the case more generally. This is particularly
easy to see in the case where OK is a PID.
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Proposition 8.6 Let K be a number field. Suppose OK is a PID. Then

1. The set of non-zero fractional ideals IK forms an abelian group (under multiplication).

2. Explicitly IK ∼= K∗/O∗
K

Proof. Define the map

ϕ : K∗ → IK

α 7→ αOK

Clearly ϕ preserves the multiplication since

ϕ(αβ) = (αβ)OK = (αOK) · (βOK)

We also claim that ϕ is surjective. Let I ⊂ K be a (non-zero) fractional ideal. Then we can find
α ∈ K∗ and J ⊂ OK an ideal so that I = αJ . Since OK is a PID there is some β so that J = βOK .
But then I = αβOK which is to say I = ϕ(αβ).

Now we can show quite easily that IK forms a group. Associativity is clear (it holds for ideal
multiplication in general). The identity element is OK itself. It only remains to show fractional ideals are
invertible. Let I ∈ IK . Let α ∈ K∗ so that I = ϕ(α). Take J = ϕ(α−1). Then IJ = ϕ(α)ϕ(α−1) =
ϕ(1) = OK .

In order to verify the second statement, we only need to compute the kernel of ϕ.

ker(ϕ) = {α ∈ K∗ : ϕ(α) = OK}
= {α ∈ K∗ : αOK = OK}
= O∗

K

Let us prove the statement in the more general case.

Theorem 8.7 Let K be a number field. Then IK forms an abelian group.

Proof. As above, the only thing we need to check is the existence of inverses. Suppose we know that
integral ideals have inverses. Then if I = αJ with I a fractional ideal and J an integral ideal then
α−1J−1 is an inverse of I. So it suffices to show we can invert fractional ideals. Consider again the
prototypical case of K = Q where if we know how to invert integers, we immediately know how to invert
any other rational number as well.

Step 1 : Reduction to prime ideals
We claim that if J ⊂ OK is a non-zero ideal, then there exist non-zero prime ideals P1, . . . , Pm such
that their product P1 · · ·Pm is contained in J .

If this is not the case, then by Noetheirality there exists a maximal J which does not have this
property. Certainly J cannot be prime (if it were then we could take m = 1 and P1 = J). Therefore J
is not prime so there exists α, β ∈ OK \ J such that αβ ∈ J .
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Consider J1 = (α, J) and J2 = (β, J). By construction J1 ⊋ J and J2 ⊋ J but J1J2 ⊂ J . Since
J was maximal with respect to the above property, we know J1, J2 contain a product of primes. To be
precise, there exist Q1, . . . , Qr and Q

′
1, . . . , Q

′
s all prime such that∏

Qi ⊂ J1,
∏

Q′
j ⊂ J2

but then (∏
Qi

)(∏
Q′
j

)
⊂ J1J2 ⊂ J

Step 2 : Inverting prime ideals
Let P ⊂ OK be a non-zero prime ideal. Define

P− := {α ∈ K : αP ⊂ OK}

As you might imagine P− will be the inverse to P but first, let’s verify that P− is a fractional ideal,
i.e. a finitely generated OK-module. It is easy to see that P− is an OK-module. Let β ∈ OK and
α ∈ P−. Then (αβ)P = αP ⊂ OK (closure of P− under addition and additive inverses is similarly
easy to check). In order to see that P− is finitely generated (as an OK-module) it suffices to show it is
contained in a finitely generated OK-module. By definition of P− we know that for every t ∈ P we have
tP− ⊂ OK . Then taking t to be non-zero we get P− ⊂ t−1OK which is of course a finitely generated
OK-module.

We naturally have OK ⊂ P− and P ⊂ P ·P− ⊂ OK which means that PP− is an ideal in OK (any
R-module contained in the ring R is an ideal). Since prime ideals are maximal in Dedekind domains, we
conclude that P−P = P or P−P = OK . We will show that we cannot have the former.

Suppose we had P−P = P . This forces P− = OK . Let r ∈ P−. If P−P = P , then in particular
multiplication by r defines a ring homomorphism from P → P which we can write out as a matrix
with integer entries (thinking of P as a Z-module). By Lemma 4.5 the minimal polynomial for r is the
characteristic polynomial for this matrix which is in particular a monic polynomial with integer coefficients
and r as a root. Thus r is an algebraic integer. Thus in order to have a contradiction, we simply need
to show there exists r ∈ P− \ OK . This will take some effort.

Take any non-zero β in P and consider the ideal (β) = βOK generated by β. By Step 1 above, we
can find prime factors of (β). In other words, we can find prime ideals P1, . . . , Pm so that

∏
Pi ⊂ (β).

Let m be minimal with respect to this property (i.e. no product of less than m prime ideals lies in (β)).
Since β is in P , we know (β) ⊂ P . Then∏

Pi ⊂ (β) ⊂ P

Primality of P immediately implies that one of the Pi must be P itself (this is analogous to the case of
integers where if a prime divides a product of primes then it must appear in the product). If this were
not the case then we could choose ai ∈ Pi \P to get

∏
ai ∈ P but this contradicts primality. Therefore,

without loss of generality, we can assume P1 ⊂ P and since prime ideals are maximal we have P1 = P .
Since m above was chosen to be minimal, we know

m∏
i=2

Pi ⊊ (β)
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Therefore we can choose γ ∈
∏m

i=2 Pi \ (β). Notice this means

γP ⊂ P ·
m∏
i=2

Pi =
m∏
i=1

Pi ⊂ (β) = β · OK

Rearranging this we get (γβ−1)P ⊂ OK which is to say γβ−1 ∈ P−. But also γβ−1 /∈ OK since we
chose γ to lie outside (β) = βOK . This concludes Step 2.

Step 3 : Inverting (integral) ideals
Suppose not every ideal is invertible. Then (by Noetheirality) there is a maximal ideal J which is not
invertible. Let P be a maximal (hence prime) ideal containing J . By above we know that P has an
inverse P−. Consider P−J . We know 1 ∈ P− (indeed P− contains all of OK) so P−J ⊃ J . Either
P−J = J or, P−J is strictly bigger and so, by maximality of J , it has an inverse.

We know there exists r ∈ P− \ OK which means that rJ ̸⊂ J (if it was then multiplication by
r would be a Z-homomorphism so by the same argument as above would force r to be in the ring of
intgers). Therefore P−J cannot be J . Thus P−J has an inverse Q. This means QP− is an (so the)
inverse of J since

OK = Q(P−J) = (QP−)J

With the previous theorem we actually get unique factorisation of ideals.

Corollary 8.8 Every (non-zero) integral ideal J ⊂ OK is a finite product of prime ideals.

Proof. As we’ve done before, suppose the statement does not hold and take J to be a maximal ideal
so that it cannot be expressed as a product of prime ideals. Let P be the maximal (equivalently, prime)
ideal containing it (clearly J itself cannot be prime). Then J = (JP−)P . We know from above that
JP− is an ideal strictly containing J so JP− can be expressed as a product of primes but this means
that J can be expressed as a product of primes.

Theorem 8.9 Every non-zero integral ideal factors uniquely as a product of prime ideals (up to
the usual shenanigans of reordering).

Proof. The proof runs the same as in the usual integer setting.
Suppose

m∏
i=1

Pi =
r∏
j=1

Qj

with Pi, Qj non-zero prime ideals. Suppose min{m, r} is minimal with respect to having different
factorisation. Notice we have

P1 ⊃
m∏
i=1

Pi =
r∏
j=1

Qj

thus primality of P1 implies that it contains at least one of the Qj (if not we could take aj ∈ Qj \P1 to
get

∏
aj to lie in P1 despite none of the terms lying in P1). Without loss of generality we can assume
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j = 1 and since prime ideals are maximal we conclude P1 = Q1. Then we can multiply both sides of the
equation above by P−(= Q−) to get

m∏
i=2

Pi =
r∏
j=2

Qj

But this contradicts minimality of min{m, r}.

With all this theory being built up, it is useful to work with some examples to see it in action.

Example 8.10. Consider K = Q(
√
−6). In this case, one can calculate that OK = Z[

√
−6]. This

ring is a standard example of where the ‘classic’ unique factorisation statement does not hold since

2 · 3 = 6 = −
√
−6 ·

√
−6

but
√
−6 does not divide 2 or 3 and neither 2 nor 3 divide

√
−6. The ‘problem’ is that the ideals

generated by these elements are not prime. Indeed we see that

(2,
√
−6)(2,

√
−6) = (4, 2

√
−6,−6) = (2)

where for the last equality, the inclusion ⊂ is clear (all the generators are multiples of 2) and to see
⊃ note that 2 = −(4 + (−6)). Similarly we have (3,

√
−6)2 = (3). Therefore

(6) = (2)(3) = (2,
√
−6)2(3,

√
−6)2

is the prime decomposition of the ideal (6).
As a bonus we have, basically, computed the inverses of (2,

√
−6) and (3,

√
−6). Notice(

1

2

)
(2,

√
−6)(2,

√
−6) =

(
1

2

)
(2) = (1)

Therefore

(2,
√
−6)−1 =

(
1

2

)
(2,

√
−6) =

(
1,

√
−6

2

)
and similarly

(3,
√
−6)−1 =

(
1,

√
−6

3

)
It’s also useful to keep counterexamples in mind where things don’t work out to appreciate how

things can go wrong. Here we see why it is important that we work with ideals of OK (or, slightly more
generally, with ideals of Dedekind domains).

Example 8.11. Consider K = Q(i) and R = Z[2i] := {a+ bi : a ∈ Z, b ∈ 2Z}. In this case, we will
show that the ‘fractional ideals’ of R could not form a group. Consider I = (2, 2i)R and J = (2)R.
It is clear that J is properly contained in I (for example 2i /∈ J). However

I2 = (4, 4i,−4) = (4, 4i) = I · J

Thus we don’t even have cancellation of ideals so we certainly could not form a group from the ideals.
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Definition 8.12. If I, J are non-zero ideals, we say I|J (read “I divides J”) if there exists an
ideal M ⊂ OK such that IM = J .
Given two ideals I, J , their greatest common divisor (GCD) is an ideal D such that D|I and D|J
and if D′ is any other ideal dividing both I and J then D′|D. Their lowest common multiple
(LCM) is an ideal M such that I|M , J |M and if M ′ is any other ideal satisfying this then M ′|M .

Lemma 8.13 The GCD and LCM of non-zero ideals exists and

GCD(I, J) = I + J

LCM(I, J) = I ∩ J

Remark 8.14. The main idea is to note that the divisibility relation is equivalent to containment.

I|J ⇔ I ⊃ J

Proof. Suppose I|J . Then there exists M such that J = IM ⊂ I. Conversely suppose I ⊃ J . Then
JI− ⊂ II−1 = OK . Therefore JI

−1 is an ideal in OK so we can write M = JI−1 to get J = IM .
Then since I ∩ J ⊂ I, J ⊂ I + J , it’s certainly true that I + J is a divisor of I and J and that both

I, J divide I ∩ J . Suppose D|I and D|J . Then D ⊃ I and D ⊃ J . Then D ⊃ I + J (since D is an
ideal) so D|I + J . Similarly if I|M and J |M then I ⊃M and J ⊃M so I ∩ J ⊃M so I ∩ J |M .

Remark 8.15. Another way to find the GCD and LCM of ideals is to use their prime factor
decomposition as one would with integers. To be precise, if

I =
n∏
i=1

P ei
i , J =

n∏
i=1

P fi
i

with ei, fi ≥ 0 and Pi distinct prime ideals of OK , then

GCD(I, J) =
n∏
i=1

P
min{ei,fi}
i , LCM(I, J) =

n∏
i=1

P
max{ei,fi}
i

Lemma 8.16 Suppose I, J are fractional ideals. Then I ⊃ J if and only if JI−1 ⊂ OK .

Proof. Suppose I ⊃ J . Then JI−1 ⊂ II1 = OK . Running this in reverse gets us the other direction
(this requires cancellation which is possible since IK is a group). Alternatively, note that J = I ·(JI)−1 ⊂
I · OK = I.
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Corollary 8.17 For all I, J ∈ IK , we have

I · J = (I + J) · (I ∩ J)

Proof. The statement is easy to see for integral ideals. We note that

I · J = GCD(I, J) · LCM(I, J)

This can be seen by writing the GCD and LCM in terms of the prime decomposition of I and J .
Now suppose I, J are fractional ideals. Then we can find α ∈ K∗ and (integral) ideals I ′, J ′ ⊂ OK

such that I = αI ′ and J = αJ ′. Then

IJ = α2I ′J ′ = α2(I ′ + J ′) · (I ′ ∩ J ′) = (αI ′ + αJ ′)(αI ′ ∩ αJ ′) = (I + J) · (I ∩ J)

We also have (unique) factorisation of fractional ideals.

Proposition 8.18 Let I be a fractional ideal. Then we can write

I =
n∏
i=1

P ei
i

where Pi are prime ideals and ei are integers. Moreover this decomposition is unique (up to the
usual reordering stuff).

Proof. Existence of such a decomposition is easy to see. Let α be such that αI is an integral ideal.
Then

I = αI · (α)−1

and we can decompose both terms into a product of primes.
In order to see uniquness, suppose

n∏
i=1

P ei
i =

n∏
i=1

P fi
i

with Pi prime ideals and ei, fi integers (we are allowing some to be 0). LetN be such thatN+ei, N+fi ≥
0 for all i. Then multiplying both sides by

∏n
i=1 P

N
i we get

n∏
i=1

P ei+N
i =

n∏
i=1

P fi+N
i

Both sides are now integral ideals so by uniqueness in this case we conclude ei + N = fi + N for all
i.
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Corollary 8.19 (Chinese Remainder Theorem) Let I =
∏n

i=1 P
ei
i be an ideal with Pi distict prime

ideals and ei positive integers. Then

ϕ : OK/I →
n∏
i=1

Ok/P
ei
i

given by the natural map is an isomorphism.

Remark 8.20. The map is given by [x]I 7→ ([x]P e1
1
, [x]P e2

2
, . . . , [x]P en

n
). This is well-defined

because I ⊂ P ei
i for all i.

Proof. Consider the map ϕ̃ : OK →
∏

OK/P
ei
i . We claim that this map is onto and its kernel is I.

In order to see that this map is onto it suffices to show that elements of the form ([0], . . . , [1], . . . , [0])
can be lifted since these generate the target space as an OK-module. Let Ei denote such elements (i.e.
Ei has [1] in the i-th component and [0] everywhere else). We will show how to lift E1 and the argument
for the remaining Ei is analogous.

Define J :=
∏n

j=2 P
ej
j . Notice that P e1

1 is relatively prime to J so

P e1
1 + J = GCD(P e1

1 , J) = OK

Therefore there exist β ∈ P e1
1 , γ ∈ J such that β + γ = 1. Then ϕ(γ) = E1. In other words,

[γ]P e1
1

= [1]P e1
1

since the difference of the representatives lies in P e1
1 .

We take some time to explore the properties of ideal norms. Recall in Definition 7.8 we defined the
norm of an ideal I as the index [OK : I].

Theorem 8.21 Let K be a number field and I, J non-zero ideal in OK . Then

Nm(IJ) = Nm(I)Nm(J)

Proof. We will prove this lemma using 2 claims:
Claim 1 : The statement holds when I and J are relatively prime, i.e. when GCD(I, J) = OK .
Claim 2 : The statement holds when I = P is prime and J = P n.
Notice that these two claims along with prime decomposition of I, J allows us to conclude the

statement for all ideals. In particular if I =
∏n

i=1 P
ei
i then

Nm(I) =
n∏
i=1

Nm(P ei
i ) (by claim 1)

=
n∏
i=1

Nm(Pi)
ei (by claim 2)
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Proof of Claim 1. By definition Nm(IJ) is the index of the ideal IJ (viewed as a subgroup) in OK .
This is exactly the cardinality of OK/IJ . Then coprimeness of I, J implies, using the Chinese Remainder
Theorem, that

OK/IJ ∼= OK/I ⊕OK/J

Therefore

|OK/IJ |︸ ︷︷ ︸
Nm(IJ)

= |OK/I|︸ ︷︷ ︸
Nm(I)

· |OK/J |︸ ︷︷ ︸
Nm(J)

Proof of Claim 2. This statement takes a bit more work to prove. We want to show that Nm(P n) =
Nm(P )n. Notice that this statement is slightly easier to prove if P is a principal ideal. There are a
few different ways of proving the statement in this setting but one way that generalises quite nicely is to
consider the map

ϕ : OK → (p)/(p2)

α 7→ [pα]

Clearly this map is onto and primality implies that its kernel is exactly (p). So OK/(p) ∼= (p)/(p2). In
fact we can consider the same map on (pn) for n ≥ 1

ϕ : (pn) → (pn+1)/(pn+2)

α 7→ [pα]

Once again primality implies the kernel is (pn+1) so (pn)/(pn+1) ∼= (pn+1)/(pn+2). Notice this means
that

|OK/(p)| =
∣∣(p)/(p2)∣∣ = · · · =

∣∣(pn)/(pn+1)
∣∣

Now we can just combine all this information using the third isomorphism theorem (repeatedly). The
theorem gives us

|OK/(p
n)| = |OK/(p)| · |(p)/(pn)|

= |OK/(p)| ·
∣∣(p)/(p2)∣∣ · ∣∣(p2)/(pn)∣∣

...

= |OK/(p)| ·
∣∣(p)/(p2)∣∣ · ∣∣(p2)/(p3)∣∣ · · · ∣∣(pn−1)/(pn)

∣∣
= |OK/(p)|n

Of course not every (prime) ideal is principal so we still need to consider how to deal with those
ideals. But notice the main thing we used above was the map ϕ : P n → P n+1/P n+2 (for n ≥ 0) and
that its kernel was exactly P n+1. With some work, such a map is not too hard to find and in fact can
be made to look exactly like ϕ above, i.e. multiplication by a single element. Let π ∈ P \ P 2. Then
exactly one factor of P appears in the factorisation of (π), i.e. (π) = PQ where P and Q are coprime
ideals (i.e. GCD(P,Q) = (1)). Then we define

ϕ : P n → P n+1/P n+2

α 7→ [πα]
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We claim that the kernel of ϕ is exactly P n+1. In order to see this suppose [πα] = 0 in the quotient
which is exactly saying (πα) ⊂ P n+2 so P n+2 | (πα) = (π)(α) = PQ(α). Therefore P n+1|Q · (α) and
since Q is relatively prime to P we must have P n+1|(α) so α ∈ P n+1.

Therefore with this map the exact same argument as with the principal ideal case hold. In fact this
is a general technique that one might use to move arguments on principal ideals to general ideals in
Dedekind domains.

We can naturally extend the notion of norms to fractional ideals.

Definition 8.22. Let I be a fractional ideal. Then we can write I = AB−1 for some integral
ideals A,B (we can do so by Proposition 8.18). Then we define

Nm(I) =
Nm(A)

Nm(B)

This extension of the norm has many of the properties that you would expect.

Proposition 8.23 The norm for fractional ideals satisfies the following properties:

1. The norm is well defined. If AB−1 = CD−1 then AD = BC and so Nm(A)Nm(D) =
Nm(B)Nm(C)

2. The norm is multiplicative for fractional ideals as well.

3. If I ⊃ J then Nm(J) = Nm(I)[I : J ]

We have two notions of norm: one for ideals and one for elements of the number field itself. The
two notions agree when they should.

Lemma 8.24 Let α ∈ OK \ {0}. Then

Nm((α)) =
∣∣nmK/Q(α)

∣∣
Proof. Notice by definition Nm((α)) = |OK/αOK |. Consider the map mα

mα : K → K

β 7→ αβ

By definition nmK/Q(α) = det(mα). Since α ∈ OK we know mα(OK) = αOK ⊂ OK . Since αOK is
free abelian group contained in a free abelian group OK , there exists a basis {β1, . . . , βn} of OK such
that {d1β1, . . . , dnβn} form a basis of αOK for some d1, . . . , dn ∈ OK . With respect to these bases,
the matrix of mα forms a diagonal matrix with the di down the diagonal. Then the determinant of mα

is
∏
di. On the other hand we also know that

∏
di = [OK : αOK ] (see Figure 1 once again).

From this the result for fractional ideals follows.
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Corollary 8.25 If α ∈ K∗ then

Nm(αOK) = nmK/Q(α)

Proof. Simply scale α so it lies in OK and then use the previous lemma.

9 Real and complex embeddings

Definition 9.1. We say L ⊂ Rn is a lattice if

1. L ∼= Zn as an abelian group

2. L contains an R-basis for Rn

When dealing with lattices of Q-vector spaces we only needed the first condition. However when
going to R-vector spaces the second condition is a necessary addendum as the following counterexample
demonstrates

Example 9.2. Consider L =
〈
(1, 0), (

√
2, 0)

〉
Z ⊂ R2. Then L is indeed isomorphic to Z2 (as an

abelian group) but clearly should not be a lattice.

Clearly what is going wrong above is that the subset is not discrete and you have points in L that are
arbitrarily close together. If this is not the case then we should have a lattice as the following theorem
shows.

Theorem 9.3 Let L ⊂ Rn be isomorphic to Zn. Then the following are equivalent:

1. L is a lattice

2. L ⊂ Rn is discrete

3. There is some M > 0 so that for all ℓ ∈ L \ {0} we have |ℓ| > M

Proof. (2) ⇒ (3). This follows immediately by applying discreteness to the point 0 ∈ L. In particular
by discreteness there is some δ > 0 so that Bδ(0) ∩ L = {0} so we can take M = δ.

(3) ⇒ (2). The third condition is basically discreteness at 0 and its fairly easy to deduce discreteness
around all other points by translation. Let ℓ ∈ L and let ℓ′ ∈ BM(ℓ) ∩ L. Since L ∼= Zn we know
ℓ′ − ℓ ∈ L and since |ℓ′ − ℓ| < M we conclude ℓ′ − ℓ = 0.

(1) ⇒ (3). If L is a lattice then it contains a basis {e1, . . . , en} of Rn. Let {f1, . . . , fn} be the
standard basis and let ϕ be the vector space isomorphism taking fi to ei. Then Zn ⊂ Rn is sent to L
under this isomorphism. Notice that ϕ is not only an isomorphism but also a homeomorphism. Therefore
since Zn ⊂ Rn is discrete so is its image L.

(3) ⇒ (1). This is the most non-trivial implication. We will show the contrapositive. So suppose L
does not contain a basis of Rn. We will show there exists points in L that are arbitrarily close to 0.

29



Since L does not contain a basis, it lives in an (n− 1)-dimensional subspace of Rn. Let ψ : Rn−1 →
Rn map into this subspace. To be precise, ψ is a linear injective map so that L ⊂ ψ(Rn−1). Let
fi = ψ−1(ei). Let A = maxi{|fi|}. For any B ∈ Z we can consider

S :=

{
n∑
i=1

aifi : ai ∈ Z such that −B ≤ ai ≤ B

}
Notice that |S| = (2B+1)n and S ⊂ BnAB(0). The volume of BnAB(0) is strictly less than the volume
of BnAB+1(0) which in turn is some constant multiple of (nAB + 1)n−1. Notice that |S| grows faster
than the volume (as we allow B → ∞). This will force points to occur arbitrarily close.

To make things more concrete, suppose we place balls of radius 0 < δ < 1 around all the points in
S. Then the total volume over all these ball is Cn−1|S|δn−1 where Cn−1 is the volume of the unit ball.
All of these balls are contained in BnAB+1(0) and if all of these balls were disjoint we would have

Cn−1(2B + 1)nδn−1 < Cn−1(nAB + 1)n−1 (9.1)

However

nAB + 1

(2B + 1)n/(n−1)
→ 0

as B → ∞. Thus by choosing B sufficiently large we can find a δ > nAB+1
(2B+1)n/(n+1) arbitrarily small so

that the inequality in (9.1) is flipped. For such δ, the δ-balls around the points in S cannot all be disjoint
so there must be some s1, s2 ∈ S ⊂ L so that |s1 − s2| < 2δ. Since δ can be taken to be arbitrarily
small, we are done.

10 Embedding map

Definition 10.1. Let K be a number field of degree n. Let r1 be the number of real embeddings
of K (i.e. the number of homomorphisms σ : K → R that fix Q) and 2r2 the number of ‘non-real
complex’ embeddings (i.e. the number of homomorphisms σ : K → C that achieves non-real
values at some points). This quantity is always going to be even because such maps always come
in complex conjugate pairs. The quantities we are going to be most interested in are r1 and r2.

Example 10.2.

1. K = Q(
√
2) then r1 = 2 and r2 = 0

2. K = Q(
√
−1) then r1 = 0 and r2 = 1

3. K = Q( 3
√
2) then r1 = 1 and r2 = 1

Then we can define

σ : K ↪→ Rr1 ⊕ Cr2

k 7→ (σ1(k), . . . , σr1(k), τ1(k), . . . , τr2(k))

where σi are the real embeddings and τj are ‘non-real complex’ embeddings.
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Proposition 10.3 σ(OK) is a lattice

Proof. We already know OK
∼= Zn and σ is an isomorphism onto its image. So we only need to show

σ(OK) contains an R-basis of Rr1 ⊕ Cr2 ∼= Rn. We will do so by showing σ has non-zero determinant.
Let α1, . . . , αn be a Z basis for OK (and hence also a Q-basis for K). With respect to this basis the

matrix for σ is given by

σα =

σ1(α1) · · · σr1(α1) τ1(α1) · · · τr2(α1)
...

. . .
...

...
. . .

...
σ1(αn) · · · σr1(αn) τ1(αn) · · · τr2(αn)


This is an n× (r1+ r2) matrix. Ideally we would like a square matrix and its easy to do so with our usual
identifications of C with R2 via the real and imaginary parts of a complex number. Then the matrix
becomes σ1(α1) · · · σr1(α1) Re(τ1(α1)) Im(τ1(α1)) · · · Re(τr2(α1)) Im(τr2(α1))

...
. . .

...
...

...
. . .

...
...

σ1(αn) · · · σr1(αn) Re(τ1(αn)) Im(τ1(αn)) · · · Re(τr2(αn)) Im(τr2(αn))


which has non-zero determinant if and only if σα does.

By performing column operations we can get τj and τj along the columns. This gives us the matrix

N =

σ1(α1) · · · σr1(α1) τ1(α1) τ1(α1) · · · τr2(α1) τr2(α1)
...

. . .
...

...
...

. . .
...

...
σ1(αn) · · · σr1(αn) τ1(αn) τ1(αn) · · · τr2(αn) τr2(αn)


Let us relabel (σ1, . . . , σn) := (σ1, . . . , σr1 , τ1, τ 1, . . . , τr2 , τ r2) so that now the σi are simply all the

embeddings of K. This means that

N =

σ1(α1) · · · σn(α1)
...

. . .
...

σ1(αn) · · · σn(αn)


It suffices to show that N has non-zero determinant.

Now notice that

NNT = (σ1(αi)σ1(αj) + · · ·+ σn(αi)σn(αj))
n
i,j=1

=
(
trK/Q(αiαj)

)n
i,j=1

Therfore det(N)2 is the discriminant of K. We know the discriminant of a number field is never zero
(combine Lemma 6.9 and Lemma 6.10).
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10.1 Volumes

Recall what a volume form is.

Definition 10.4 (Volume form). Suppose V is a real n-dimensional vector space. Then a volume
form ω is simply a (non-zero) top form on V . More concretely,

ω = cdx1 ∧ · · · ∧ dxn

for c ̸= 0.

Let L ⊂ V be a lattice. Then we know that as (topological) groups we have V/L ∼= Rn/Zn ∼= (S1)n.
We define the volume of L by

cov(L) := vol(V/L) :=

∣∣∣∣∫
V/L

ω

∣∣∣∣
where ω descends to a form on V/L as it is translation invariant. In practical terms, the covolume of L
is simply the area/volume of a fundamental parallelopiped.

Lemma 10.5 If L′ ⊃ L then cov(L) = cov(L′) · [L′ : L].

Proof. Let π : V/L→ V/L′ be the natural projection (notice this is well-defined since representatives in
the domain differ by elements of L and since L ⊂ L′ in particular they differ by elements of L′). Notice
that by construction is π is [L′ : L]-to-one (this is essentially the definition of index. This statement
may become more convincing by considering an example, e.g. V = R, L′ = 2Z and L = 4Z). Notice
also that π is

Another simple observation we can make is

Lemma 10.6 If T : V → V is linear and L ⊂ V is a lattice then cov(T (L)) = cov(L) · |detT |.

Proof. This is a simple application of the change of variables formula

cov(T (L)) =

∣∣∣∣∫
T/V (L)

ω

∣∣∣∣ = ∣∣∣∣∫
V/L

T ∗ω

∣∣∣∣ = |det(T )|
∣∣∣∣∫
V/L

ω

∣∣∣∣ = |det(T )| cov(L)

In order to apply these results about volume forms to our previous discussion, we need to choose a
volume form on Rr1 ⊕ Cr2 . On the copies of R we choose the standard volume form dx and on the
copies of C we choose 2dx ∧ dy (where C is identified with R ⊕ R as usual). With this choice we get
the following lemma
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Lemma 10.7
cov(σ(OK)) =

√
|DK |

Proof. We essentially did this calculation in the proof of Proposition 10.3.

11 Class Group

The class group is an important object for studying rings of integers and measures to some extent how
far the ring is from being a PID.

Definition 11.1 (Class Group). Let IK be the group of non-zero fractional ideals of a number
field K. Let PK ⊂ IK be the group of principal fractional ideals (i.e. PK = {αOK : α ∈ K∗}).
Then the class group of K is

Cl(K) := IK/PK

A highly non-trivial fact about the class group is that it is always finite (which is to say rings of
integers are never ‘too far’ from being PIDs). A key tool in proving this statement is Minkowski’s
Theorem.

Lemma 11.2 (Minkowski’s Theorem) Let V be an n-dimensional real vector space equipped
with a volume form. Let L ⊂ V be a lattice. Let S ⊂ V be a set that is convex, bounded,
closed and symmetric about the origin (i.e. x ∈ S ⇒ −x ∈ S). Then if vol(S) ≥ 2ncov(L) then
S ∩ (L \ {0}) is non-empty. In other words, S necessarily contains a non-zero point of L.

Proof. We consider 2 cases. When vol(S) is strictly greater than 2ncov(L) and when it is equal. Let’s
start with the former case. In this case we have vol(S/2) = 2−nvol(S) > cov(L). Consider the
projection π : S/2 → V/L. Notice that this is locally a volume-preserving homeomorphism. However
π can certainly not be injective, as we conclude by simply comparing the volumes of the domain and
codomain. Thus there exist s1 ̸= s2 ∈ S/2 such that π(s1) = π(s2). This means that

L ∋ s1 − s2 =
2s1 − 2s2

2

Notice that 2s1 and −2s2 are in S (by symmetry of S) so convexity of S implies that (2s1 − 2s2)/2 is
also in S.

Suppose vol(S) = 2ncov(L). For 0 < ϵ ≤ 1 we can consider Sϵ := (1 + ϵ)S. This has volume
strictly greater than 2ncov(L) so by above we know Sϵ ∩ (L \ {0}) is non-empty. Taking ϵ = 1/n, we
form a sequence {an} of points in S1 ∩ (L \ {0}) which is a compact set. Thus we find a converging
subsequence the limit of which must lie in S ∩ (L \ {0}) by construction.

Now we can prove the main theorem.

Theorem 11.3 Given a number field K, its class group Cl(K) is finite.
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Proof. We will show there exists A > 0 such that every ideal class in the class group has a representative
which is an integral ideal of norm at most A.

Let σ : K ↪→ V := Rr1 ⊕Cr2 be the embedding of K. Then we know that cov(σ(OK)) = |DK |1/2.
Then if I ⊂ OK is an integral ideal then cov(σ(I)) = cov(σ(OK))[OK : I] = |DK |1/2Nm(I). This

implies that the identity cov(σ(I)) = |DK |1/2Nm(I) in fact holds for all I ∈ IK . Why? Recall that if
I ∈ IK then there exists α ∈ K∗ so that αI is an integral ideal. Let’s see how both sides scale with
multiplication by α. On the right hand side we gain a factor of Nm((α)) = nmK/Q(α). On the left
hand side, using the fact that σ is a homomorphism we get cov(σ(αI)) = cov(σ(α)σ(I)). Viewing
multiplication by σ(α) as a linear map on V , we see that its determinant is nmK/Q(α). Therefore by
Lemma 10.6, both sides scale by the same amount so can be cancelled out, preserving the equality.

Now we properly begin. Let I ∈ IK arbitrary and let S be a convex, bounded, symmetric, closed
subset of V . Define

λ :=

(
2ncov(I−1)

vol(S)

)1/n

so that vol(λS) = 2ncov(I−1) (for example you could take a closed ball centered at the origin of
appropriate radius). Consider the map ϕ on S given by

(x1, . . . , xr1 , z1, . . . , zr2) 7→ |x1| · · · |xr1| |z1|
2 · · · |zr2 |

2

This is obviously continuous so has a maximum M by compactness of S. Notice that given α ∈ K such
that σ(α) ∈ S, we have ϕ(σ(α)) =

∣∣nmK/Q(α)
∣∣ since the norm of an element is simply the product of

its conjugates which is essentially exactly what ϕ computes.
While we may not be able to find such an α for S (since S may not contain any elements of the

lattice σ(OK)), we can find such an α for λS as given by Minkowski’s Theorem. So fix some non-zero
α ∈ σ(I−1)∩ λS and observe that nmK/Q(α) ≤Mλn (notice that ϕ(λx) = λnϕ(x)). Then with this α
we have

Nm(αI) = Nm(I)Nm((α))

≤ Nm(I)Mλn

=MNm(I) · 2
ncov(I−1)

vol(S)

=MNm(I) · 2
n |DK |1/2Nm(I−1)

vol(S)

=
M2n |DK |1/2

vol(S)

Notice that the final quantity is independent of I. Therefore every element of Cl(K) has a representative

that is an integral ideal (notice αI ⊂ OK since α ∈ I−1) that has norm at most M2n |DK |1/2 vol(S)−1.

We now have a bound for the norm of a representative but we can refine it further by choosing S
appropriately. In fact what one finds is that the optimal S is

S := {(x1, . . . , xr1 , z1, . . . , zr1) : |x1|+ · · ·+ |xr1|+ 2 |z1|+ · · ·+ 2 |zr2| ≤ 1}

Using this S we get the following corollaries
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Corollary 11.4 Every element of Cl(K) has an integral representative J such that

Nm(J) ≤
(
4

π

)r2 n!
nn

|Dk|1/2

Proof. This is exactly what we did in the proof above. Given an ideal I, we found α so that αI has
norm at most M2n |DK |1/2 /vol(S). By using S as above, we get a corresponding bound on M which
gives the statement above.

The right hand side of the inequality is called the Minkowski bound.

Corollary 11.5

|DK |1/2 ≥
nn

n!

(π
4

)r2
Proof. Use the previous corollary with the fact that 1 ≤ Nm(J) for any ideal J .

The previous corollary shows that in particular the discriminant of a field extension is always strictly
greater than 1.

Using factorisation into prime ideals we get

Corollary 11.6 The class group Cl(K) is generated by prime ideals of norm at most(
4

π

)r2 n!
nn

|DK |1/2

Thus we would like to find prime ideals of some norm and the following lemma highlights a way of
finding candidates.

Lemma 11.7 If Q ⊂ OK is a prime ideal, then Q|pOK for some prime integer p. In this case,
we have Nm(Q) = pd for some 1 ≤ d ≤ [K : Q].

Proof. If Q ⊂ OK is prime then Q∩Z is a prime ideal of Z. Since Q ⊂ OK has finite index, Q∩Z ⊂ Z
has finite index. Thus in particular Q ∩ Z ̸= {0}. Therefore Q ∩ Z = pZ for some prime integer p.
Therefore p ∈ Q and so Q ⊃ pOK which is equivalent to saying Q | pOK . Notice that the norm of the
latter ideal is p[K:Q] so Nm(Q) is also a power of p by multiplicativity of norms.

This essentially gives an algorithm for finding generators of the class group. By Corollary 11.6, we only
need to find prime ideals of some bounded norm. If such prime ideals exist then they must divide pOK

for some prime p. So by considering factors of pOK we can find all possible candidates for generators of
the class group. Then it amounts to finding the relations between. We do a few examples below.

Example 11.8. Let’s do an example of a class group computation. Take K = Q(
√
−3). This is a

quadratic extension. In this case we know that DK = −3 and OK = Z[1+
√
−3

2
] (since −3 ∼= 1 mod 4).
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In this case then the Minkowski bound is(
4

π

)1

· 2
2

2!
·
√
3 <

4

3
· 1
2
·
√
3 < 2

In particular this means that every element of Cl(K) has an integral representative of norm at most 1.
The only ideal of norm 1 is OK itself. In particular this means that every (fractional) ideal in K differs
from OK only by a principal ideal so itself must be principal as well. In other words, |Cl(K)| = 1

Example 11.9. For a less trivial example, consider K = Q(
√
−6). Then OK = Z[

√
−6] and

DK = −24. Then the Minkowski bound is(
4

π

)1

· 2
2

2!
·
√
24 <

4

3
· 1
2
· 5 < 4

The only primes less than 4 are 2 and 3. This means Cl(K) is (possibly) generated by prime factors
of 2OK and 3OK . Factorising ideals simply amounts to looking at ideals that sit over them. We can
find these by studying the ideal structure of the quotient. To make this more concrete, first notice
that Z[

√
−6] = Z[x]/(x2 + 6) where the “=” is given by the isomorphism which sends x to

√
−6.

Then

OK/2OK = Z[x]/(x2 + 6)/(2) = F2[x]/(x
2)

We know that x2 = x · x in F2[x] (or indeed in any polynomial ring) which means that (2, x)2 =
2 · Z[x](x2 + 6) which is exactly saying

(2,
√
−6)2 = 2OK

Thus Q2 := (2,
√
−6) is the unique prime ideal dividing 2OK and hence is a (possible) generator for

Cl(K). We will need to check that it is not principal before we can be certain that it is a generator,
but assuming it is, the above computation also tells us that this generator has order 2 since its square
is a principal ideal.
Now we factorise 3OK . Repeating the same steps as above we get

OK/3OK = Z[x]/(x2 + 6)/(3) = F3[x]/(x
2)

Thus as before we conclude Q3 := (3,
√
−6) is the unique factor dividing 3OK where

Q2
3 = (3,

√
−6)2 = 3OK

Therefore we have 2 potential generators for the class group Q2, Q3. We need to check that they are
non-trivial in the class group (i.e. non-principal) and then determine the relations between Q2 and
Q3.
It is easy to see that Q2 and Q3 are non-principal. For example Q2 has norm 2 (as an ideal. One
way to see this is to use the multiplicativity of norms with respect to Q2

2 = (2) where the right hand
side is norm 4). and the norm any α = m + n

√
−6 is m2 + 6n2. But there are no integer solutions

to m2 + 6n2 = 2. The same argument applies to Q3 which has 3. Now we need to determine the
relations between Q2 and Q3. Let’s begin by computing their product.

Q2Q3 = (2,
√
−6)(3,

√
−6) = (6, 2

√
−6, 3

√
−6,−6) = (

√
−6)

Therefore Q2Q3 is trivial in the class group. This means that [Q2] = [Q2]
−1 = [Q3].
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12 Unit Groups

12.1 Dirichlet’s Unit Theorem

Dirichlet’s unit theorem gives us a way of (at least abstractly) getting a handle on the group of units of
OK .

Theorem 12.1 (Dirichlet’s Unit Theorem) Let K/Q be an extension of degree n with r1 real
embeddings and r2 (pairs of) complex embeddings. Let O×

K be the group of units of OK . Then

O×
K
∼= wK × Zr1+r2−1

where wK is the group of roots of unity in OK .

It’s useful to keep in mind what the isomorphism actually is. What we’re saying is that there are
m := r1 + r2 − 1 units in OK , which we label u1, . . . , um such that every other unit is of the form

ωun1
1 · · ·unm

m

for some root of unity ω and integers n1, . . . , nm. The ui are called fundamental units of OK . Some
examples might help make this more concrete.

Example 12.2. Consider the case of any real quadratic field K where we have r1 = 2 and r2 = 0.
In this case we have r1 + r2 − 1 = 1 and the only roots of unit in a real field are ±1. Therefore there
exists some unit u ∈ OK such that every unit in OK is of the form ±un for some integer n.
Even more concretely we can consider the case where K = Q(

√
2). In this case we see that 1+

√
2 is

a unit (since (1+
√
2)(−1+

√
2) = 1). We will show later than that 1+

√
2 is in fact a fundamental

unit so every unit is of the form ±(1 +
√
2)n.

Lemma 12.3 If α ∈ O×
K then Nm(α) = ±1.

Proof. We have that α and α−1 are in OK . Therefore Nm(α) and Nm(α−1) are in Z and hence by
multiplicativity of norms we conclude Nm(α) is a unit of Z which are exactly ±1.

By Dirichlet’s unit theorem, we see that the group of units of a quadratic imaginary field is exactly
the group of roots of unity.

Lemma 12.4 Let K = Q(
√
−D). If D ≥ 5 then O×

K = {±1}.

Proof. This follows readily from the the previous lemma since the only elements of norm 1 are exactly
±1.
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12.2 Example: Finding group of units

Here we find the group of units of K = Q(
√
3). In this case we know that OK = Z[

√
3]. We begin

by finding a unit which amounts to finding an element of norm 1 or integer solutions to m2 − 3n2 = 1.
Checking some numbers we find an example solution with m = 2, n = 1.

In fact we claim that u := 2 +
√
3 is a fundamental unit. In order to see this, suppose 2 +

√
3 =

(m+ n
√
3)p for some integer p. Since p is at least 2 and 2 +

√
3 > 1 we have∣∣∣m+ n

√
3
∣∣∣ <√2 +

√
3

By taking conjugates we know 2 −
√
3 = (m − n

√
3)p and since the left hand side is less than 1 (in

absolute value) we conclude ∣∣∣m− n
√
3
∣∣∣ < 1

Then by the triangle inequality we conclude

|m| ≤
√

2 +
√
3 + 1

2
≈ 1.46 · · · < 2

Thus the only possibilities for m are ±1. But it is easy to see that the only solution to m2 − 3n2 = 1
with these m is n = 0 and clearly −1, 1 are not fundamental units.

One reason to explictly find unit groups is that it gives us tools for determining whether or not a
given ideal is principal. For example notice Q(

√
3) we have

(11) = (11, 5−
√
3)(11, 5 +

√
3)

The question becomes is (11, 5 −
√
3) (or its conjugate) principal? If it were principal we would have

some α := m+ n
√
3 ∈ OK = Z[

√
3] such that

±11 = nmK/Q(α) = m2 − 3n2

In fact by reducing mod 3, we see that there are no solutions to 11 = m2−3n2 (since squares are always
either 0 or 1 mod 3 while 11 = 2 mod 3). Thus we are looking for integer solutions to

−11 = m2 − 3n2

Pick a unit u in OK . Above we found that 2−
√
3 is a fundamental unit in OK which makes this a

particularly convenient choice for u. Notice that because u is a unit we have −11 = αα = (αu)αu.

12.3 Relative Units

Definition 12.5. Let K be a number field. Let S be a finite set of non-zero prime ideals of OK .
Then we define

OK,S := {x ∈ K : x = 0 or (x) has denominators in S}
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13 Ramification

We want to study how primes (and indeed ideals) behave when lifted to field extensions. We begin with
the following theorem which gives us a relationship between the degree of the extension and the ‘amount
of splitting’.

Theorem 13.1 Let K be a number field and [K : Q] = n. Let p be a prime integer. Then pOK

is an ideal in OK so we consider its factorisation

pOK =
m∏
i=1

P ei
i

where the Pi are distinct prime ideals. Define fi := [FPi
: Fp] where FPi

:= OK/Pi (this makes
sense because Z ⊂ OK and pZ ⊂ Pi so we have containment of quotients as well Z/pZ ⊂ OK/Pi).
Then

n =
m∑
i=1

eifi

Proof. This is easy to prove by taking norms of both sides and using multiplicativity of norms

pn = Nm(pOK) =
m∏
i=1

Nm(Pi)
ei

=
m∏
i=1

|FPi
|ei

= p
∑
eifi

We call fi the residual/inertial degrees and the ei the ramification degrees.
We want to kind of general these (and some previous constructions) to arbitrary extensions L/K as

opposed to just extensions of Q. We begin by discussing lifts of ideals

Definition 13.2 (Lifting ideals). Let L/K be a field extension and I ⊂ OK an ideal. Then we
define

IL := IOL

where the right hand side is the ideal generated by I in OL.

Remark 13.3. Typically one thinks of these in terms of generators. Then the generators of I
and IL are the same. For example if we take (2) ⊂ Z and lift it to Z[i] ⊂ Q(i) we get the ideal
(2). However in the former case we have (2) = {2n : n ∈ Z} while in the latter case we have
(2) = {2a+ 2bi : a, b ∈ Z}.
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Remark 13.4. We have
(IJ)L = ILJL

This can be argued by considering generators since on either side we are simply considering products
of the same generators on both sides.

The map defined above from ideal in K to ideals in L is injective.

Proposition 13.5 Given an extension L/K and I ⊂ OK an ideal we have

IL ∩ OK = I

Proof. By construction we have I ⊂ IL ∩OK . It remains to show the reverse inclusion. Let’s first show
the case for principal ideals. In other words, we claim that

αOL ∩ OK = αOK

This is easy since

β ∈ αOL ∩ OK ⇔ β/α ∈ OL and β ∈ OK

⇔ β

α
∈ OL and β ∈ OK

⇔ β

α
is an algebraic integer and in K

⇔ β ∈ OK

Now given an arbitrary ideal I ⊂ OK we can use the finiteness of the class group to conclude that
Im is principal for some (positive) integer m. Then by above we have (Im)L ∩OK = Im = (I ∩OK)

m.
On the other hand

(Im)L ∩ OK = ImL ∩ OK ⊃ (IL ∩ OK)
m

Therefore Im = (IL ∩ OK)
m and therefore we conclude I = IL ∩ OK .

If I ⊂ K is a fractional ideal we can consider

IL = IOL ⊂ L

Definition 13.6 (Norms). Let L/K be number fields and I ⊂ OL. Let M be a normal closure
of L. Then we define

NmL/K(I) :=
∏

σ∈Gal(M/K)/Gal(M/L)

σ(IM)

(notice with the quotient we simply mean the cosets in the Galois group as opposed to an actual
quotient since the subgroup may not be normal).
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Remark 13.7. Notice that as defined this norm sends an ideal in OL to an ideal of OM . This is
rather unsatisfying and we will fix it soon.

The simplest examples to think of are naturally cases where L/K is Galois in which case we are
simply multiplying by all the conjugates of IL.

Example 13.8. Consider K = Q(
√
5) and the (non-principal) ideal I = (11, 5−

√
3). Then

NmK/Q(I) = (11, 5−
√
3)(11, 5 +

√
3)

= (121, 11(5−
√
3), 11(5 +

√
3), 22)

Notice that the gcd of 121 and 22 is 11 and every generator is a multiple of 11. Therefore we have

NmK/Q(I) = (11) = 11Z

A couple properties of the norm are immediate from the definition:

� NmL/K(IJ) = NmL/K(I)NmL/K(J)

� Let α ∈ OL. Then

NmL/K(αOL) =
∏

σ∈Gal(M/K)/Gal(M/L)

σ(α) · OM = nmL/K(α) · OM

� Similar to above, it follows that if α ∈ I then nmL/K(α) ∈ NmL/K(I)

Another natural definition of the norm, without needing to go the normal closure is

Definition 13.9 (Norm). Given field extensions L/K and I ⊂ OL an ideal, we define

ÑmL/K(I) := (nmL/K(α) : α ∈ I) ∈ IK

In other words, we look at the ideal of OK generated by the norms of all α ∈ I.

In fact these two definitions of norms coincide. In order to prove this statement we need the following
lemma.

Lemma 13.10 Let I, J be non-zero ideals of OK . Then there exists α ∈ I such that αOK = I ·I ′
where gcd(I, I ′) = OK .

Proof. We first decompose I and J to their prime factors

I =
k∏
i=1

Pmi
i , J =

k∏
i=1

P ni
i
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(notice we are using the same primes for both ideals so some of the mi and ni may be 0). Now consider
the map

OK →
k⊕
i=1

OK/P
mi+1
i

which we know by the Chinese Remainder Theorem is onto. In particular then there exists α ∈ OK such
that α ∈ Pmi

i \ Pmi+1
i (choose an element of I that is not sent to 0. By construction not all of I can

be sent to 0). Since α ∈ I we know (α) ⊂ I which is equivalent to saying I | (α). In particular then
there exists an integral ideal I ′ such that II ′ = (α).

We claim that I ′ is coprime to J . Suppose P n | J and Pm | I. If P | I ′ then Pm+1 | II ′ = (α) but
this contradicts the above choice of α.

Theorem 13.11 Given I ⊂ OL an ideal, we have

NmL/K(I) = (ÑmL/K(I))M

Proof. We know nmL/K(α) ∈ NmL/K(I) for every α ∈ I so in particular we conclude

NmL/K(I) ⊃ (ÑmL/K(I))M

Thus there exists an ideal J ⊂ OM such that

J ·NmL/K(I) = (ÑmL/K(I))M

Notice that since the other two ideals are Galois invariant, so is J . We will use this below. Using the
above lemma choose α ∈ I such that αOL = II ′ and I ′ is coprime to J ∩ OL. Then we have

NmL/K(I) ·NmL/K(I
′) = NmL/K(αOL) = NmL/K(α) · OM

Since nmL/K(α) ∈ ÑmL/K(I) we have

J ·NmL/K(I) = (ÑmL/K(I))M | nmL/K(α) · OM = NmL/K(I)NmL/K(I
′)

Therefore J | NmL/K(I
′).

Now recall that I ′ is coprime to J ∩ OL. Therefore their lifts to M are also coprime: i.e. I ′M is
coprime to J . This is equivalent to saying

I ′M + J = OM

Applying a Galois automorphism to both sides and using the fact that J is Galois invariant, we get

σ(I ′M) + J = σ(OM) = OM

Thus J is coprime to all conjugates σ(I ′M) of I ′M . Since J |NmL/K(I
′) we conclude that J = OM .

From now on we will use NmL/K(I) to mean ÑmL/K(I) (although we will often think of it using
the original definition as the product of its conjugates). The main benefit is that NmL/K(I) is actually
an ideal in K now. Let’s explore some more of its properties.
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Proposition 13.12 Let L ⊃ K ⊃ F be number fields. Let I be an ideal of OL, I0 an ideal of
OF and α an element of L. Then

(a) NmL/F (αOL) = NmL/F (α) · OF

(b) NmK/F (NmL/K(I)) = NmL/F (I)

(c) NmL/F ((I0)L) = I
[L:F ]
0

(d) Norm(I0) · Z = NmF/Q(I0)

Proof. (a) This holds essentially by definition

NmL/F (αOL) = (NmL/F (αβ) : β ∈ OL)

= (NmL/F (α) ·NmL/F (β) : β ∈ OL)

= NmL/F (α) · OF

(b) Let M be the normal closure of L. Then

(NmL/K(I))M =
∏

σ∈Gal(M/K)/Gal(M/L)

σ(IM)

Thus

(NmK/F (NmL/K(I)))M =
∏

τ∈Gal(M/F )/Gal(M/K)

τ((NmL/K(I))M)

=
∏

τ∈Gal(M/F )/Gal(M/K)

∏
σ∈Gal(M/K)/Gal(M/L)

τ(σ(IM))

=
∏

σ′∈Gal(M/F )/Gal(M/L)

σ′(IM)

= (NmL/F (I))M

(c) Let m > 0 be an integer so that I0 = αOF . Thus

(NmL/F (I0)L)
m = NmL/F ((I0)

m
L )

= NmL/F ((I
m
0 )L)

= NmL/F (αOF )

= α[L:F ]OF

= I
m[L:F ]
0

Thus by uniquness of prime factorisation, since their m-th powers are equal, we conclude

NmL/F (I0) = I
[L:F ]
0
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(d) Once again choose m so that Im0 = αOF so we have

Norm(I0)
m = Norm(Im0 ) = Norm(αOF ) =

∣∣nmF/Q(α)
∣∣

Therefore we have

(Norm(I0) · Z)m = nmF/Q(α) · Z = NmF/Q(αOF ) = NmF/Q(I0)
m

where the penultimate equality follows from the first property in the proposition. Thus we have

Norm(I0) · Z = NmF/Q(I0)

A consequence of the above properties is the following useful proposition. This is a useful way of
turning a given ideal into a principal ideal when raising it to a sufficiently high power (as we’ve done
before) may not be useful.

Proposition 13.13 Let K be a number field and I ⊂ OK an ideal. Then there exists a finite
extension L/K such that IL is principal.

Proof. As we have so often done, choose m > 0 so that Im = αOK . Let L = K(β) where β is such
that βm = α (in other words β is an m-th root of α). Then we have

ImL = (αOK)L = αOL = βmOL = (βOL)
m

Thus
IL = βOL

Let L/K be number fields. Let Q ⊂ OL be a (non-zero) prime ideal. Then P = Q∩OK is a prime
ideal of OK . Then FQ := OL/Q and FP := OK/P are fields with the former containing the latter. So
we consider the degree of this extension which, as we will see, is a very important quantity.

f := [FQ : FP ]

Theorem 13.14 (a) NmL/K(Q) = P f

(b) Given P ⊂ OK prime, we can consider the prime factorisation of PL

PL =

g∏
i=1

Qei
i
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Define fi := [FQi
: FP ]. Then

g∑
i=1

eifi = [L : K]

Proof. (a) First let’s show that NmL/K(Q) is a power of P . From Proposition 13.12 we know
NmL/K(PL) = P [L:K]. Now since P ⊂ Q (by definition) we have PL ⊂ Q. Thus NmL/K(PL) ⊂
NmL/K(Q) which is equivalent to saying

NmL/K(Q) | NmL/K(PL) = P [L:K]

Thus by unique prime factorisation of ideal, we conclude that NmL/K(Q) = Pm for some positive
integer m.

Recall from Proposition 13.12 that

NmK/Q(NmL/K(Q)) = NmL/Q(Q)

In particular this means Norm(NmL/K(Q)) = Norm(Q) = |FQ| (where by |·| we mean the
cardinality of the set, this equality holds by definition of Norm and FQ). On the other hand we
have

|FQ| = Norm(NmL/K(Q)) = Norm(Pm) = |FP |m

Therefore m = [FQ : FP ].

(b) The second statement follows by taking norms of both sides of the factorisation.

P [L:K] = NmL/K(PL) =

g∏
i=1

NmL/K(Qi)
ei =

g∏
i=1

(P fi)ei

We get the statement be equating the exponents.

Example 13.15. Take L = Q(i), K = Q. Take P = 2Z. Then PL = 2Z[i]. We begin by factorising
this ideal. This amounts to factorsing 2 in OL = Z[i]. Thus we have

PL = ((1 + i)OL)
2 = Q2

where Q := (1 + i)OL. In this case we have g = 1 and e = 2 which forces f = 1. Alternatively we
can also compute f directly. Notice FP = Z/(2) = F2. Similarly

FQ = Z[x]/(x2 + 1)/(1 + x) = Z[x]/(1 + x)/(x2 + 1) = Z/(2) = F2

That is FQ = F2 so f = [FQ : FP ] = 1.
On the other hand take P = 3Z. Then PL = 3OL is prime. We can find this by considering the
quotient

OL/3OL = Z[x]/(x2 + 1)/(3) = F3[x]/(x
2 + 1) = F9

Therefore f = [F9 : F3] = 2. In total we have g = 1, e = 1, f = 2.
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The final behaviour we could have is when the prime (ideal) splits into distinct primes. For example
take P = 13Z. Then PL = 13OL = (2+ 3i)OL · (2− 3i)OL. In this case we have g = 2 so we must
have e1 = f1 = 1 and e2 = f2 = 1.

Example 13.16. Things were fairly simple in the previous example because of the small degree. For
a slightly more complicated example let’s take K = Q (again) and L = Q(ζ) where ζ is a fifth root
of unity. In other words ζ satisfies

1 + ζ + ζ2 + ζ3 + ζ4 = 0

We will prove later that the ring of integers OL is Z[ζ] = Z[x]/(x4 + x3 + x2 + x+ 1).
Consider P = (19). We compute

OL/19OL = Z[x]/(x4 + x3 + x2 + x+ 1)/(19) = F19[x]/(x
4 + x3 + x2 + x+ 1) = F19[x]/(x

2 + 5x+ 1)(x2 − 4x+ 1) = F192 ⊕ F192

Therefore we have g = 2, e1 = e2 = 1 and f1 = f2 = 2.
The factorisation of the polynomial over F19 may be difficult to do. There is another way of seeing
why the quartic would split into a product of quadratics. Factorising f(x) = x4 + x3 + x2 + x + 1
over F19 is essentially asking what extension of F19 has a fifth room of unity. We deduce this using
the very useful fact that F×, for any finite field, is a cyclic group. This immediately tells us that
F19 has no fifth roots of unity since such an element would have order 5 in the multiplicative group
but

∣∣F×
19

∣∣ = 19 − 1 = 18 so F×
19 cannot have an element of order 5 (in other words the polynomial

f(x) has no solution in F19). On the other hand
∣∣F×

192

∣∣ = 192 − 1 = 360 certainly does have an
element of order 5 and this element is of course a fifth root of unity. Thus we conclude that although
f(x) has no linear factors, it does have a quadratic factor from which it is immediate that it must be
the product of two quadratics. Since the polynomial is separable, it must be the product of distinct
quadratic polynomials.

Example 13.17. Finally, let’s look at a non-Galois example. As the classic example of such cases,
let’s take L = Q( 3

√
2) and K = Q. We have proven previously that OL = Z[ 3

√
2]. Take P = (41).

Then
OL/POL = F41[x]/(x

3 − 2) = F41[x]/(x− 5)(x2 + 5x+ 25)

Thus the prime factors of PL are Q1 = (41, 3
√
2− 5) and Q2 = (41, 3

√
4+ 5 3

√
2+ 25). In other words

we have g = 2, e1 = 1, f1 = 1, e2 = 1 and f2 = 2.
Once again, even without explicit factorisation, we can deduce that f(x) = x3− 2 splits as a product
of a linear and a quadratic term. First we can simply try all the elements of F41 to check whether
any are cube roots of 2. Alternatively, notice that

∣∣F×
41

∣∣ = 40 is not a multiple of 3. Thus cubing is
an isomorphism of F×

41 so in particular there is an element (in fact it is unique) whose cube is 2. This
also shows that there are no other linear factors since we only found the unique cube root of 2 in F41

while the polynomial is separable (notice f(x) and f ′(x) are coprime in F41). Therefore f(x) must
be a product of a linear and quadratic factor.
Alternatively, notice we have a cube root of 2 in F41 and the remaining cube roots differ by cube
roots of unity. Using the same argument as in the previous example, one can check that although F41

does not have any cube roots of unity, F412 does. This means we must have a quadratic term in the
factorisation.
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13.1 Decomposition and ramification groups

In this section, unless otherwise specified, then L/K is a Galois extension and G will often be used to
denote the Galois group Gal(L/K).

Theorem 13.18 Let P ⊂ OK be a non-zero prime ideal. Let Q,Q′ ⊂ OL be prime ideals
dividing PL. Then there is some σ ∈ Gal(L/K) such that σ ·Q = Q′. In other words, the Galois
group Gal(L/K) acts transitively on the prime factors of PL.

Proof. Suppose

PL =

g∏
i=1

Qei
i

One of the Qi is Q and one of them is Q′. Without loss of generality we can assume Q = Q1 and
Q′ = Q2. From Theorem 13.14 we know that P | NmL/K(Q). For any ideals I, J ⊂ OK we have

I | J ⇔ IL | JL

(one way to see this is by recalling that divisibility of ideals is equivalent to containment). Therefore, we
have

g∏
i=1

Qei
i = PL | (NmL/K(Q))L =

∏
σ∈Gal(L/K)

σ ·Q

Thus by primality we know there exists some σ in the Galois group such that Q′ | σ ·Q1. But since σ is
an isomorphism and Q1 is prime, σ ·Q1 must also be prime (and maximal) so we have Q′ = σ ·Q1.

Corollary 13.19 Suppose L/K is Galois. Let PL =
∏g

i=1Q
ei
i . Then

e1 = e2 = · · · = eg and f1 = f2 = · · · = fg

where, as usual, fi = [FQi
: FP ]. In particular we have

[L : K] = efg

Definition 13.20 (Decomposition Group). Let L/K be an extension which, as usual in this
section, we assume to be Galois. Let P ⊂ OK and Q ⊂ OL be prime such that Q | PL. Then we
define the decomposition group

DQ := {σ ∈ Gal(L/K) : σ ·Q = Q}

Notice that if Q and Q′ are both primes dividing PL then by the above theorem, we know there is
some σ in the Galois group taking Q to Q′ and so

DQ′ = σDQσ
−1
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Thus all these decomposition groups are isomorphic (and indeed are conjugate in the Galois group).
Every element σ of the Galois group gives an automorphism of the ring of integers σ : OL → OL. If

σ ∈ DQ then σ descends to a quotient σ : OL/Q → OL/Q. Notice also that we have OK ⊂ OL and
P ⊂ Q so OK/P ⊂ OL/Q. Moreover since σ is in the Galois group, we know it fixes K and hence it
fixes OK . Putting this altogether we see that σ : OL/Q→ OL/Q is a field automorphism fixing OK/P ,
which is to say σ ∈ Gal(FQ/FP ). In fact we will soon see that every element of Gal(FQ/FP ) arises in
this manner. Before we get to this, let’s look at some examples.

Example 13.21. Consider L = Q(i) and K = Q. Take P = 5Z. Then its lift 5OL is not prime and
splits into the product (1 + 2i)OL · (1− 2i)OL. Let’s take the first term to be Q and compute DQ.
The Galois group Gal(L/K) is the group of 2 elements {1, σ} where σ is the conjugation map.
Obviously 1 ∈ DQ so it only remains to check whether σ fixes Q or not. We compute

σ · (1 + 2i)OL = (1− 2i)OL ̸= (12i)OL

Thus the decomposition group DQ in this case is trivial, simply {1}.

Example 13.22. For another example, consider the same setup as above with L = Q(i) and K = Q
but with P = 7Z. In this case 7OL is prime so DQ must be everything. This is because the Galois
group acts transitiviely on the primes over P but since there is only one prime, all elements of the
Galois group must send it to itself.

Theorem 13.23 The map DQ → Gal(FQ/FP ) is onto.

Proof. Choose α̃ ∈ FQ such that FP (α̃) = FQ (recall that a finite field extension of any finite field is
simple). Let

PL =

g∏
i=1

Qei
i

be its prime decomposition as usual with Q = Q1. Using the Chinese Remainder Theorem, we choose α
a lift of α̃ such that

α ≡

{
α̃ mod Q1

0 mod Qi for i > 1

Notice for σ ∈ Gal(L/K) \ DQ we have α ∈ σ−1 · Q. This is because we know elements of the
Galois group also act as maps on the set of prime factors of PL. Since σ

−1 does not fix Q (since σ does
not fix Q), we conclude that σ−1 ·Q = Qi for some i > 1. But by choice of α we know α ∈ Qi for all
i > 1. Thus we have α ∈ σ−1 ·Q or, equivalently, σα ∈ Q. Now consider

h(x) :=
∏
σ∈G

(x− σα)

where G is the Galois group Gal(L/K). As this polynomial is fixed by the Galois group we conclude

that h(x) ∈ OK [x]. Let h̃(x) be its reduction mod Q. Then we have

h̃(x) =
∏
σ∈G

(x− σα) =
∏
σ∈DQ

(x− σα) ·
∏

σ∈G\DQ

(x− σα) =
∏
σ∈DQ

(x− σα) · x|G\DQ|
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Notice that h(α̃) = 0 (this is because the identity is always in DQ). Since h̃(x) is a polynomial in

Fp(x). All the conjugates of α̃ are also roots of h̃(x). To be precise, h̃(τ α̃) = 0 for all τ ∈ Gal(FQ/FP ).
But we can see all the roots of h̃(x) in the decomposition above. Therefore we conclude that for all
τ ∈ Gal(FQ/FP ) we can find σ ∈ DQ such that σα = τ α̃. This is exactly saying σ(α̃) = τ(α̃) and
therefore σ = τ since α̃ is generating.

As one might expect the kernel of the above map is important and interesting.

Definition 13.24 (Inertia Group). Given L/K Galois and a prime P ⊂ OK with Q ⊂ OL a prime
over P , we define the inertia group IQ to be the kernel of the homomorphism DQ → Gal(FQ/FP ).

There are some immediate properties we can conclude about the inertia group.

Corollary 13.25 Let L/K Galois and a prime P ⊂ OK with Q ⊂ OL a prime over P . Then IQ
is a normal subgroup of DQ. Moreover |DQ/IQ| = f and hence |IQ| = |DQ| /f = e.

Proof. The first statement is immediate from the fact that IQ is the kernel of a homomorphism. The
second statement follows from the second isomorphism theorem and the fact that |Gal(FQ/FP )| =
[FQ : FP ] = f . For the last part we need to show that |DQ| = ef . In order to prove this, recall from
Corollary 13.19 that |G| = [L : K] = efg. Since the Galois group acts transtively on the prime factors
of PL (see Theorem 13.18) we get

|DQ| =
|G|
g

= ef

Corollary 13.26 DQ/IQ is cyclic of order f .

Proof. This is simply because the Galois group for any finite field is cyclic.

There is another way to think of the inertia group.

Proposition 13.27
IQ = {σ ∈ G : for every α ∈ OL, σα− α ∈ Q}

Proof. For the first inclusion let σ ∈ IQ and α ∈ OL. Since σ is in IQ it acts as the identity element

in the Galois group Gal(FQ/FP ). Therefore σ(α) = σ(α) = α where α is the image of α in FQ. But

σ(α) = α in FQ is exactly saying σ(α)− α ∈ Q.
For the reverse inclusion, suppose σ is an element of the Galois group Gal(L/K) such that σα−α ∈

Q for every α ∈ OL. First we show that σ ∈ DQ. This is easy to see since σα = α + (σα − α) so if
α ∈ Q then the left hand side is also in Q since we can express it as a sum of things in Q. Now we need
to check how σ acts on FQ.

Let α ∈ FQ be arbitrary and α some lift of it. Then by assumption σα − α ∈ Q. Thus σα = α in
FQ. Thus σ acts as the identity map so lies in the kernel of the map DQ → Gal(FQ/FP ).
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We can then also define the ramification group.

Definition 13.28. As with our usual setup let L/K Galois with P a prime in OK with Q a prime
in OL over P . Then we define the ramification group by

VQ := {σ ∈ Gal(L/K) : for every α ∈ OL, σα− α ∈ Q2}

Remark 13.29. Although we don’t do so here, one can also investigate higher ramification groups
by asking σα − α ∈ Qn for bigger and bigger n. This produces a chain of subgroups that can
contain important information about the extension.

Theorem 13.30 (a) VQ is a normal subgroup of IQ

(b) IQ/VQ ↪→ F×
Q

(c) VQ is a p-group and in fact is the unique p-Sylow subgroup of IQ

Proof. (a) Since DQ fixes Q it also fixes Q2. Thus DQ acts on OL/Q
2 and the kernel of this action

is exactly VQ by construction. Therefore VQ is normal in DQ so must also be normal IQ.

(b) Consider the OL-module Q/Q2. On this module Q acts as 0 and thus scaling by OL/Q is well-
defined on Q/Q2. In particular then, Q/Q2 is an FQ-vector space. Let’s determine its dimensions

∣∣Q/Q2
∣∣ = [Q : Q2] =

[OL : Q]

[OL : Q2]
=

Norm(Q)

Norm(Q2)
= Norm(Q) = |FQ|

Therefore Q/Q2 is a 1-dimensional vector space over FQ. In fact we claim σ ∈ IQ defines a vector
space isomorphism of this vector space. The first thing we need to check is that σ is well-defined
with respect to the quotient. We only need to check that σ sends Q2 to Q2. But every element
of Q2 is (possibly some linear combination of) elements of the form αβ where α, beta are both
elements of Q. We know σ sends Q to Q so σ(αβ) = σ(α)σ(β) lies in Q2.

We already know σ respects addition so it only remains to check that σ respects scaling in FQ.
Therefore let α ∈ FQ and t ∈ Q/Q2. Then we have

σ(αt) = σ(α)σ(t) = ασ(t)

where we use the fact that σ(α) ≡ α mod Q. Thus we have the map

ϕ : IQ → Aut(Q/Q2) = F×
Q

We claim the kernel of this map is exactly IQ (this gives the statement of theorem by the first
isomorphism theorem). One of the inclusions is easy. Suppose σ ∈ VQ. Then σ(t) ≡ t mod Q2

which is to say σ acts trivially on Q/Q2. The converse takes a little more work.
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Now suppose σ ∈ ker(ϕ). This means for all α ∈ Q, we have σ(α) ≡ α mod Q2. Since σ ∈ IQ,
it also acts trivially on FQ. In order to show that σ ∈ VQ we will argue that σ acts trivially on
OL/Q

2. We claim we have

OL/Q
2 = (OL/Q

2)× ∪ (1 + (OL/Q
2)×)

In order to see this let α ∈ OL/Q
2. Notice that the only ideals in OL/Q

2 are {0},OL/Q and
OL/Q

2 (if there were any other ideals then there would be a (non-trivial) ideal dividing Q2 different
from Q). Then (α) is either OL/Q or OL/Q

2 (of course it is non-zero). If (α) = OL/Q
2 then α

is a unit since it generates the entire ring. Now suppose α and 1 − α are both non-units. Then
(α) = (1− α) = OL/Q. Since they generate the same ideal we conclude α = u(1− α) where u
is a unit in OL/Q

2. But this gives

1 = α + (1− α) = u(1− α) + (1− α) = (1− α)(u+ 1)

So that 1− α is a unit contradicting our assumption. Thus at least one of α and 1− α must be
a unit.

The next lemma shows that (OL/Q
2)× = F×

Q ⊕ Q/Q2. Therefore σ fixes (OL/Q
2)× and by the

above decomposition it must fix all of OL/Q
2. Therefore σ ∈ VQ.

(c)

Lemma 13.31 Let π : OL/Q
2 → OL/Q = FQ be the projection map. Then (OL/Q

2)× =
π−1(F×

Q) and in fact

(OL/Q
2)× ∼= Q/Q2 ⊕ ϕ(F×

Q)

where ϕ : F×
Q → (OL/Q

2)× is given by ϕ(α) = α̃Norm(Q) where α̃ is a representative of α.

Proof. For notational convenience, define R := OL/Q
2 and N := Norm(Q). If α ∈ R× then certainly

π(α) ∈ F×
Q since homomorphisms carry units to units. Thus we immediately get R× ⊂ π−1(F×

Q). In

order to get the reverse inclusion let α ∈ π−1(F×
Q) and consider the ideal I = (α). The only possibilities

for I are I = R or I = Q/Q2 as these are in the only non-zero ideals in R. We cannot have I = Q/Q2

since that would imply that α ∈ Q so π(α) = 0 would not be invertible. Thus we must have I = R.
Since α generates the entire ring it must be a unit of R. This gives the exact sequence

0 → Q/Q2 → R× → F×
Q → 0

where the map Q/Q2 → R× is given by t 7→ 1 + t. Notice this is indeed a homomorphism where the
operation on the domain is addition and on the codomain is multiplication. So for example the inverse
of 1 + t is 1− t since (1 + t)(1− t) = 1− t2 = 1 ∈ R since t2 ∈ Q2.

We define a map ϕ : F×
Q → R× given by ϕ(α) = α̃N where α̃ is any representative of α. This is

well-defined. If α̃1 and α̃2 are two representatives of α then

α̃N2 = (wtα1 + (α̃2 − α̃1))
N = α̃N1 +N(α̃2 − α̃1) +

(
N

2

)
α̃N−1
1 (α̃2 − α̃1)

2 + · · ·
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Notice that every thing after the first term lies in Q2 (in particular α̃2 − α̃1 ∈ Q since they represent
the same element of FQ and N lies in Q since the norm of any ideal lies in the ideal). Thus the exact
sequence splits and we conclude

R× ∼= Q/Q2 ⊕ ϕ(F×
Q)

Example 13.32. The lemma above and its proof may solidify if we consider an example. Consider
the case where L = Q(

√
7). Then OL = Z[

√
7]. Let’s take Q =

√
7 ·OL. Then R = Z[

√
7]/(

√
7)2 ∼=

F7[t]/(t
2). Then the exact sequnce is given by

0 → tF7[t]/(t
2) → (F7[t]/(t

2))× → F7 → 0

Let’s describe all the units in F7[t]/(t
2). By the above lemma this group of units is isomorphic to

(t)/(t2)⊕ F×
7 . We can describe this isomorphism explicitly. Given α ∈ F7, we define α̃ = α + βt for

any β ∈ F7. Then

Proposition 13.33 Let L/K be a Galois extension and Q ⊂ OL a prime lying over some prime
in OK . Then the ramification group VQ is a p-group and pZ = Q ∩ Z.

Proof. Let σ ∈ VQ

The next thing to consider is how the decomposition groups, inertial groups and ramification groups
behave with one another when we have a chain of Galois extensions. In fact the relationships are exactly
what one would expect. So let L/K/F be Galois extensions and R ⊂ OL prime. Define Q := R ∩ OK

and P := R ∩ OF . Let G := Gal(L/F ) and H := Gal(L/K). We use DL/K , IL/K , VL/K to denote
the decomposition, inertial and ramification groups for R over K and similarly define DL/F , IL/F , VL/F
for the corresponding groups for R over F .

Theorem 13.34 (a) DL/K = DL/F ∩H

(b) IL/K = IL/F ∩H

(c) VL/K = VL/F ∩H

Proof. (a) DL/K = {σ ∈ H : σ ·R = R} = {σ ∈ G : σ ·R = R} ∩H = DL/F ∩H

(b) IL/K = {σ ∈ DL/K : σ|FR
is trivial} = {σ ∈ DL/F : σ|FR

is trivial} ∩ DL/K = IL/F ∩ DL/K =
IL/F ∩H

(c) VL/K = {σ ∈ IL/K : σ|OL/R2 is trivial} = {σ ∈ IL/F : σ|OL/R2 is trivial} ∩ IL/K = VL/F ∩ IL/K =
VL/F ∩H

Since K/F is Galois we can also consider the groups DK/F , IK/F , VK/F relative to Q over F . These
groups are exactly the projections of the groups for R over F .
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Theorem 13.35 Let π : G → G/H be the projection map (since K/F is Galois we know H is
normal in G). Then

(a) DL/K = π(DL/F )

(b) IL/K = π(IL/F )

(c) VL/K = π(VL/F )

Proof. (a) Let σ ∈ DL/F . We want to show that π(σ) fixes Q. Since σ ∈ DL/F by definition we have
σ ·R = R. Therefore

σ(Q) = σ(R ∩ OK) = σ(R) ∩ σ(OK) = R ∩ OK = Q

For the reverse inclusion, let τ ∈ DK/F ⊂ Gal(K/F ) ∼= G/H. By definition, we have τ ·Q = Q.
Let σ ∈ π−1(τ). We would like to say σ fixes R which would give us σ ∈ DL/F . Of course
this need not be the case but we can modify σ so that this happens. Notice that because π(σ)
fixes Q we have σ(R) ⊃ σ(QL) = QL. Therefore σ(R) | QL. In particular then R and σ(R)
are both prime factors of QL so by Theorem 13.18 we conclude there exists σ0 ∈ H such that
σ0(σ(R)) = R. Therefore σ0σ ∈ DL/F and π(σ0σ) = π(σ0)π(σ) = τ (notice π(σ0) = 1 since
σ0 ∈ H).

(b) Suppose σ ∈ IL/F . Then, by definition, we know σ acts trivially on FR. But since FQ ⊂ FR this
means that σ also acts trivially on FQ. Thus we get π(σ) ∈ IK/F . For the converse inclusion, let
τ ∈ IK/F ⊂ DK/F = π(DL/F ). Thus we can choose some σ ∈ π−1(τ)∩DL/F . Although σ might
not lie in IL/F , we show we can modify it by something in H so that the composition lies in IL/F .
In order to be an element of IL/F we would need σ to fix FR (this is the definition of the inertia
group). Although σ does indeed act on FR (since it lies in DL/F ), there is not reason it needs to
fix it. On the other hand, it does fix FQ ⊂ FR (since π(σ) ∈ IK/F ). Thus σ defines an element,
say aσ of Gal(FR/FQ)
Notice by definition, σ acts on FR (because it is an element of DL/F ) and fixes FQ (because
π(σ) ∈ IK/F ). Thus σ gives an element of Gal(FR/FQ) which we denote aσ. Recall the map
DL/K → Gal(FR/FQ) is onto (by Theorem 13.23) which we means there exists σ0 ∈ DL/K ⊂ H
such that it is sent to aσ. Then σ

−1
0 σ fixes FR so σ0σ ∈ IL/F and π(σ−1

0 σ) = π(σ) = τ .

(c) Consider the map π0 : IL/F → IK/F . We know VL/F is the unique p-Sylow subgroup of IL/F (by
Theorem 13.30). Then since π0 is onto we have π0(VL/F ) ⊂ IK/F is the unique p-Sylow normal
subgroup (this is a purely group theoretic fact). Therefore π0(VL/F ) = VL/K .

Lemma 13.36 Let G,H be groups and pi : G → H a surjective group homomorphism. If
M ◁ G is a (unique) p-Sylow subgroup, then π(M) is a (unique) p-Sylow subgroup.
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Proof. Since π is onto we certainly have that π(M) is a normal p-group of H. Thus π induces a
(surjective) map G/M → H/π(M). Since M was p-Sylow we know p ̸| |G/M | and thus p ̸| |H/π(M)|.
Therefore π(M) is a p-Sylow subgroup of H.

Definition 13.37. Let L/K be number fields and Q ⊂ OK a prime ideal and QL =
∏g

i=1 P
ei
i

its factorisation (in L). Then we say Q ramifies in L if there exists some ei > 1. Equivalently, Q
ramifies in L if it is not squarefree.

Theorem 13.38 Let L/Q be an extension of number fields and p a prime integer. Then pZ
ramifies in L if and only if p divides Disc(L).

Proof. Define R := OL/pOL. Since R is an Fp-vector space so we can consider Disc(R, trR/Fp) defined
analogously to the the discriminant of fields over Q. In fact, we have that Disc(L) ≡ Disc(R, trR/Fp) mod
p. Thus by Lemma 6.10, we have

p | Disc(L) ⇔ trR/Fp : R×R → Fp is degenerate

where recall degeneracy means there exists some non-zero x such that for every y we have trR/Fp(x, y) =
0.

Now suppose we have the factorisation pOL =
∏g

i=1Q
ei
i so that by Chinese Remainder Theorem we

have

R = OL/pOL
∼=

g⊕
i=1

OL/Q
ei
i︸ ︷︷ ︸

Ri

First suppose p does not ramify in L. Then we will show the trace is non-degenerate. Since all
the ei are 1 we know Ri = OL/Qi is a field FQi

. Let α ∈ R be any non-zero element. By the above
identification we can write α = (α1, . . . , αg) where each αi ∈ FQi

. Since α is non-zero, there is some
j such that αj is non-zero. Then set β = (β1, . . . , βg) where βi = 0 for i ̸= j and βj = α−1

j . Then
αβ is 1 in the j-th coordinate and 0 everywhere else. Thus in particular Rj ⊂ αR. We claim that
trRj/Fp : Rj → Fp is onto so in particular we can find some β ∈ R such that trR/Fp(αβ) is non-zero.

Lemma 13.39 If Fqn/Fq is a finite field extension, then trFqn/Fq : Fqn → Fq is surjective.

Remark 13.40. This is a non-trivial statement. The trace map for the extensions Fp(t)/Fp(tp)
is 0.

Proof. Recall that the trace is sum of all the conjugates of an element. Further recall that the Galois
group Gal(Fqn/Fq) is the cyclic group of order n generated by the Frobenius map x 7→ xq. Thus if
x ∈ Fqn , its conjugates are xq, xq

2
, . . . so that the trace map is given by

tr(x) = x+ xq + xq
2

+ · · ·+ xq
n−1

This is a polynomial with at most qn−1 distinct roots so there must be some α such that tr(α) is
non-zero. Since the codomain is one-dimensional this means that the trace map is onto.
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Now suppose p ramifies in L. Then without loss of generality, we can assume that e1 > 1. Then
consider π ∈ Q1 \ Q2

1. Then we can consider π ∈ OL/Q
e1
1 which is non-zero. Notice we have α =

(π, 0, . . . , 0) is nilpotent since αe1 = 0. Then αβ is nilpotent for every β ∈ R. Since nilpotent elements
have trace 0, we conclude that the trace map is degenerate in this case and thus p | Disc(L).

Although we don’t prove it there is a slightly stronger version of the statement.

Theorem 13.41 Let p be a (positive) prime integer. Let L/Q be a field extension and pOL =∏
Qei
i a factorisation. Then

1. p
∑

(ei−1)fi | Disc(L)

2.
∑

(ei−1)fi is the exact power of p dividing Disc(L) if and only if p ∤ ei for all i (if p divides
some ei we say that p is wildly ramified)

14 Cyclotomic fields

Let p be an odd prime. Let ζp ∈ C be a p-th root of unity. Then we define Kp := Q(ζp). Notice that
Kp automatically contains all the other p-th roots of unity since they are simply the powers of ζp. Thus
we get the following nice statement.

Corollary 14.1 The extension Kp/Q is Galois and has degree p− 1.

Proof. Kp is the splitting field of xp− 1 thus it is Galois. The calculation of the degree takes a bit more
work. It is immediate that the degree of the extension is at most xp−1 has a factor of degree p−1.

Proposition 14.2 If p is a prime integer then [Kp : Q] = p−1. The ideal P := (1− ζp) is prime
and FP ∼= Fp.

Proof. The fact that the degree of the extension is at most p− 1 is clear, since xp − 1 has a factor of
degree p− 1. In order to see that the degree is exactly p− 1, consider

fp(x) :=
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1 =

g∏
a=1

(x− ζap )

Thus we have the relation

p = fp(1) =

p−1∏
a=1

(1− ζap ) (14.1)

Notice we have 1− ζp | 1− ζap . But since ζ
a
p is also a generator for the p-th roots of unity so there

exists b such that (ζap )
b = ζp. This means 1 − ζap | 1 − (ζap )

b = 1 − ζp (another way of thinking about
this is all the p-th roots of unity are algebraically indistinguishable from each other so any relation like

55



the above one should be symmetrical). Therefore we get (1 − ζp) = (1 − ζap ) as ideals in OKp . Then
define P := (1− ζp) so by taking ideals of both sides of Equation 14.1 we get

(p) = P p−1

Recall the relation efg = [Kp : Q] (see Corollary 13.19). By the above relation, we have e must be
at least p − 1. Since [Kp : Q] ≤ p − 1, we conclude the degree is exactly p − 1 with e = p − 1 and
f = 1, g = 1. Therefore P must be prime since g = 1 and since f = 1, we have FP ∼= Fp.

Let’s begin by computing the ring of integers. In this case, it is exactly what one would expect.

Proposition 14.3 OKp = Z[ζp]

Proof. We will prove this by first computing the discriminant of Z[ζp] and show no (proper) sublattice
of it can be the ring of integers.

Consider the basis
〈
ζp, ζ

2
p , . . . , ζ

p−1
p

〉
for Z[ζp]. Then we have trKp/Q(1) = [Kp : Q] = p − 1 and

trKp/Q(ζ
j
p) =

∑p−1
k=1 ζ

k
p = −1 for every j. Thus we have

Disc(Z[ζp]) = det(tr(ζ ipζ
j
p)
p−1
i,j=1)

=det


−1 · · · −1 p− 1
−1 · · · p− 1 −1
...

...
...

...
p− 1 · · · −1 −1


permute rows→ (−1)(p−1)/2 det


p− 1 −1 · · · −1
−1 p− 1 · · · −1
...

...
. . .

...
−1 −1 −1 p− 1


replace row 1 with sum of all rows−→ (−1)(p−1)/2 det


1 1 · · · 1
−1 p− 1 · · · −1
...

...
. . .

...
−1 −1 −1 p− 1


Add row 1 to all rows→ (−1)(p−1)/2 det


1 1 · · · 1
0 p · · · 0
...

...
. . .

...
0 0 0 p


= (−1)(p−1)/2pp−2

There are a couple different ways to finish from here. The easiest way to finish is to appeal to
Theorem 13.41. By the proof of Proposition 14.2, we know pOL = P p−1 thus by Theorem 13.41 we
conclude that pp−2 must divide the discriminant and hence Z[ζp] must be the ring of integers itself (any
sublattice would necessarily only be divisible by a smaller power of p).

56



Alternatively, we can argue as follows so we don’t have to resort to an unproven theorem. Suppose
Z[ζp] is not the entire ring of integers OKp but rather a strict sublattice of it. Then we can find an
element that lies in 1/pZ[ζp] \ Z[ζp] (in other words some y which lies outside of Z[ζp] but py lies in
Z[ζp]). In order to see why, notice the discriminant of Z[ζp] is a power of p, we know [OKp : Z[ζp]]
is also a power of p. So in particular, there is some b such that pbOKp ⊂ Z[ζp]. Thus if we take any
y ∈ OKp \ Z[ζp], we can find minimal c > 0 such that pcy ∈ Z[ζp]. Replacing y with pc−1y we get the
desired element.

But now recall (1− ζp)
p−1 = pOK . Thus we have (1− ζp)

p−1y ∈ Z[ζp]. Let c > 0 be minimal such
that (1 − ζp)

cy ∈ Z[ζp]. As before, we can take z = (1 − ζp)
c−1y. This gives an element that lies in

1/(ζp − 1)Z[ζp] \ Z[ζp]. But this means 1/(ζp − 1) is an algebraic integer but we know this cannot be
the case since, for example, its norm is 1/p which is not an integer.

Let’s finish with some discussion of class groups in quadratic fields which are simple enough to be
easy to calculate and play with but remain complex enough to have interesting patterns and relations.

Let D be a square free integer. Let K = Q(
√
D) and DK be the discriminant of this field. In other

words

DK =

{
4D if D equiv2, 3 mod 4

D if D equiv1 mod 4

Let p be a prime dividing DK . Then by Theorem 13.38, we know p ramifies in K. Since the degree
of the extension is 2, we must have pOK is a square (use Corollary 13.19). Let Mp be the ‘square root’
of the ideal. In other words M2

p = pOK . Thus we have∏
p|DK

Mp

2

=
∏
p|DK

pOK =

{
DK/2 · OK if D ≡ 2, 3 mod 4

DKOK if D ≡ 1 mod 4

With the notation set up, we have the following theorem.

Theorem 14.4 Let D < 0. Then {[Mp] : p is a prime dividing DK} span an F2-vector space of
dimension ω(DK) − 1, where ω(DK) is the number of primes that ramify in K, or equivalently,
the number of primes dividing DK .

Remark 14.5. It’s perhaps worth discussing what exactly the statement of the theorem means.
Label the prime factors of DK by p1, . . . , pn. Then if e1, . . . , en are any integers then the product
[Mp1 ]

e1 · · · [Mpn ]
en is any element of Cl(K). Actually, by construction each [Mpi ] has order 2 in

Cl(K) so we only need to consider powers up to multiples of 2, i.e. e1, · · · , en lying in F2. This
is the sense in which the [Mpi ] span an F2-vector space.

Proof. In order to show that the [Mpi ] span an F2-vector space of dimension ω(DK) − 1 we need to
show that the collection of all [Mpi ] satisfies exactly one linear relation. It is easy to find such a relation
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(because we are working over F2 this simply amounts to finding a product that is trivial in the class
group).

Notice we have ∏
p|D

Mp

2

= DOK(
√
DOK)

2

By prime factorisation of ideals we conclude∏
p|D

Mp =
√
DOK

and hence this product is trivial in the class group (as a side note, notice that the prime factors of D
and are almost exactly the prime factors of DK , with the possible exception of an extra 2 occurring if
DK = 4D. Other than that all prime factors appear exactly once as D is square free).

Now we show that there are no other relations among the S (i.e. any other collection of the [Mp] is
linearly independent). So suppose S ⊂ {p : p | DK} such that∏

p∈S

Mp = αOK

for some α ∈ OK . We will show this leads to a contradiction.
We can write α = a+ b

√
D. Suppose D ∼=
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