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0 Preface

These notes are based on a series of lecture given by Professor Edward Bierstone at the
University of Toronto in Winter 2023 for MAT454: Complex Analysis I1'.

1 Introduction/Review

The details and proofs of most things in this section can be found in my MAT354 notes
here.
1.1 Holomorphic Functions

If f(z) is a complex-valued function on the complex numbers, we say f is holomorphic if

p SEH) — ()
h—0 h

exists. Suppose we call the limit ¢. Then the above condition is equivalent to saying there
exists some ¢(h) such that

f(z+h)=f(2) +ch+ ¢(h)h

where limy,_,o ¢(h) = 0.

We can identify C with R? and consider what conditions it places on the derivatives
(in the real sense). So suppose we have ¢ = (a,b) and h = (£,7). Then the map h — ch
becomes £ +in — (a +ib)(§ +in) = a& — by +i(b§ + an). In terms of the real variables, we

get
()= G G)
U ba)\n
The matrix is the differential of f. Thus looking at the columns we see the following

equation is satisfied
of  .of

%+(‘Ty 0

This is known as the Cauchy-Riemann equation(s). If we write f = u + iv, we can again
use the matrix to get

du  Ov
dz oy
ou v
8y Oz

which are another way of formulating the Cauchy-Riemann equations.
Recall that if f is differentiable, we have

4, 9,

af = Ox y

! Archived link
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This means that for the identity map z = x + iy and conjugation map z = x — iy we have

dz = dx + idy
dz = dx — idy

We can then solves for dz and dy to get

1
dx = i(dz + dz)

1
dyzﬂ(dz—d?)
Thus we get
_L(of _of L(of 01N 42
df_2<8x zay>dz+2<8$+zay>dz

This motivates us to define

o 1[0 .0
az—z(ax—lag)
o 1[0 .9
az—z(ax“ag)

One thinks of these as the duals to dz and dz. With this notation we can once again rewrite
the Cauchy-Riemann equations to
of

0z
Roughly speaking, this says that a holomorphic function should only depend on z and not
Z.

=0

1.2 Harmonic functions

Apart from holomorphic functions, another important class of functions are the harmonic
functions.

Definition 1.1 (Harmonic functions). A real- or complex-valued function f(x,y) is
said to be harmonic if it is C? and

Of L OF
0x2  Oyr
The operator
0? 0?

is often called the Laplacian. It is easy to verify from the definition that if a complex-valued
function is harmonic then so are its real and imaginary parts. Using the definitions of %
and % we get
82
020%Z
This immediately implies that holomorphic functions are harmonic since they satisfy % is 0,
which also means that the real and imaginary parts of a holomorphic function are harmonic.

A=14



In fact the relationship between harmonic and holomorphic functions runs deeper than that.
Any real-valued harmonic function is locally the real part of a holomorphic function, which
is uniquely determined up to the addition of a constant (shown in Subsection 1.6). The
holomorphic function need not be define globally. An example of a harmonic function whose
associated holomorphic function is only locally defined is log |z|. This is harmonic on C\ {0}
but the corresponding holomorphic function would have to be log(z) which does not have
a holomorphic branch on the entire punctured plane.

1.3 Geometric Models

We are often interested in the behaviour of holomorphic functions at oo to the extent that
we often include it in our domain. If we add the point at infinity to C we get C U {oo}
the extended complex plane. Two primary ways of modelling this space are the Riemann
sphere and one-dimensional complex projective plane (which we will see are equivalent).

Recall that the plane is homeomorphic to the sphere without a point. Thus if we
add a point to the plane (namely the point at infinity) we get exactly a sphere. We can
cover the sphere using two charts via stereographic projection. For example we have the
homeomorphism $?\ {N}

S2\ {N} = C
T+ 1y
1-—1¢

(z,y,t) — z:=

Figure 1: Points in C can be identified with points in S? \ {N}

The point at infinity then is the north pole. We can cover this point by stereographic
projection from the south pole where the chart is given by

S\ {S} = C
L x — iy
(z,y,t)— 2" = Tt
4y

If we just wanted a chart, we would use which is the usual projection from S2\ {S}.

T+t

But since we want to impose a complex structure on S? we want the transition maps to be

holomorphic so we take the complex conjugate instead. Note that with the above choice we

have

Tty w—iy 2 + 32 1
Tol—t 14t 11—

74



This means that 2/ = % which allows us to translate to coordinates at infinity. For example,
given a map f which is defined on the complement of a (large) disk, we say f is holomorphic
at oo if f(1) is holomorphic at 0.

A seemingly different but ultimately equivalent geometric model is the one-dimensional
complex projective space. Define P}(C) := C%\ {0}/ ~ where (x9,21) ~ (yo,%1) if and
only if there is some non-zero complex number A such that (zo, 1) = A(yo, y1). Let [zo, x1]
denote the equivalence class of (zg,z1).

Once again we can cover this space with two coordinate charts. For i =0 and ¢ = 1 we
define U; := {[wg,z1] € P'(C) : 2; # 0}. Then we can define charts

Uo —C
(g, 21] — 2 1= n
Zo
and
U1 — C
[w0, 21] > 2/ = l
€1

These are well-defined due the equivalence placed upon the point. These are both homeo-
morphisms onto C. Once again we see that zz’ = 1. This means that P!(C) is obtained by
gluing two copies of C along the complement of the origin by the formula 2’ = %, exactly

like we had with the sphere.

1.4 Cauchy’s Theorem

Much of complex analysis is about studying the properties of holomorphic functions and
one of the fundamental results in this area is Cauchy’s Theorem. Before we get to the
theorem, we should maybe establish some basic facts about (differential) forms.

Figure 2: We integrate the 1-form w over the curve ~

Given an open set (of C) €, a differential form on 2 is w = Pdzr + Qdy with P,Q
continuous functions (taking values in C) on Q. We can integrate a form along a piecewise
C! curve v : [a,b] — Q by the formula

/Yw—/abf(t)dt



where
f(t) = P(a(t),y(1)2'(t) + Q(x(t), y(1))y'(t)
We see this by computing the pullback of w by . The reason we integrate forms and not
functions is because then the integral is independent of how we parameterise the curve (in
order to verify this we simply use integration by substitution).
Now suppose we are given a form w and suppose there exists a function F' so that

oF oF
=dF = —d —d
w o T+ ay Y

Then we call F' a primitive of w. If w has a primitive then

/w:/aFd:Cﬂ—ade
. 5 Oz oy

= F(y(b)) = F(v(a))

It is clear then, that if « is any closed curve (i.e. y(a) = (b)) then fww = 0 provided
that w has a primitive. In fact the converse is also true.

Theorem 1.2 A form w on a connected open set € has a primitive if and only if
the integral of w over any closed curve is 0.

Proof. We choose a basepoint (zg,y0) € Q. Then we define the primitive F(z,y) by inte-
grating along a path from (zg,yo) to (z,y). This is well-defined due to the fact that the
integral over closed curves is 0 and one can verify that indeed defined this way, we have
dF = w. The details can be found in Proposition 9.2 in my MAT354 notes here. O

If we have a disk, then it is much easier to check whether or not a form has a primitive.
Namely, a form has a primitive if and only if the integral over the boundary of any rectangle
(by which we mean a rectangle whose sides are parallel to the axes) is 0. This is simply
because in a disk, we can connect any point to the center via paths that run parallel to the
axes (for example we first travel only in the z-direction and then only in the y-direction).
Thus although the existence of a primitive might be difficult to check globally, it is fairly
straightforward to do locally. This inspires the following definition.

Definition 1.3 (Closed forms). We say a form w is closed if the integral over the
boundary of any (small) rectangle is 0.

By the above discusssion, this is equivalent to saying that w has a local primitives.
Moreover, if the integral over the boundary of small rectangles is 0, then the integral over
the boundary of any rectangle is 0 since any rectangle can be cut into smaller rectangles.

Importantly, however, closed forms need not have a global primitive. The classic example
of a form which has local primitives but not global ones is

iz
_Z

w
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defined on C\ {0}. Local primitives are easy to find since these are just branches of log(z).
However w cannot have a global primitive since the integral over the unit circle is not zero.
If we define v(0) = €' for 6 € [0, 27 then

2w - i0
e
Y o ¢

Now we can state and prove Cauchy’s theorem.

Theorem 1.4 (Cauchy’s Theorem) If f(z) is holomorphic then the differential form
f(2)dz is closed.

Proof. Once again, the proof can be found in my MAT354 notes under Theorem 9.5. [

Remark 1.5. In Cauchy’s Theorem, it is enough to assume that f is continuous on
Q) and holomorphic everywhere except possibly on a line.

Corollary 1.6 Holomorphic functions f(z) locally have a holomorphic primitive.

Proof. We have seen above that f(z)dz has a primitive. Now we show that the primitive is
in fact holomorphic. Suppose the primitive is given by £'. Then
oF OF
dz=dF = —dz+ —dz
f(z)dz 5, + 57 %2
Since dz,dz form a basis they are in particular linearly independent which means that %—g
must be 0. 0

We have the following important theorem about closed forms on the plane (or subsets
thereof).

Theorem 1.7 Let w be a closed differential form in open © C R%. If v9,71 : [0,1] —
Q homotopic curves (either with fized endpoints or as closed curves) then

7 Y2

From this, Theorem 1.8 follows as a corollary since it immediately implies that the
integral over any closed curve is 0.

Theorem 1.8 A closed differential form w in a simply connected open set @ C R?
has a global primitive.
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1.5 Cauchy’s Integral Formula

We are very close to being able to state and prove Cauchy’s Integral Formula. The one
thing that is left is the winding number.

Definition 1.9. The winding number of a closed curve v with respect to a point a
(not on +) is given by
1 1

~ 2mi

dz

w(y,a) : P

~

It is clear that w(y,a) is an integer because the integral is the difference between 2
branches of log. If v is the boundary of a circle then

( ) 1 a inside circle
w(y,a) =
7 0 a outside circle

From Theorem 1.7, it follows that w(y,a) is invariant under homotopy of v that does
not pass through a. Since moving v a little bit is the same as moving a a little bit, it also
follows that w(7y,-) is constant on the connected components of the complement of ~.

Theorem 1.10 Suppose f(z) is holomorphic in an open  C C and a is a point in
Q. Let v be a nullhomotopic closed curve in ). Then

1 [ fR)

211 yZ—Q

dz = fa)w(v,a)

Proof. We define

O (O
9(z) = {f,(a) —

We see that g is continuous in © and holomorphic on Q \ {a}. Therefore g(z)dz is closed
by Cauchy’s Theorem. Then the nullhomotopy of v implies that

JECE O

Splitting the sum gets us the desired result
(), _ [ @

zZ—aQ zZ—aQ

dz = 2mif(a)w(v,a)

v v

O
A very nice and important consequence of Cauchy’s integral formula is that holomorphic

functions are infinitely differentiable. Suppose f is a holomorphic function in a neighbour-
hood of a closed disk |z| < r. For |z|] < r, we have

1) = 5 [ £ac




Then we can differentiate both sides (by differentiating under the integral sign) to get

, 1
1) =5 | e heic

and more generally

2

160 =50 [ e

We can summarise all this information about holomorphic function as follows.

Theorem 1.11 Suppose f(z) is a continuous function on an open set Q). Then the
following are equivalent:

1) f(z) is holomorphic
2) f(z)dz is closed

3) Given ~y the boundary of a circle of radius r and |z| < r, we have

£(z) = %Ag“ldc

Proof. We know that 1) = 2) is Cauchy’s theorem. We have shown 1) = 3) above. 3) =
1) is easy to see since we can differentiate under the integral sign. This only leaves 2) = 1)
which is known as Morera’s theorem.

If f(z)dz is closed then f(z)dz locally has a primitive g(z). Then

9y 9y
dz =dg = —=dz+ —=dz
f(z)dz =dg o z+ 554
Since dz and dZz are linearly independent, we must have g—g = 0. This also tells us that
f(z) = % and hence f is holomorphic since the derivative of holomorphic functions is
holomorphic. O

Not only are holomorphic functions infinitely differentiable, they are also analytic, which
is to say every holomorphic function has a convergent power series expansion (defined locally
of course) that represents the function.

By Cauchy’s Integral formula we know that if f(z) is a holomorphic function in a

neighbourhood of |z| < r, then
_ [ f©)
)= | Forac

where « is the boundary of the closed disk, |z| = r. We can then write

L _1(1_z)‘1_1°°z”
(—z ¢ ¢) (e

We can substitute this into the integral formula to get
(1 [f©

10 =3 (g [ Btac) >
nzo 2mi /., ("1

10




f™(0)

n!

The coefficient of 2™ agrees with what we would expect since we know that a, =
This series converges whenever |z| < r.
We can also bound the Taylor coefficients. For example by substituting z = re*

9 we get

oo
f(reie) _ Z amrmeime
m=0

—ind

We can multiply both sides by e and integrate from # = 0 to 8 = 2xr. This will cancel
out all but the a,r"e™’ term in the series. Hence we get
1 27

anpr" = — f(re®)e=™m0qp
2 0

If we have M (r) := supy,—, | f(2)| then

M(r)

/r-TL

’an’ <

These are known as Cauchy’s inequalities.
This immediately gives us Liouville’s Theorem (a corollary of which is the Fundamental
Theorem of Algebra).

Theorem 1.12 (Liouville’s Theorem) If f(z) is holomorphic on C and bounded then
f is constant.

Proof. There is some M such that M (r) < M for all r. Therefore
|an‘ < 1”7

Therefore for n > 1, we can send r — oo to conclude that a, = 0. Therefore f(z) = ag is
constant. O

A direct consequence of the integral formula is that holomorphic functions satisfy the
Mean Value Property which is to say that given a closed disk D of radius r, centered at a
point a, the value of f(a) is given by the mean value along the boundary of the disk. In

formulae, we write
1 27

f(a) fla+ rew)dG

Continuous functions that have the mean value property also satisfy the very important
maximum modulus principle.

:%0

Theorem 1.13 (Maximum Modulus Principle) Suppose f(z) is a continuous
complez-valued function defined on an open set  and f satisfies the Mean Value
Property. If |f| has a local max at zg € 2, then f is constant in a neighbourhood of
20-

11



1.6 Harmonic Functions, revisited

Earlier it was claimed that all real-valued harmonic functions are (locally) the real part of a
holomorphic function and moreover this holomorphic function is unique up to the addition
of a constant. Let us verify this claim. Let g be a real-valued harmonic function. Then

0%g B
0202

This means that % is holomorphic and therefore %dz locally has a holomorphic primitive.
Let us call this primitive f. Then

9y
df = —=d
f 5."°
Conjugating both sides we get
_ dg
df = —=dz
/ 9z

where ¢ is not conjugated since it is real valued. Therefore we have

df—i—dfzd(f%—T)Z@dz—i—%d?:dg

0z 0
Therefore g = f + f up to the addition of a constant.

It is clear that if f(z) is a complex-valued functions with the Mean Value Property
then the real and imaginary parts of f have this property (we can simply equate the real
and imaginary parts on both sides). Since harmonic functions are locally the real part
of a holomorphic function, it follows that harmonic functions also satisfy the Mean Value
Property. In fact any continuous function satisfying the Mean Value Property is harmonic,
which we will soon prove.

The natural question that arises now is whether given a real-valued harmonic function
we can figure out what the corresponding holomorphic functions should be. Suppose the
harmonic function is g(z) and the holomorphic function is f(z). We know there for some
R and any |z| < R we have

fz2) =2 anz"
n=0

Moreover since f is unique up to addition of a constant, we can assume that f(0) = ao is
real. Then substituting z = re’® and equating the real part we get

1 . ,
g(rcosf,rsinf) = ag + 3 Z(anrneme + ﬁrn671n9>
n=0

Therefore we get that
1 2

ag g(rcos@,rsinf)db

:% ;

For the remaining coefficients, we can use our usual trick of multiplying by e~ to conclude

T rn ein@

2m
ap, = / g(rcosf,rsinf)
0

12



Substituting these back into the expansion of f we get

2w

- 1
f(z) = anz" = — g(rcosf,rsinf)
ngo 2 0

1+ 22) (rez"(’)n] df

We can evaluate the series and simplify things to get

1 o . ret? + z
flz) = 271'/0 g(r cos 0,rsm9)md9
Equating real parts again we get
1 27 2 2
9(z) = / g(r cos 9,rsin0)%d9
27 Jo |rei — 2|

Remark 1.14. We call the function
r2 — |z]2

|reid — Z\Q

the Poisson kernel.

A classic problem with harmonic functions is the Dirichlet problem. In this case we
work on the disk.

Theorem 1.15 Given a continuous function f(0) which is periodic and has period
27 and given some r > 0, there exists a continuous function F(z) on the closed
disk |z| < r which is harmonic on the open disk (of radius r) with F(re'?) = f(6).
Moreover F' is unique.

Proof. We can assume that f is real-valued (otherwise we work with the real and imaginary
parts of f separately).
The uniqueness of F follows from the maximum modulus principle. For existence we

can define ) ) )
1 4 e — |z
F(z)= / f(0)——————db
@=g ) 10

which is harmonic because it is the real part of the holomorphic function

12 ret + 2
— 0)———db
2m Jo i )rew -z
All that remains to check is that lim,_,, i, F'(2) = f(fp) which is a direct computation. As
usual, more details can be found in my MAT354 notes. O

Corollary 1.16 A continuous function f(z) defined on an open Q C R? with the Mean
Value Property is harmonic.

Proof. 1t suffices to check things locally. So let zy be some point in 2 and D some disk in
Q that contains zp. Then there exists a function F which is continuous on D and harmonic
on D and which agrees with f on the boundary of D. Since F' and f both have the Mean
Value Property so does F' — f. Note this function is 0 on the boundary of D and therefore
is identically 0 on D by the maximum modulus principle. O

13



1.7 Zeros, poles and singularities

Suppose f(z) is a holomorphic function such that f(z9) = 0. Then near zy we can use the
power series of f to write

f(z) = (z = 20)" f1(2)
where f; is holomorphic and non-zero at zg. The integer k£ is known as the order or
multiplicity of zp.

Definition 1.17 (Meromorphic functions). A meromorphic function on an open set
Q is a function that is holomorphic on the complement of a discrete subset of
and expressible in a neighbourhood of any point of €2 as the quotient of holomorphic

functions g 8 (where of course g is not identically 0).

If f(z) and g(z) are holomorphic functions, we can write

f(2) = (z— 20)" fi(2)
9(z) = (z — 20)'g1(2)

where f; and g; are both non-zero at zg. Then

(Ho-c-ar (L)

If k > [, then f/g extends holomorphically at zp. Otherwise we have lim,_,, (g)(z) = 00,
S0 zp is a pole of order [ — k. The limit can be thought of as a convergence to the point
at infinity in the Riemann sphere. Therefore we can also consider meromorphic functions
as functions with values in S?. With this we see that meromorphic functions are simply
holomorphic functions with values in S2.

Given a holomorphic function f(z) defined on an annulus 0 < Ry < |z| < Ry < oo, we
can always find its Laurent series. This means that there exists coefficients a,, for n € Z so

that

o

f(z) = Z anz"
n=—00
for z in the annulus. Such a series converges if series with negative indices and non-negative
indices converge separately.
Let 71 and 72 be the boundary of a disk of radius r; and 79 respectively where Ry <
rg < 11 < Rj. By Cauchy’s Integral formula we get

fo=gh [ 19 L[ 1Q

21 )y, C— 2 2mi

250 ¢
72 ¢—z

We have already seen above how to express the first integral as a series. For the second
integral we can write (( —z)"! = —27}(1— %)_1 and expand this using the geometric series.
In this case we get that the a,, are the exact same except we are integrating over 7, instead.
In summary, we can write



where

= 5 | Bt

where ¢ = 1 if n > 0 and ¢ = 2 if n < 0. This series converges uniformly and absolutely
in 79 < |z| < r1. The portion of the Laurent series with the negative indices is called its
principal part. We can use the Laurent series to prove some very nice statements.

Theorem 1.18 A meromorphic function f(z) on S? is rational.

Proof. Since S? is compact, there can only be ﬁnitely many poles say b1, ..., by and possibly
co. The corresponding principal parts are P;(—1— ) for each of the b; and P ( ) where ( is
the coordinate at oo. Since ( = 1/z, Px is actually a polynomial in z. Then we see that

F() — Pal2) - ép (=)

is a holomorphic function on S2. Moreover since S? is compact it must also be bounded.
But then Liouville’s Theorem allows us to conclude that f is actually constant. Therefore

f(2) :c+Poo(z)+Zk;Pj <Z_1bj>

is rational. In fact, this even gives us the partial fraction decomposition of the rational
function. 0

If we a holomorphic function defined on a punctured neighbourhood of 0 (i.e. on 0 <
|z] < R) then 0 is said to be an isolated singularity. If f extends holomorphically to 0,
then 0 is said to be a remowvable singularity. We have such an extension if and only if f
is bounded in a (punctured) neighbourhood of 0 (this follows from Cauchy’s inequalities
which still hold for coefficients in the Laurent expansion and allows us to show that all the
negative index coefficients must be 0).

If f does not extend holomorphically to 0 then there are essentially 2 different behaviours
of f (at 0), which are determined by the Laurent series. If the Laurent series has only finitely
many terms with negative indices then we have a pole at 0. Otherwise there are an infinite
number of terms with negative indices and we have an essential singularity at Q.

Theorem 1.19 (Weierstrass’ Theorem) If 0 is an essential singularity, then for any
e >0, we have f(0 < |z| < €) is dense in C.

1.8 Residue Theorem
Suppose f(z) is holomorphic. The residue of f(z)dz at a point a is defined to be

2m/f

15



where 7 is a curve of winding number 1 (most typically a circle) around a. If we write
f(2) = > ez anz" then we can immediately compute that the residue of f(z)dz at 0is a_;
(when integrating the other terms disappear since they have a primitive).

The residue at oo is defined in the exact same way. Let v be a small circle around
z = oo. In coordinates at infinity, we can write ¢ = 1/z. This means

f(2)dz = f(C) - CZdC

If ~ is a small circle around oo in the z-plane then its image in the (-plane is a large circle
around 0, with the opposite orientation. Therefore

3 [ 1= |, &l (g)

Therefore if we have f(z) = 02 apz" then the residue at oo is —a_; (in fact one might
think the residue would be given by —a; but the multiplication with 1/¢? forces you to shift
the index by 2 bringing us back to —a_1).

Theorem 1.20 (Residue Theorem) Let © be an open subset of S? and f(z) a
holomorphic function in  except for isolated singularities which may occur at oo.
Let K be a compact subset of Q with piecewise C' boundary I'. Then

/f )dz = 2mi Z Res(f, zx)

zreK

where S is the set of singular points of f in K.

2 Topology of space of Holomorphic Functions

Let © be an open neighbourhood of C (or possibly even S?). Then we use C(£2) to denote the
ring of continuous complex-valued functions on Q and H(2) for the subring of holomorphic
functions.

There is a natural topology on C(€2) (and therefore on H(2) via the subspace topology).
In the study of functions one often defines a topology but defining how a sequence of
functions should converge (recall that a metric space is determined completely by its set of
convergent sequences). In this case, we will say that a sequence of continuous functions { f,, }
converges if we have uniform convergence on every compact subset of 2. More symbolically,
we say { f } converges if, given any compact set K C €, we have { f,,|x } converges uniformly.

We can in fact describe the open sets in this topology quite explicitly. Given compact
set K C 2 and € > 0, the set

V(K €) :={f €C() : |f(2)].ex <€}

is an open neighbourhood of 0. Then the open neighbourhoods of any g can be found by
simply translating these. In other words,

V(g K,€) :={f€C():|f(2) = 9(2)],cx < €}

is an open neighbourhood of g.
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If our claim is that this topology is determined by convergent sequences, then we should
be able to specify what the metric is. Suppose we cover {2 by countably many closed disks D;
(for example we can take all the disks of rational radii with centres at rational coordinates).

Then we can define
o0

7= o min{L, M(£)
i=1
where M;(f) := max{|f(z)| : z € D;}. This defines a metric that is translation invariant
and in fact induces the above topology. An important remark is that C(Q2) is complete with
respect to this topology.

In order to see this, suppose {f,} form a Cauchy sequence with respect to the above
metric. In particular this means that, for any z € Q, the sequence {f,(z)} is a Cauchy
sequence of complex numbers therefore converges to some value we call f(z). We want to
show this pointwise limit is continuous so fix some zy € €. There is a compact set K of
) containing zy. This compact set is covered by the interiors of finitely many of the D;.
This places a bound on |f(2) — fn(2)| for z € K [WHAT IS IT]| which means that the f,
converge to f uniformly on K. Since we know the uniform limit of a sequence of continuous
functions is continuous, we know f is continuous at z.

Now that we understand the topology on C(2) a bit better, we want to try looking
at ‘H(Q) as well. In particular, we want to say that H(Q) is a closed subset of C(€2) and
that the differentiation operator is continuous. We translate these into statements about
sequences.

Theorem 2.1 (Weierstrass) If {fn,} C H(Q) is a sequence of holomorphic func-
tions that converges uniformly on compact sets, then f = lim, . f, is holomorphic.
Moreover, {f} converges uniformly to f' on compact sets.

Proof. In order to prove the first statement it suffices to show that f(z)dz is closed (see
Theorem 1.11). Let D be an open disk in Q2 and v a closed curve in D. Then

/7 F(z)dz = lim A Fo(2)dz =0

where we can swap the limit and integral by uniform convergence. Therefore f(z)dz is
closed and by Morera’s theorem we know f(z) is holomorphic.

In order to see that the derivatives converge, let D be a closed disk in 2. If suffices to
show that f] converge uniformly to f' on D [TODO: Why?]. Let v be the boundary of a
larger circle (than D) in Q. Then for any z € D we have

, 1
1) =5 | e
£,(0)

27 J novoo (C— 2)2



O

When speaking of sequences, one must also mention series, i.e. infinite sums. The above
statement can also be translated to work with these as well.

o

Corollary 2.2 If a series of holomorphic functions Z fn(2) converges uniformly on com-
n=1

pact subsets of Q to f(z) then f is holomorphic and we can differentiate term by term.

Proof. Recall a series converges if and only if the partials sum converge. The partial sums
are all holomorphic as well therefore if the series converges the limit must be holomorphic,
by the above theorem. The second part of the above theorem tells us that the derivatives
of the partial sums converge to f’ which means exactly that we can compute f'(z) by
differentiating the series term by term. O

Proposition 2.3 (Hurwitz) Suppose Q is a domain and {f,} C H(QY) where f, are
all nowhere zero on ) and converge uniformly on compact sets. Then either the limit
function f is also nowhere zero or it is identically zero on €.

Remark 2.4. A domain is an open, connected subset of C.

Proof. Suppose f is not identically 0. Then since f is holomorphic, its zeroes are isolated.
Let zg € Q be arbitrary. If it is a zero, we can compute its multiplicity via the Argument

Principle
f'(2)
d
L )"

where v is a small circle around zg. But then

/ !/ /
/ ! (z)dz = / lim ”(Z)dz = lim In(2) dz
v f(2) 5 1= fn(2) n=o0 .y fn(2)
where the limit must be 0 since that is multiplicity of zg as a zero of the f,, for every n.
Therefore 2 is not a zero of f. O

Corollary 2.5 If Q is a domain and {f,} C H(Q) where f, are injective and converge
uniformly on compact sets to f, then f is either constant or also injective.

Proof. Suppose f is not constant and not 1-1. Then there are distinct points z1,z2 €
so that f(z1) = f(z2) =: a. Let Vi,V be disjoint open neighbourhoods of z; and z
respectively. Since f(z) — a vanishes on V; we know that f,, must have a zero on V; as well
by the previous proposition. But this holds for V5 as well which contradicts injectivity of
the f. O
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2.1 Series of Meromorphic Functions

Quite often we will be interested not (only) in convergence of a series of holomorphic func-
tions but rather in the series of meromorphic functions. We say that a series of meromorphic

functions
o0
> fn
n=1

converges uniformly (or absolutely and uniformly) on open €2 C C if we have uniform
convergence (or absolute and uniform convergence) on compact subsets of 2 after discarding
finitely many terms. In other words, if K is any compact subset of €2 then only finitely many
of the f,, should have poles in K. If we ignore these, then we have a series of holomorphic
functions on K and we know what it means for a series of holomorphic functions to converge.
Therefore if we have convergence in this manner for every compact set K (where perhaps
we need to discard different f,, for different K') then we say that the series of meromorphic
functions itself converges.

Corollary 2.6 If a series of meromorphic functions ) f, converges uniformly on compact
subsets of Q then f =Y f, is meromorphic on Q and Y f] converges uniformly to f’.

2.1.1 Example 1

It is easiest to understand this via an example. Consider the series

1
f(z) = Z m

n=—oo

We claim that this converges absolutely and uniformly on compact subsets of C. In fact we
can make the even stronger statement that we have absolute and uniform convergence not
just on compact subsets but on any vertical strip a; < Re(z) < ay (where aj,as are some
fixed real numbers).

aq az

Figure 3: The series for f(z) converges on every vertical strip in the complex plane

For n < aj; and n > ag, the functions 1/(z — n)? are holomorphic on this strip, thus we

can ignore all n that lie in (a1, az). Moreover for n < a; we have 1/ |z —n| < 1/|a; — n| for

19



z in the strip (see Figure 4). Therefore

ai ai

Z |fn(2)] < Z (a1—1n)2

n=—oo n=—oo

which converges as it is comparable to > 1/n%. The analogous argument holds for n > as.
Therefore the series converges to a meromorphic function.

o /.

-

\5

n lao -nlay as

Figure 4: We have 1/ |z —n| < 1/|a; —n| for n < ay

We want to find f more explicitly. Let us consider what properties f(z) has. We know f
is periodic with period 1 and it has double poles at the integers. There is another function
that has these properties, namely

To\2
9(2) = (sinwz)
We claim that these two functions are in fact equal.

Since f and g have the same principal parts, their difference f — g is holomorphic on C.
Therefore, if we can show that f — g is bounded we will be able to use Liouville’s theorem
to conclude that it is constant. We first show that | f(z)| — 0 as Im(z) = y — oo uniformly
with respect to x. This means that for any € > 0 we can find b > 0 such that for |y| > b we
have |f(z)| < e. By periodicity of f, it suffices to show this on a vertical strip of width 1.

Suppose z is in a strip of width 1 where its imaginary part y satisfies |y| > b for some
b > 0. Notice that the terms of the series are holomorphic on this subset and converge
uniformly and absolutely on compact subsets. There is some large N such that for all z we

have
> s
S
|n\>N‘z_n’ 2

as this the tail of a convergent series.
The finitely many terms in the sum that remain also go to 0 uniformly with respect
to x and can individually be bounded (in particular we choose b so that all the remaining
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terms are small). To be precise, for every |n| < N, we consider 1/(z — n)? which goes to
0 uniformly as |y| — oco. In particular then there exists some b,, such that if |y| > b, then
’1/(2 — n)Q} < €¢/4N. Now we take b to be greater than all these b,. Then notice that for
ly| > b we have

1 1 1
2 2 2
n:Z_oo |Z n| n=—N |Z - n’ ||¥N |Z - n’
N €
< - —
2 v T3
n=—N

Notice that g also has this property since
lsin(nz)|? = sin?(7x) + sinh?(7y)

Now it is easy to see that f — g is bounded. In particular on any strip, f — ¢ is bounded
for |y| < b by compactness and we know the difference goes to 0 for |y| > b. Therefore f —g
must be a constant and since the limit is 0 as |y| — oo, the constant must be 0.

2.1.2 Example 2

For a second example consider the series
1 1 1
ICEEESS (Z_n+n>

The series does indeed converge on compact subsets of C (to a meromorphic function which
we prematurely called f) since each term in the series is of the form z/n(z — n) which is
comparable to 1/n? (on compact sets because we can bound z). Moreover if we differentiate
the series for f term by term we get

Fo-doy L

Therefore f(z)—mcot(nz) is a constant (since their derivatives are equal) and this constant
must be 0 since the functions are odd. Therefore

1 1 1

- — = t

z—|—§ z—n+n 7 cot(mz)
n#0
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3 Weierstrass p-function

We say a function f(z) is doubly periodic if it is periodic with respect to a discrete subgroup
I’ of C with 2 generators. This means that f(z+w) = f(z) for every w € I for a subgroup
I' of the form

I'={nie; + ngey : ny,ng € Z}

where eq, es are complex numbers are linearly independent over R (see Figure 5). Equiva-
lently, one can say that f has I' as its group of periods.

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] L ] L ] [ ] [ ]
€1
[ ] [ ] [ ] [ ] [ ]
€2

& . >0 &

[ ] [ ] [ ] o [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

® ® L ] [ ] [ ] L ]

Figure 5: T is a discrete subgroup or lattice of C

The Weierstrass p function is defined with respect to a group of periods. So let I' be a
discrete subgroup of C as described above. Then

=5+ 3 (@)

wel\{0}

We claim that this is uniformly and absolutely convergent on compact subsets of C. In
order to see this, we first need the following lemma.

Lemma 3.1 Given a discrete subgroup I', we have

> %<oo

wel\{0} jw]

Proof. In order to verify that the sum converges, we will sum over the points in a clever
way, from the center outwards in a radial manner. Let P, = {t1e1 +taea : max{t;, ta} = n}.
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These are the 8n points that lie on the n-th parallelogram from the middle. Let k be the
minimum distance between the origin and P;. Then the distance between the origin and P,

is 2k and in general the distance between the origin and P, is nk (see Figure 6). Therefore
wel'\{0} | n=1weP,

Figure 6: Sum ‘radially’ from the origin

Proposition 3.2 Given a discrete subgroup I' C C, the series

1
O

wEF\{O}

converges absolutely and uniformly on compact subsets of C.

Proof. Tt suffices to show that the series converges on closed disks |z| < r for every r since
any compact set is contained in such a disk. Then fix some r > 0. We see that for |z| <r
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and |w| > 2r we have

1 1

(z —w)?  w?

w? — (22 — 2wz + w?)
w?(z —w)?
’|

B ‘sz—z

 fw?l]z —w]?

B lwz| ]2 — z/w]

et = 2w

a2 2/l
jwl? |1 = z/wl?
2] (2 + |z/w])

T wl (1= |2/w)?
r-5/2

T w174

We know the series 31/ |w|® converges by the previous lemma and hence the given series
also converges by the Weierstrass M-test. O

The function given by

1 1 1
WA=t D o
wel\{0}

for a given subgroup I' is a meromorphic function on C. The poles of g are exactly the
points of I', which are in fact double poles. It is also easy to see that p(z) is even (this
requires the fact that ' is a group so if w € T then —w € T'). What is less obvious is the
fact that @ is doubly-period with group of periods I'. In order to see this we will need to
use the fact that ©/(z) is periodic. By differentiating term by term, we get that

O(z) =2 Z (z_lw)g

wel

which 4s obviously periodic with respect to I' (computing ©'(z + w) amounts to simply
reordering the sum). Therefore

p(z +e) — p(z)

for i = 1,2 is constant since the derivative is 0. Taking z = —e;/2 and using the fact that
p is even, we get that the constant is

o (5) o (5) -0 (8)0(5)

Hence p(z) = p(z +¢;) (for i =1,2).

Consider the Laurent expansion of g at 0. It looks like
1 2 4
p(z) = ?—l—agz +agz"+ -
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This is because p is even and

1 1 1
S Rl DI L

wel\{0}

is holomorphic around 0 and is 0 at 0. We know the right hand side is equal to asz? +
asz* + ---. By differentiating the series the appropriate number of times we can work out
az and a4 explicitly. For example,

Z 7( ~ ) _E:@Z + a4z + -
wel\ {0}
2
Z —m:2022+4a423+“'
wel\ {0}
6
Z m:2a2+12a422+---

Substituting z = 0, we get
1
=3 >, i
wel\{0}
Similarly we get
1
=53 -
wel\{0}

We want to relate p(z) and ¢/(z) to get a differential equation. First we see that
/ 2 3
p(2) = —;4—20,224-4@42 + e

Therefore, in order to relate p and @’ to get a holomorphic function we need to at least
cube p and square g’ so we can start cancelling out the principal parts. We see that

4 8a
10 \2 2 2
— = _ 22214 e
o' (2) 56 22 as+2°(-+)
and
1 3a
3 2 2
— — 42243
p(z) Z6+ 22 +oa4 + 2 ( )
Therefore
20a
0(2)° —4p(2)’ = =57 —Was +2°(-+)
Now we observe that % = —20a2p(z) + 22(---). Therefore by absorbing the remaining

portion into the z? term we get

©'(2)% — 4p(2)® + 20a2p(2) + 28a4 = 2%(...)
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Notice that this is holomorphic near 0, is 0 at 0 and is periodic. Therefore
0 (2)* — 4p(2)> + 20a2p(2) + 28ay

is a bounded entire function so must be constant by Liouville’s Theorem and by evaluating
at 0 we see that the constant must be 0. Consider a curve in C? given by y = ¢/(2) and
x = p(2). Then we know that this satisfies the equation

y? = 42® — 20a9z — 28a4

In fact we will see that any curve satisfying such an equation (where recall as and a4 are
dependent on a discrete subgroup of C) is given by (p(z), ¢'(2)) for p(z) with appropriate
group of periods.

3.1 Doubly Periodic Functions

Although we will mostly apply them to the Weierstrass p function, it is useful to keep some
facts about general doubly-periodic functions in mind.

Proposition 3.3 Suppose f(z) is a non-constant meromorphic function with I" as a
group of periods. Then the number of zeroes of f in a period parallelogram is equal to
the number of poles of f in the parallelogram when both are counted with multiplicity
(provided that there are no poles or zeroes on the boundary)

Proof. This is a consequence of the argument principle.

A period parallelogram is found by taking any zy € C and considering the parallelogram
given by the points zg, z0 + e1, 20 + €1 + €2, 2o + €3 where ey, es are the generators for I'. Let
~ be boundary of this parallelogram. By choosing zp appropriately, we can ensure that no

poles lie on the . Then consider
1 /
1 / f'(z) .
2mi J, f(2)

On the one hand we know by the argument principle that this is equal to the number of
zeroes minus the number of poles. On the other hand the periodicity of f (and therefore
f’) implies that the integral is 0 (for example the integral over the bottom edge is the same
as the integral over the top edge but with a flipped sign). Therefore the number of poles
and zeroes is equal. O

Similar to the above result we can also comment on the sum of the poles and zeroes.

Proposition 3.4 Suppose f(z) is a non-constant meromorphic function with T' as
a group of periods. Let a € C be arbitrary. Let c; be the roots of f(z) —a and p; the
poles of f(z) (both counted with multiplicity) in a period parallelogram. Then

ZaiEZﬁi mod I'

In particular the sum of roots of f(z) = a is independent of a.
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Proof. A consequence of the argument principle is that the sum of zeroes minus the sum of
poles (counted with multiplicity) in the period parallelogram is given by
1 zf!
[,
2mi J, f(z) —a
where « is the boundary of the parallelogram. Let v; be the bottom edge and ~3 the top
edge. Notice that v3(t) = v1(1 —t) + ez (see Figure 7).

Y3
'ZO + (22 L A 7,2
,74 A 4 )
zp + e
s
L
20

Figure 7: v3(t) =y (1 —t) + e2
Therefore

1/ 2f'(2) 1 / (z+ea)f"(z+ea)

i) F—a¥ T T ) fleten) —a
1 2f'(2) 1 f'(z)
T omi " (z)—czdz_e2'27ri/71 f(z)—adz

Therefore in particular
1 f'(z) 1 fz) 1 f'(z)
27 )y 72 — a2 / fo)—a %/ ) —a”

Moreover the coefficient of ey is an integer since

1 f'@) 4, -1 L

2mi Jo, f(2) —a 20 J(p_gyon, w

is simply the winding number of (f — a) o 1 with respect to 0.
A similar thing happens with the left and right edges which we label 9 and 74 respec-
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tively. Therefore

which is in T". O

We immediately apply the results above to the case of p(z).

Theorem 3.5 The right hand side of the equation satisfied by (x,y) = (p(z), ©'(2)),
namely
y? = 42 — 20a02 — 28ay (3.1)

has 3 distinct roots. Moreover for all (x,y) on this curve there exists a unique z € C/T
such that (z,y) = (p(2), 0'(2)).

Proof. Given a € C, we know that p(z) = a has 2 roots in the period parallelogram and
©'(2) = a has 3 roots. This follows from Proposition 3.3 and the fact that p(z) and ©'(z)
have a double and triple pole (respectively) at w € T

We want to consider points z € C such that 2z € T' but z ¢ I'. These points are
interesting because they are exactly the points satisfying z = —z mod I'. It is easy to see
that the only such points modulo I' are e1/2,e2/2 and (e; + e2)/2. This is because if

22 = nieq1 + nges

Then

+ 2
Z = —&€ —€
g 1T g2

so the only solutions modulo I' are when one or both of the coefficients of ej, ey are 1/2. If
z is any of the three points above then z = —z so

On the other hand ¢’ is odd so for any z at all we have
o' (—2) = —¢/(2)

Therefore we conclude that ©’'(z) = 0 at the three points above. This means that at these
three points the left hand side of the equation (3.1) is 0 and thus p(e1/2), p(e2/2), p((e1 +
€2)/2) are zeroes of the right hand side. All that remains to show is that these are distinct.

Let zy be one of the 3 special points. Then we know that p(z) — p(z0) is 0 at zp and its
derivative ©/(z) is also 0 at zp. Therefore p(z)— p(20) has a double root at zg. Since p(z)—a
has exactly 2 roots for any a we know that p(zp) cannot be achieved by any other point in
the period parallelogram. Therefore the 3 zeroes to the equation are indeed distinct.

For the second part of the statement, we already know the case for y = 0 (in particular
since (x,y) is on the curve, if y = 0 then x would be a root of the right hand side and we have
seen in this case x is necessarily one of p(e1/2), p(e2/2) and p((e1+e2)/2)). Suppose y # 0.
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Then we know that p(z) = x has 2 roots and since g is even we know that p(z) = p(—=2) so
the two roots are given by z and —z. Since y is not 0 we know that 2z ¢ T" so in particular
z and —z are distinct. Looking at the equation, we can see that for a fixed z, there are
exactly two choices of y (provided y # 0) that only differ by a sign. Since g’ is odd, we
know then that y must be given by ¢'(z) or ©'(—z). Thus for every (z,y) on the curve,
there exists a unique z € C/T satisfying (z,y) = (p(2), ©'(2)). O

3.2 Compactification of Elliptic Curve
Let X C C? be the curve satisfying

y2 = 423 — 20a9x — 28ay

We know that the right hand side has 3 distinct roots and we would like to use the Implicit
Function Theorem to conclude that X is smooth. Unfortunately, we don’t yet have the
theorem for several complex variables (indeed we don’t even know yet what it means for a
function in more than one variable to be holomorphic). But there is a weaker version of the
statement that is enough for us.

Theorem 3.6 ((Weak) Implicit Function Theorem) Suppose f(z,y) is a C' function
(when viewed as a function from R* to R?) that is separately holomorphic in each
variable. Then if f(zo,y0) = 0 and %(330,?/0) % 0 then we can solve for y as a
function of x (i.e. we get y = y(z)) with y(xo) = yo.

Proof. Suppose we write x = x1 + ix9,y = y1 + iy2 and z = f(x,y) so that z = 21 +izy or
f = f1 +ifs. For a fixed x we have

of
dz = —=—d
z Jy Y
and _
of
dz = ——dy
z 3y ]
Therefore )
dzNdz = 'E)f dy N\ dy
dy

Since dy = dy; + idy2 and dy = dy; — idy2 we compute that
dy N\ dy = —2idy; N dyo

Similarly of course we get
dz NdzZ = —2idz1 N dzg
This means that

PYIk
dz1 Ndzy = ‘af dyy N dys
Y

0(z1,22)
0(y1,y2)
Function Theorem we can write y as a function of z so that f(z,y(x)) = 0 for all z in

In particular this means that is invertible at (xo,y0) and so by the Real Implicit
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some open neighbourhood of xg. All that remains to do is show that y is holomorphic.
Differentiating f(x,y(z)) with respect to x we get

_of, L of (Oy, Oy _
0= axdl‘+ 2y <axdx+ Eﬁdx

Note that there is no /9% term on the left. Therefore by linear independence of 9/9x and
0/0% we conclude that
oy
5 =
Thus y is indeed holomorphic. O

0

Now that we have this result we can consider the curve again. Suppose we have
f(z,y) =y* — (42° — 20azz — 28a4)

We want to show that we have local coordinates for every point in the zero set of f.
Notice that
of

oy
so for y # 0 we know that % is invertible so we can solve for y as a function of . We know
y is 0 for exactly 3 points, namely the roots of the cubic polynomial in . However these
roots must be simple (a cubic polynomial can have at most 3 distinct roots and we have
exactly that) so in particular g—i is non-zero at these points. Therefore in a neighbourhood
of these points we can solve for x as a function of .
Recall how it is very useful to adjoin a point at co to C. We want to try doing the
same thing for the curve X by compactifying it. For this we will need to know about
n-dimensional complex projective space.

The n-dimensional complex projective space is the space of complex lines through the
origin in C"*!. In other words

2y

P*(C) :=C"\ {0}/ ~
where
(205 -+ s @n) ~ (Y05 - -+, Yn) & (%0, -+, Tn) = ANYo, - -, Yn)

for some \ € C.
This is an n-dimensional complex manifold which we can cover with n + 1 coordinate
charts. For i =0, ...,n we define

Ui == {[zo,...,zn] € P"(C) : x; # 0}

Then we can have

Zo T Tn
[Ty yxp] = —oo,—, o, —
The inverse is given by
(ﬁi_l :C" = U;
(21ycos2n) = [21, ooy 20 L, Zik 1,y o ooy 2]
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It is then easy to see that the transition maps between these charts are given by ratio-
nal functions (although we still haven’t properly defined what it means for a multivariate
complex function to be holomorphic certainly the theory should include rational functions).

Since we are looking at a curve in C? we only really need to focus on P2(C). We can
decompose it like so

P(C) = {[z,y,] € PX(C) : t £ 0} U {[w,y,1] € PX(C) : t = 0}

c? PI(C)

For convenience we will call the first set above Up. In Uy C P2%(C), the coordinates are
given by (z/t,y/t). Writing the equation of the curve in these coordinates we get

(%)2 —4 G)S — 20a; (%) — 28ay

Written like this, the equation is just begging to be homogenised. Doing so, gives us the
closure of X in P?(C)
X" y?t = 42® — 20aqxt? — 28ayt?

The points of X of course still lie in X’ which are given when ¢ # 0. Therefore the new
points occur when ¢ = 0. Notice when t = 0, we must have x = 0. Therefore taking the
closure we only have one new point, [0, 1,0] which we call a (or in this case the) point at
infinity. Around this point the coordinates of X’ are given by (2/,t) := (z/y,t/y) so we
dehomogenise with respect to y (i.e. we divide through by v?) giving us

t' = 42" — 20a92't” — 28a4t"

In fact we can solve for ¢’ as a holomorphic function of 2’ and even write out the first few
terms of its power series
t' = 42" — 320a92"" + ...

Note that since X is a curve in C? we have a natural map onto C which is given by simply
projecting onto one of coordinates, say the first one. Say this map is given by ¢. Then the
question becomes can we extend ¢ to ¢’ : X’ — S? in such a way that ¢/([0,1,0]) = co. In
other words, we have the following diagram

C?+—X C X —— PXC)

X lsa o
C c &2

where 7 is the projection from C? to C! onto the first coordinate and ¢ = m|x. We need
to check that ¢’ is holomorphic around [0, 1, 0]. Therefore naturally, we use the appropriate
coordinates around this point, namely we have

X'nUy = {[z1,1,t1]}
where by above we know that
t; = 423 — 320a0x] + ...

Recall that X is a subset of Uy so for the t; # 0 we know [z1/t1,1/t1,1] € X C Uy.
Therefore

) _ Z1
zi=g(lonLa]) = 41’? — 320a2mz +...
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We want to check that defining this to be co at 1 = 0 is holomorphic. For this we switch
to coordinates at infinity
423 — 320as2] + . ..

x1

1/z =

which does extend holomorphically to 21 = 0 and therefore ¢ extends to ¢’ holomorphically.
Notice this also shows that ¢’ has a double pole at [0, 1, 0].

We already knew by Theorem 3.5 that, ignoring the points of T', the map z — [p(2), ¢'(2), 1]
was an injective holomorphic map on C/T". The work done above shows that this map can
be extended holomorphically to the points of I' by mapping them to [0, 1,0] and thus we
have a biholomorphism between C/I" and X’. We know that C/I" is a torus which means
in particular that the completed curve X’ is isomorphic to S x S?.

One might wonder whether there is an explicit formula for the inverse of this biholo-
morphism (which is of course only determined up to the addition of a constant in I'). For
this we take inspiration from the analogous situation that occurs with sin and cos.

Consider the curve

C:y?=1-2z2

in R2. We know this curve (the unit circle) is parameterised by = = cos#,y = sin. What
we would like to do is given a point (x,y) on the curve recover what 6 is (which will only
be unique up to integer multiplies of 27). We see that

dy = sin’ df = cos 0df = xdf

Notice this implies that df = dy/x From the definition of the curve we know that

xdx +ydy =0

so in particular
dp=2_ =
x (Y

Then we can recover 6 by

b_ /(cose,sine) @ _ sin 0 dy
(

1,0) x 0 V1—19y?

in a neighbourhood of (1,0) (i.e. where x # 0). This is of course how we defined arcsin in
first year.

Remark 3.7. The integral above is not technically well-defined since the unit cir-
cle is not simply connected. It will depend on the path chosen between (1,0) and
(cos 6, sin ). However the value for different paths will only differ by integer multiples
of 27 as we expect.

With this in mind we can go back to our curve X’. Notice we have

dr = ¢'(2)dz = ydz
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so in particular

s
Y
for y # 0. From the definition of the curve we have

dz

2ydy = (122° — 20as)dx

and hence
7(13/ = d—gc =dz
622 — 10a2 y
Then just like before we can recover z by
. [p().9" (2):1] 1, [p(2),9"(2),1] dx
[0,1,0] y [0,1,0] Va3 — 20asz — 28ay

Again since a torus is not simply connected, the integral is not technically well-defined
but answers will only differ by elements of I.

4 Functions with prescribed zeroes and poles

We want to explore how constrained (or not) the space of holomorphic functions/meromorphic
functions is. One way we can try exploring this is to ask whether we can always construct
a holomorphic/meromorphic function with a given set of zeroes/poles. The answer in both
cases is yes. We will begin by considering the case for poles. The case for zeroes will require
us to build some theory about infinite products.

Theorem 4.1 (Mittag-Leffler) Given a set of poles {bx} C C such that limy_,, by =
oo and {Py(z)} set of polynomials without constant term, we can find a meromorphic
function with poles by, and principal parts Py(1/(z — b)). In fact the most general
such meromorphic function on C is

1a=3 (7 () -n) +o0

k=1

where pi(z) are (well-chosen) polynomials to guarantee convergence and g is any
entire function.

Remark 4.2. The assumption limy_,, b = oo ensures that the by don’t have a finite
accumulation point. We know that the poles of meromorphic functions are isolated
so this is certainly necessary.

Proof. We can assume that by are all non-zero. Then Py(1/(z — b)) is holomorphic in
|z] < |bg| and so we can expand it as a Taylor series at 0. Let pg(z) be sum of the first ng
terms where ny is chosen so that

‘Pk: <z jbk) - pr(2)
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for |z| < |bg| /2. Then we claim that

iPk <Z_1bk> — pi(2)

k=1

converges absolutely and uniformly on compact subsets of C. In fact we will show we have
convergence on |z| < r for any r. In order to see this, choose m so that |bg| > 2r for k > m.
Then for |z| < r < |bg| /2 for such k we have

; ‘Pk <z jbk) — pi(2)

1
<D o

which we know converges.

Suppose we have have two functions with the given poles and principal parts. Then their
difference is holomorphic on the complex plane and hence entire. This gives the second part
of the theorem. O

4.1 Infinite products

Suppose by is a sequence of points in C. Then naturally we want to say that
o0 n
H b = nh_}ngo H b
k=1 k=1

In other words, the infinite product ‘should’ converge if the partial products do. But of
course the partial products might simply converge if one of the by is zero. Therefore we will
also assert the the limit should be non-zero. But of course there are times when we want
to allow 0 to be a point in the sequence (we are building of course to taking products of
functions which may take the value of 0 at certain points and indeed our ultimate goal is
to build holomorphic functions with a presecribed set of zeros). Therefore, we will say [ ] by
converges if only finitely many of the terms are 0 and the partial products of the remaining
terms converges to a non-zero finite complex number. Notice that a necessary condition for
convergence is by — 1 since

k
I1 j=1 b
E—1
Hj:l b;
Therefore we often write by, = 1 + a; where a; — 0.
We know a lot about convergence of series so it would be nice if we could translate the

convergence of infinite products to the convergence of infinite sums. The way we will do
this is by using log of course.

by, =

Theorem 4.3 The infinite product [[2 (1 + ay) with 1 + a,, # 0 converges if and
only if Y7 log(1 + a,) does.

Proof. The above makes sense because we know for sufficiently large n, the b, in the original
product tend to 1 (which is to say a, tend to 0). This means for sufficiently large n, 1+ a,
is away from 0 so log(1 + a,) is well-defined and we can choose a consistent branch of log
for all a,. We will of course use the principal branch of log.
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Let S, denote the partial sum of the series and let P, be the partial product of the
infinite product. In particular we have P, = e%. Therefore if S, — S, it follows by
continuity of the exponential that eS» — % =: P which in particular is non-zero. Therefore
if the series converges then so does the product.

Now suppose the product converges so we have P, — P. We want to say of course
that S, — log(P). In fact this might not be true (where recall we are taking log to be
the principal branch of log). However the limit will differ from log(P) only by an integer
multiple of 27. In order to see this note that for every n there exists an integer h, such

that
P,

log <P> = S, — log(P) + hy, - 2mi

We will show that all h,, are equal. We see that

P, Py
(hpt+1 — hp)27mi = log ( ;1> —log <P) +log(1l + ant1)

Notice the left hand side is purely imaginary and the imaginary component of log(z) is
simply the argument. Thus equating imaginary parts we get

P, P
(hn+1 - hn)27r = arg < 7;1> —arg (Pn> +arg(1 + an+1)
—_———

<m

—0

Since we are taking the principal branch of log we know that |arg(z)| < = for any z.
Moreover by convergence we know that arg(P,+1/P)— arg(P,/P) — 0. Therefore for large
n the right hand side can be made smaller than 7w + € (for any € > 0) in absolute value.
However if hyy1, h, are different then the left hand side is at least 27 in absolute value
(recall that the h,, are integers). Therefore we must have h,+; = h,, (for all n sufficiently
large). Therefore

Sn — log P 4 2mih

0
We say that the product []72; (14ay,) converges absolutely if >~ | log(1+4-a,) converges

absolutely. This series converges absolutely if and only if > >, a, converges absolutely.
This is because

log(1
lim 28012
z—0 z
Therefore lox(1
og( +6Ln) _1‘ <e
Qnp

for n large enough. This means that
(1 —€)|an| < flog(1l+ ap)| < (1 +€)|ay]

Therefore if ) |a,| converges we can compare it with > [log(1 + ay,)| via the right inequality
and if > [log(1 + ay,)| converges we can compare it with > |ay].
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Having discussed infinite products of complex number we naturally want to discuss
infinite products of complex-valued functions.

7

Definition 4.4. Given a sequence of functions f,(z) defined on an open set €2, we
say that [] fn(z) converges on compact K C Q if

1. fn(z) = 1 uniformly on K

2. > log f, is uniformly and absolutely convergent on K

By the previous theorem, the above conditions imply that the partial products converge
uniformly on compact sets.
We state some trivial properties of infinite products.

Theorem 4.5 Suppose fn(z) is a sequence of functions on an open subset Q2. Sup-
pose [[ fu(2) converges absolutely and uniformly to the function f(z) on compact
subsets of Q. Then

1. f(2) is holomorphic on Q and we have an ‘associativity law’

f=htrfo ][ Fn

n>p

2. the set of zeroes of f, Z(f) is
Z(f) = 2(fa)
n=1

and the multiplicity of any zero of f is the sum of multiplicities of the point at
all fn

3. the series of meromorphic functions >, I/ fn converge uniformly and absolutely
on compact subsets of Q and

Sy
2

Proof. The first two statements are obvious. Let us then prove the third statement. Let
K be a compact subset of 2. Suppose we can choose a consistent branch of log for all the
fnlk (say because they only take values in a simply connected set not containing 0). Then
we would have

oo
log f = _log fn
n=1

and differentiating both sides (recall we can different the series term by term) we would
have

=

L/_OO
>

S~

n
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Of course it is possible that we do not have a consistent choice of log for all the f,. For
example, they might be 0 at some points. On the other hand, since we are working on a
compact set, we know that f, — 1 uniformly on K. Therefore for sufficient large n we do
have a consistent choice of log. Suppose p is such that for n > p we have |f,(z) — 1| < 1
for all z € K. Then we define

gp 1= exp (Z log fn)

n>p

In fact this is not quite sufficient. Because we want to work with holomorphic properties of
gp, we need to be working on an open set but g, above is only defined on K. In order to fix
this we will instead work on a slighly larger open set U which contains the given compact
set K and whose closure is compact. Because the closure of U is compact, we can still pick
a sufficiently large p to make g, well-defined on U.

From above it follows that

gp_zf/

We have
f:fl"'fp'gp

From the product rule and above equation it follows that

O

Let us try express sin as an infinite product. Let us consider sin(7z) so that the zeroes
lie on the integers. Then the natural choice is

—zH(l—)—zH(l—nQ>

n#0

which we wish to argue converges uniformly and absolutely on compact subsets of C. But
from above we know this is the same as showing that >_ z?/n? converges absolutely and
uniformly on compact sets and we know this holds true by comparison with 1/n? (and the
fact that on compact sets |z| is bounded).

Therefore f(z) is a holomorphic function with zeroes on the integers with each zero
being simple. Then

fil2) 1 N~ 22 9'(2)
= - +;z?—n? = mweot(nz) =
where g(z) = sin(7z). Since their logarithmic derivatives are equal we conclude that f(z) =
cg(z) where ¢ is some constant (this follows from consider (f/g)’ and concluding that it

must be 0). We see that
f(z)

—t =1
z
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as z — 0 and
sin(7z)

z

Hence the constant ¢ must be 1/7.

Now we can ask the natural extension of the Mittag-Lefller Theorem: given a sequence
of complex numbers, can we find an entire function f where this sequence is exactly the
zero set of f7?

First suppose we want a function with no zeroes. We claim that any entire function f
which is non-zero everywhere is of the form e9(*) where g(z) is entire. In order to see this,
consider f’/f which is also entire hence has an entire primitive g(z). Then f(z)e 9() has
0 derivative since

(f(2)e#P) = f(2)e™9) — f(2)g (z)e#®) = 0

This means that f(z) = Ae9(*) and we can absorb the constant A into the exponent.
Naturally then if we want an entire function with a zero at the origin of order m (possibly

zero) and zeroes at ay, . .., ay (possibly with repetition), then the most general such function
is
k=1 Ok

For the case of infinitely many zeroes, we look to the following theorem by Weierstrass.

Theorem 4.6 (Weierstrass) Given a sequence {a} in C such that limy_,~, ap = 00,
there exists an entire function with zeroes exactly ai. The most general such function

is of the form
— e9(x) ,m R I X €)
f(z) =e9%2 || < ak) e

k=1

where ay, are all non-zero and where Py(z) are polynomials of the form

1 2 1 mg
Pk(z)zz+2(z> +...+(Z>
ag ay, my \ Qg

Proof. As usual, we convert the question of infinite products to a question of infinite sums.
We know the given product converges if and only if

ilog <1 - ;) + Py(z)

k=1

We will deal with this much like we did with the Mittag-Leffler Theorem, using terms from
the Taylor series to ensure convergence.
Let us denote the terms of the above series by gr(z). Recall that

z z 1/ 2\
m(i-3) =55 -
ag ar 2 \ag

We are going to choose Py (z) to be first few terms of this Taylor series. The main question
of course is how many terms should we take. Suppose we take the first my terms (we will
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say precisely what my should be shortly). Then

1 2\t 1 2\ T2
() = 2 ) B
my +1 \ ag mg +2 \ ag

Suppose |z| < r and consider aj, such that |ag| > r (we are going to show that this tail of
the series is convergent for a suitable choice of my) Then

1 ro\ e 1 ro\ 2
A< —— [ — +—(— +...
|%U|1m+1Q%0 7m+2Q%>
1 r mp+1 r r 2
< (= 1+ —+(—) +...
mg + 1\ Jag| |ax| |a|
() )
my + 1\ |ag| |a|

Notice that we can bound (1 — 7/|az|)~! by a constant since r is fixed and a; — oo.
Therefore if

o8] mp+1
1 T k
_— — 4.1
kzzlmk—i-l(]ak]) (4.1)

converges then Y gr also does. Therefore we need to choose my so (4.1) converges. A
possible choice is mg = k. O

Corollary 4.7 FEvery meromorphic function on the plane is the quotient of two entire
functions.

Proof. Suppose h is a meromorphic function on the plane. Let g be an entire function which
has zeroes at exactly the poles of h with the same multiplicities. Then g(z)h(z) is entire on
the plane. If we call this function f then

5 Normal Families

Recall that a metric space is compact if and only if every (infinite) sequence has a convergent
(infinite) subsequence. The metrizable space we are interested in is C({2) or more precisely
in its subspace H (). We will say that a family of continuous complex-valued functions
& C C(Q) is normal if every (infinite) sequence in . has an (infinite) subsequence that
converges, although the limit may not lie in .¥’. Equivalently then, normal families are
exactly the subsets of C(£2) with compact closure. An example of a normal family is . :=
{fn(z) = 2" : n € N} on the unit disk. We know that the f,, converge (uniformly and
absolutely) on compact subsets of the disk D but the limit does not lie in .7
A nice way of checking that a family of functions is normal is the following.
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Lemma 5.1 A family of continuous functions . C C(2) is normal if and only if
for every ‘suitable’ cover {E;} (which is to say that Q = J,; E;) and every i we have
that every infinite sequence in . has a subsequence which converges in E;.

Remark 5.2. What we mean by a suitable cover will be made clear in the proof.

Proof. The reverse direction is clear since we are given that in particular every sequence
has a convergent subsequence. Thus we only need to show the converse.

We want to show that if the suitable cover condition holds then . is normal. So let {f,}
be a a sequence in .. Then we know by assumption that there is a subsequence { fél)}
which converges uniformly on Ej. Then there also exists a subsequence { f}(Lz)} of { qul)}
that converges uniformly on F». Continuing in this manner we can construct a subsequence
{ fé’“)} of { fék_l)} that converges on Ej. Then the diagonal sequence { fr(bn)} converges on
E; for every i. Therefore a cover will be suitable if this allows us to conclude that we have
convergence on all compact subsets of €). This means that convergence on one suitable
cover immediately implies convergence on other suitable covers. O

A simple example of a suitable cover would be a covering by closed disks in €2 whose
interiors cover ). If K is a compact subset, then it is contained in the union of finitely
many of the disks so we have uniform convergence on K. Another example of a suitable
cover is a family of compact sets {K;} with K1 C Ko C --- so that @ = [JK;. Then
any compact set K of ) is contained in one of the K; so convergence on K; automatically
implies convergence on K.

When talking of function spaces, the natural starting point is the Arzela—Ascoli Theo-
rem. For this we first need to discuss equicontinuity.

Definition 5.3 (Equicontinuity). Let X be any subset of C and let . C C(X) be
a family of continuous functions. Then we say that . is equicontinuous at a € X if
for every e > 0 there is some § > 0 such that for any f € .7 we have |f(z) — f(a)| <
e for every z € X satisfying |z —a| < §. We say . is equicontinuous if .7 is
equicontinuous at every point and we say it is uniformly equicontinuous if § can be
chosen independently of the point a € X.

Remark 5.4. In particular ¢ only depends on € and not on any particular f € .7.

Example 5.5. An example of a (uniformly) equicontinuous family of functions is the
set of holomorphic functions (on the unit disk say) with |f’| < M. This collection of
functions satisfies |f(z) — f(w)| < M |z — w| for z,w € D for every f so given any € > 0
we can take 6 = e¢/M.

The Arzela—Ascoli Theorem typically says that a family of continuous functions has
a convergent subsequence if it is equicontinuous and bounded. In our case, we need the
functions to have a uniform bound on compact sets (although the bound may vary with the
sets). In fact due to equicontinuity, it is sufficient to require boundedness at a single point
as the following proposition demonstrates.
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Proposition 5.6 IfQ is a domain and . is an equicontinuous family of functions
then the following are equivalent

1. There exists some zy € Q such that {f(z0) : f € %} is bounded
2. For every z € Q, {f(2) : f € S} is bounded

3. % is locally bounded, which is to say that for every zo € Q) there is some open
neighbourhood U of zy in Q2 such that |f(z)| < M for every z € U.

Proof. Equicontinuity implies that for every w € €Q, there exists a disk D,, C §2 centered at
w such that |f(z) — f(w)| < 1 for all z € D, for all f € ..

In order to see that 1) = 2), let U := {z € Q : . is bounded at z}. By above the
statement about the implication of equicontinuity we see that U must be open. But this
statement also shows that the complement of U must be open. Suppose .¥ is unbounded
at some w which is to say that the set {f(w) : f € ./} is unbounded. But then consider
the above statement again, we know that |f(z) — f(w)| < 1 so that |f(w)| — 1 < |f(2)] <
|f(w)| + 1 for all z sufficiently close to w implying for z, the set {f(z) : f € ./} is also
unbounded. Hence U is both open and closed by 1) it is non-empty so U = (.

We see that 2) = 3) is immediate. Let zp be any point in 2. We again use the above
implication of equicontinuity to conclude that .7 is (uniformly) bounded on D,,. Finally
3) = 1) is immediate. O

Thus we can state the theorem as follows.

Theorem 5.7 (Arzela—Ascoli) Let Q be a domain in C. Then . C C(R) is normal
if and only if

1. 7 is equicontinuous and

2. There exists some zg € S such that {f(z0) : f € .7} is bounded

Proof. Suppose first that .# is normal. Further suppose there is some zg €  such that
& is not continuous at zg. This means there exists some € > 0 such that there is a
sequence of points {z,} C Q and a sequence of functions | f,,(2y)| where |z, — zo| < 1/n but
Fa(zn) = Fulz0)| > e

Now choose ng so that the closed disk |z — zp| < 1/ng is contained in Q. Since .¥ is
normal, we know that {f,} contains a subsequence that converges on this disk. Passing to
this subsequence and relabelling, we can assume that {f,} itself converges to some f on
this disk. Then

€< |fn(zn) - fn(ZO)|
< |fn(zn) - f(zn)| + |f(zn) - f(ZO)’ + |f(20) - fn(zo)‘
By uniform convergence of f, to f, for sufficiently large n, we can ensure that the first
and last term are less than €/3. By continuity of f, for large n the middle term can be be

made less than €/3. This leads to a contradiction. Therefore .7 is indeed an equicontinuous
family.
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Let zp be such that {f(z0) : f € .} is unbounded. Then there is a sequence of
functions {f,,} such that fy,(z0) — oo. But normality implies that there is a subsequence
that converges at zy leading to a contradiciton. Therefore {f(2¢) : f € #} is bounded for
every 2.

Now suppose . is equicontinuous and bounded at a point. We will show that it is
necessarily normal and we will use the usual diagonal argument one uses for the proof.

Let T'= {2} be a countable dense subset of 2 and let {f,} be any sequence in .. We
know by Proposition 5.6 that . is bounded at every point in Q. In particular then {f,(z1)}
is a bounded sequence in C so there exists a subsegence f,(ll) so that { f,(ll)(zl)} converges.
Then { fr(Ll)(zQ)} is bounded as well so there exists a subsequence of { fr(Ll)} which we call
{ fT(LQ)} so that { ff)(zg)} converges. We then continue in this manner. Notice that { fén)}
converges at zj for all k. We will relabel this to be the sequence {f,} itself. We want to
show that {f,} converges uniformly on compact subsets of .

We will show that for any € > 0 there exists a natural number M such that

[fp(2) = fa(2)| <e

on K for all p,q > M. This will show that {f,|x} is Cauchy and hence converges uniformly
on K. Let K be any compact subset of 2. Then in fact .% is uniformly equicontinuous on K
(exercise). Then there exists some 6 > 0 such that all z,w € K we have if |z — w| < § then
|f(2) — f(w)| < /3. There exists a finite set zx,, ..., 2z, € TNK such that ¢ disks centered
at the Zk; cover K. Now take z € K arbitrary. There is some Zk; such that ‘z — zkj‘ <.
Then

|fp(2) = fo(2)] < ‘fp(z) - fp(zkj)‘ + |fp(zk:j) - fq(zk:j)‘ + ‘fq(zkj) + fq(z)‘

We know the first and last term are less than €/3 by uniform equicontinuity. The central
term can be made less than €/3 by taking p, ¢ large enough (this is our choice of M) since
fn converge on all the z; € T. O

Arzela—Ascoli is a general theorem about compact subsets in C(€2) but we are really
interested in H(2). Montel’s (little) theorem tells us what the compact subsets in this
space are.

Theorem 5.8 (Montel’s (Little) Theorem) Let Q C C be a domain and consider
S CH(Q). Then the following are equivalent:

1. . is normal
2. % is locally bounded

3. S = {f/ o f € S} is locally bounded and there is some zy € Q such that
{f(z0)} is bounded.

Proof. 1) = 2) is an immediate application of Arzela—Ascoli, since the theorem tells us
that normal families are equicontinuous and locally bounded. For 2) = 3) we use Cauchy’s
inequalities.

Let zg € Q2 be given. By local boundedness, we know there exists some 7 > 0 and M < oo
such that |f(z)] < M for all |z — 29| < r and all f € .. Then by Cauchy’s inequalities for
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n =1 (see the discussion following Theorem 1.11) and considering the closed disk of radius

r/2 we have
2M

/
‘f (ZO)‘ < o
for all f € 7.

Finally for 3) = 1), it is enough to show that .#’ being locally bounded implies that .& is
equicontinuous (the remainder of the statement follows from Arzela—Ascoli). So given w €
Q, we know that |f/(z)| < M in a disk D of radius r centered at w. Then |f(z) — f(w)| <
M |z —w| for z € D (by the generalised Mean Value Theorem). This holds for all f thus
< is equicontinuous at w. O

We have the following immediate corollary.

Corollary 5.9 A subset . C H(Q) is compact if and only if 7 is closed and locally
bounded.

We will see that Arzela—Ascoli holds in more general circumstances than we need above;
in particular it holds for families of continuous functions with values in a complete metric
space. A particular example of such a space is the Riemann sphere with the chordal metric,

which is defined by
2|z —w|

Az = \/1 + \Z‘Q\/l + \w’2

This is the Euclidean distance in R? between the corresponding points on the unit sphere
as given by stereographic projection. An important property of the chordal metric is that

d(zw) = d (i ;)

Moreover, since norms in finite dimensions are equivalent, we have that the complex
plane with the topology induced by the chordal metric is equivalent to the usual Euclidean
topology. Notice also that we have d(z,w) < 2 for all z,w (this is the distance between
antipodal points on the unit sphere). But then the Arzela—Ascoli theorem tells us that a
family of continuous functions with values in the Riemann sphere is normal (in the chordal
metric) if and only if the they are equicontinuous in the chordal metric since all distances
are already automatically bounded by 2.

6 Conformal Mappings

A mapping f : Q — € between open subsets of S? is conformal (or biholomorphic) if f is
holomorphic and has a holomorphic inverse. The natural question that arises is if we are
given , ', how can we determine whether or not they are biholomorphic? And if so can
we find all the biholomorphisms? An immediate remark to be made is that although it
is necessary that biholomorphic maps be homeomorphic, it is not sufficient. For example,
the (open) unit disk D is homeomorphic to C but cannot be biholomorphic since any
holomorphic map from C to D is bounded and hence constant by Liouville’s Theorem.
The biholomorphisms from a space to itself are called automorphisms. The collection of
all automorphisms forms a group Aut(2). Moreover, a biholomorphism f : Q — €’ induces
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a group isomorphism

Aut(Q) — Aut(Q)
g— fogof!

6.1 Automorphism Groups

A biholomorphism is a bijective holomorphic map f : Q — Q' with a holomorphic inverse
(in fact every injective holomorphic map is automatically a biholomorphism onto its image
because injectivity implies that f’ is non-vanishing). A biholomorphism from a space to
itself is also called an automorphism. The collection of all automorphisms of € forms a
group and is sometimes denoted Aut(£2).

6.1.1 Automorphisms of the Complex Plane

We claim that all automorphisms of C are given by linear transformations
w=az-+b

with a # 0. In order to verify this we study the behaviour of a automorphism at oo (in
general this is a nice way to study the behaviour of a holomorphic function). Any entire
function f on C either has a removable singularity, essential singularity or a pole at infinity.
If oo is a removable singularity, then f is an continuous function on a compact space S?
so has a maximum. But this would mean that f is a bounded entire function and hence is
constant.

Therefore we must have an essential singularity or a pole at infinity. However we know by
Weierstrass’s Theorem (see Theorem 1.19) that the image of any punctured neighbourhood
of an essential singularity is dense in C. Therefore if f has an essential singularity then
f(Jz] < 1) and f(|z| > 1) intersect despite being the images of disjoint sets (so in particular
f could not be injective). Therefore f must have a pole at infinity which is to say that
f must be a polynomial. But a polynomial of degree n has n roots (so in general a given
value is achieved n times) therefore in order to be injective we must have f is a polynomial
of degree 1 so f(z) = az + b with a # 0.

6.1.2 Automorphisms of the Riemann Sphere

We claim that all automorphism are fractional linear transformations and hence are of the

form
az+b

cz+d
with ad — be # 0. It is clear that these fractional linear transformations certainly form a
subgroup G of Aut(S?). In order to see that these are all the automorphisms, we use the
following lemma.

Lemma 6.1 Suppose G is a subgroup of Aut(QQ) such that G acts transitively on 2
and there exists zg € Q0 such that the fized point subgroup Aut(Q),, (i.e. the stabiliser
of zo in Aut(Q)) is contained in G. Then G = Aut(S2).
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Remark 6.2. To say G acts transitively on () means that for any z,w € ) there
exists T' € G such that T'(z) = w

Proof. Let S € Aut(f2). Take T € G such that T'(z9) = S(zp). We know such a T exists
because G acts transitively on Q. Then 7' o S is an automorphism of € that fixes zp. But
then T-'0S € G and so S € G. O

We know that fractional linear transformations act transitively on S? (in fact any 3
(distinct) points can be sent to any 3 (distinct) points and this completely determines the
transformation). Moreover the stabiliser of co is exactly the automorphisms of C which we
have seen above are of the form az+ b and are therefore contained in G (this is when ¢ = 0).
Therefore we conclude that G = Aut(S?).

6.1.3 Automorphisms of the Disk

We claim that automorphisms of the disk are give by fractional linear transformations of
the form
w=e? 22
1— 252
where 6 € R and |z| < 1.
In order to verify this let S € Aut(D) and define

T=ef 220
1— 29z
where S(zp) = 0 and 6 = arg(S’(20)).
Now consider f = T o S~!. Notice by construction that f : D — D and f(0) = 0 so by
Schwarz’s lemma we have |f (z)| |z| Applying the same argument to f~! we conclude
that |f(z)| = |z| and hence f(z) = 'z (again by Schwarz). Thus

T(z2) = eS(2)
In particular this means that 7"(zg) = €'®S’(2g) but by construction T"(zg) and S’(z9) have
the same argument so we must have o« = 0.
6.1.4 Automorphisms of the Upper Half Plane

The automorphisms of the upper half plane H* is (unsurprisingly) also given by fractional
linear transformations. In this case they are characterised by

az+b
cz+d

where a, b, ¢, d are real and ad — bc = 1.

Automorphisms of HT are easy to find once we have automorphisms of D since the
two spaces are conformal. Therefore conjugating Aut(D) by the biholomorphism z
(z —1)/(z + 1) gets us Aut(H™). Since automorphisms of H* will need to preserve R, we
conclude that a, b, ¢, d can be taken to be real. Further notice that

Im ai+b\ ad—bc
ci+d) 2+d?
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Therefore if (az +b)/(cz+d) is to be an automorphism of H* we must have ad —be > 0 and
hence by factoring out some appropriate constant from the numberator and denominator
we can get ad — bc = 1.

7 Riemann Mapping Theorem

Theorem 7.1 (Riemann Mapping Theorem) Any simply connected open subset €2
of C except for C itself is biholomorphic to the unit disk D.

Proof. Let €2 be a proper subset of C that is open and simply connected. First we show
that there is a biholomorphism from €2 to a bounded open subset of C.

Figure 8: Since 2 C C there exists a ¢ Q

Since © C C there exists some a € C\ 2. Then dz/z — @ has a holomorphic primitive
g(z) in Q (because 2 is simply connected) and in fact this primitive is given by a branch of

log. In particular this means that
z—a=eI%

Notice that ¢g(2) is open since holomorphic maps are open maps. So let E' be an open disk
contained in g(2) centered at g(zg) for some zy € Q. Then E + 27 (the translation of the
disk by 27i) is disjoint from ¢(£2). If it was not disjoint then there would be some z1, 23 €
such that g(z3) = g(21) + 2mi. But this contradicts the fact that e9(*) = z — a is injective in

). Therefore )

9(2) — (9(20) + 2mi)
is holomorphic, 1-1 and bounded on €). Then by translating and scaling if necessary we can
assume 0 € Q and ¢g(2) C D. In fact we will relabel Q = ¢g(£2) and show that every simply
connected set that contains 0 and is contained in D is biholomorphic to D.
We begin by defining a family of functions

o = {f € H(Q): fis 1-1, f(0) = 0, f(Q) C D}

We will prove the following two lemmas about this family which immediately give us the
biholomorphism g : 2 — D (the first lemma gives a criterion for when the image of a map
in o/ is D and the second lemma tells us there is a function satisfying the criterion).
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'E

Figure 9: The discs E and F + 27 are disjoint

Lemma 7.2 Let g € @. Then g(Q) = D if and only if |g'(0)] = supsc,, | f'(0)].

Proof. Suppose g(2) = D. Let f € o/. Take h = f o g~! which is a map from the disk
to itself which fixes the origin. Then by Schwarz’s Lemma we have |h/(0)] < 1 and hence
[F'(0)] < [g'(0)].

For the converse suppose we have f € & such that f(Q2) € D. Then we will find a
g € « such that [¢’(0)| > |f'(0)]. Then let a € D\ f(€2). Define

0(¢) = f__:C
Then
(o f)e) = {00

is a non-vanishing function on a simply connected region {2 and hence has a well-defined
holomorphic square root, say F(z). This means that (¢ o f)(2) = F(2)%. Define 0(z) = 22
so that

fz)=(p7 000 F)(z)
=(ptohoyp o (Yo F)(2)
—_— ——
h g
where (0)
17 —_—
() = ——=-
1= F(0)n
Then we define g = ¢ o F and h = ¢! 0§ o~!. Notice that h is a holomorphic map
from the disk to itself that fixes the origin. Then by Schwarz’s lemma we have |h/(0)] < 1.
If we had |h/(0)] = 1 then h would be a biholomorphism (in fact by Schwarz we would
conclude that it is a rotation of the disk). But we know this cannot be the case since 6

is not a biholomorphism while ¢ and ¢ are. Therefore we must have |h/(0)| < 1. Writing
h = fog™ ', just as before we conclude via the chain rule that

|F(0)] < [g'(0)]
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Lemma 7.3 There is some g € &/ such that |g'(0)| = sup e, [ f'(0)]-

Proof. We know that sup | f'(0)| must be at least 1 since </ contains the identity. Therefore
it suffices to show that

% :={fed|f'0)]>1)

is closed in H()) since that would mean that in particular it contains a function which
achieves the supremum. Therefore suppose we have a sequence of functions f,, € % that
converge to f. We want to verify that f € 2. We immediately see that f(0) = lim f,,(0) = 0.
Moreover |f'(0)] = lim|f],(0)| > 1. In particular this means that f is not constant and so
by Hurwitz’s lemma (see Corollary 2.5) we know that f must also be 1-1. Finally since
|fn(2)] < 1 we know that |f(2)| < 1 for z € Q. However if |f(z)] = 1 for some z then the
Maximum Modulus Principle would imply that f is constant. Therefore f(Q2) C D. O

The two lemmas combined show there exists a biholomorphism from €2 to D. O

7.1 Boundary Behaviour

We have seen above that if €2 is a simply connected, proper open subset of C then there exists
a biholomorphism from €2 to the unit disk D. The question then becomes how this biholo-
morphism behaves on the boundary. We have the following theorem from Carathéodory.

Theorem 7.4 (Carathéodory’s Theorem) A biholomorphism from a simply con-
nected domain f : Q — D extends homeomorphically to the closures f : Q — D if
and only if OQ is a Jordan curve (i.e. homeomorphic to S').

We will not prove the general case but restrict ourselves to the case of a polygon and in
fact construct an explicit formula for the inverse. So suppose 92 is a closed polygonal curve
and let z1, ..., 2z, be the vertices (with z,4+1 = z1 due to cyclicity). Suppose we denote the
inner angles of the polygons as agw. Therefore we have

o = arg (M)
241 — 2k
Let Sxm be the outer angles so Sxm = 7 — apm = m(1 — o). We know that the sum of the
exterior angles of a polygon is always 27w which means we have > 0 = 2. Q is convex if
and only if all 5, > 0.

First we want to show that any extension should map the boundary to the boundary. In
particular, if {z,} is a sequence of points in € that approaches the boundary then {f(z,)}
approaches the boundary of f(€2) (in fact we don’t even need f to be holomorphic for this.
Simple continuity is sufficient). First we should make precise what it means to approach
the boundary. We say that {z,} C € approaches the boundary of  if it is eventually
away from every point in €, i.e. for every z € () there exists some ¢ > 0 and ng such that
|z — zn| > € for all n > ny.
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Figure 10: The interior angles of our polygon are aim and the exterior angles are Sim

Lemma 7.5 Suppose Q,Q are regions whose boundary is a Jordan curve. Let
f:Q = Q be a continuous, surjective map. If {z,} approaches the boundary of
then {f(zn)} approaches the boundary of Q.

Proof. Let K be a compact subset of . Then f~!(K) is compact (it’s closed by continuity
and bounded since 2 itself is bounded). For every z € ), there exists some € such that the
disk of radius e centered at z does not contain the tail of {z,}. Compactness of f~1(K)
implies that it can be covered by finitely many such disks. Then there is a maximum ng
such that z, for n > ng are all outside the union of these disks. Therefore f(z,) for n > ng
are outside of K. We finish the proof by taking K to be a closed disk (that is contained in
V) centered at w € (V. O

Let f be the biholomorphism from the simply connected space ) to the unit disk D.
Let x¢ be a non-vertex point on the boundary. By rotating and translating if necessary we
can assume that the edge that x¢ lies on is on the real axis and the polygon lies in the upper
half-plane. Consider a small disk centered at z( so that f is never 0 on the disk (since f is
a biholomorphism onto the unit disk, it is zero at exactly one point so by making the disk
small enough we can avoid it). Then log f(z) has a holomorphic branch on the upper half
of this disk. Notice that as z approaches the real axis, f(z) approaches the unit circle by
the above lemma. Therefore log |f(z)| approaches 0. Therefore the real part of the log f(2)
extends continuously to the real axis (in particular it extends to be 0 there). We can then
apply the reflection principle to conclude that log f(z) has a holomorphic extension onto the
entire disk and therefore so does f(z). This shows that f extends continuously to the open
edges of the polygon and in fact even extends slightly beyond in a holomorphic manner (see
Figure 11).

A priori, it is possible that because we are only checking for extensions locally on the
boundary, we might get conflicting answers if a point lies in two of the above chosen disks.
However the extensions will need to agree on {2 and therefore by the principle of analytic
continuation they will agree everywhere on the intersection, in particular on 9.

We are then only left with the vertices. We can deal with them in a similar manner
but first we will need to ‘open’ them. Suppose we have a small disk D around z;. Then its
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Figure 11: The map f can be extended across edges of the polygon

intersection with  form a small sector. We can map this sector to a half-disk via the map
¢ = (z — z,)/*. BEquivalently the map z = z;, + (* maps a small half-disk to the sector
(for an appropriately chosen branch of (**). In particular then we have a map from the
disk half-disk to the polygon given by g(¢) = f(zx +(“*). By the same argument as before,
using the reflection principle we can extend g to a function on the entire disk. Therefore
f can be extended around the vertex z;. The same argument holds for all the vertices
allowing us to conclude that f extends continuously to the boundary (see Figure 12).
Finally we want to check that this extension is still 1-1 on the boundary. If we denote

the boundary by ~, we have that
1 7}
/ —dz = o =1
foy # v f

where the final equality follows from the argument principle (there are no poles in  and
exactly one zero since we map biholomorphically onto the unit disk). This means that fo-~y
is a closed curved contained in the unit circle with winding number 1. Therefore f oy is
homotopic to the unit circle. We want to argue that it is exactly the unit circle. For this
we consider behaviour of arg f(z).

Recall that near any point on the open edge, we have a holomorphic branch of log f(z).
Assuming that this neighbourhood lies in the upper half plane, we know that for as y de-
creases to 0, we have log | f(x + iy)| increases to 0. Then by the Cauchy-Riemann equations,
we conclude

S dlog|f| _  Qargf
oy oz

In particular then as z travels along an open edge of 2, arg f(z) is constantly increasing.
Therefore f o~ is a closed curved homoptopic to unit circle and is such that its argument
is constant increasing. It must then be the unit circle exactly. Thus we see that the
biholomorphic map from the polygon 2 to unit disk extends to a homeomorphism of the
closures of the respective spaces.

0

7.2 Schwarz-Christoffel

Thus the Riemann Mapping Theorem gives us a biholomorphism between the unit disk and
the interior of a polygon (which in fact extends to a homeomorphism on the closures of
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Figure 12: We open up the sector at a vertex and then use the same argument as before to
extend below the upper half plane

these spaces). Now that we know such a function exists, we would like to know what it is.
As it turns out, we can give an explicit formula for it or more precisely for its inverse.

Theorem 7.6 (Schwarz-Christoffel Formula) The functions z = F(w) which map
|w| < 1 conformally to a polygon Q with angles aym for k =1,...,n are of the form

F(w):c/ H(w—wk)_ﬁ’“dw—l-c'
0 k=1

where ¢, ¢ are some complex constants (as one can guess they determine the scaling
and translation) and the wy are the images of the vertices zj (hence wy lie on the
unit circle).

Remark 7.7. The integral is evaluated by integrating along any path from 0 to w.
Because the disk is simply connected this is well-defined.

Proof. Let € be the interior of a polygon. In order to verify the formula, we want to show
that if F is the inverse of a biholomorphism f : & — D given by the Riemann mapping
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theorem then

F'(w) = c [ (w - wy,) =%
k=1

Consider w = ¢g(¢) = f(zr + ¢**) as we did before. Notice that this is invertible near
¢ = 0 (the local extensions below the half-plane are injective). In particular there is a

Taylor series expansion
[e.e]
(= Z bp(w — wg)"
n=0

By construction, by = 0 and b; # 0. Therefore

C:Zbl(w—wk) (w — wy) (an—l—lw wy,) )
n=1

gr(w)

where gr(w) is non-zero around w = wy. Since z = 2 + (** we have
z = F(w) =z + (w — wg) ** g (w)**
Relabeling g (w)* = gr(w), we have
F'(w) = ag(w — wg) ™ g (w) + (w — wi)* g (w)
Since B = 1 — oy, we can write
F'(w)(w — wi)?* = aggr(w) + (w — wy)gh(w)

implying that F’(w)(w — wy)?* is non-vanishing around wy,. Notice that F’(w) is non-zero
away from the vertices since f is conformal at these points. Therefore

n
o [l

is holomorphic and vanising in a neighbourhood of D.
We claim that H(w) is actually constant. We first show that arg H(w) is constant on

S1. We observe first that J
L p(eify — F'(10);010
SSF() = F()ie

Taking arguments of both sides we have
d 09y _ 1 i0 ™
arg (dGF(e )> =arg(F' (")) + (9 + 5)

We claim the left hand side is constant. In order to see this, consider e? between wy and
wy41. Notice that F(e") describes a straight line so we can write

F(e") = at(0) + B

where t is a real-valued function of # and «, 5 are constants. Then
arg <j€F(ew)) = arg(at'(0)) = arg(a)
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Figure 13: The argument of ¢ — wy, is 6/2 + const

Additionally by Figure 13 we see that arg(e®® — wy) = 6/2 4 const. Then

arg H(e) = —0 + (Z ﬂk) g + const
k=1

Since Y B = 2 by assumption, we see that arg H(e?) is constant. By the mean value
property, we conclude that H(0) is exactly this constant. But then the maximum modulus
principle implies that H must be constant on the entire closed disk. This means that

Fl(w) =c H(w — wy) Pk

k=1

Integrating both sides, we get the formula. O

7.3 Examples

Above we worked out the Schwarz-Christoffel formula for the disk. But since we have an
explicit biholomorphism between the disk and the upper half-plane, we can translate the
formula to the upper half-plane by performing a substitution w = (¢ —1)/({+1). In fact the
formula remains the same after this substitution (things cancel out in a lovely way) with
the wy being real numbers.
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We can then use this formula to give an explicit mapping from the upper half plane to
a rectangle. First we need to choose 4 points on the real axis that will map to the four
vertices of the rectangle. We will take these four points to be 1,—1,1/k,—1/k for some
0 < k < 1. Then according to the formula

v dw
2= Flo)= /o V(1 = w2)V/1 — k2w?

maps the upper half-plane to the rectangle with vertices K, K + iK', —K + iK', — K where

1 dt
KZA(L#M—M%

;o dt
K'_A‘(l—ﬂX1—k%%

(see Figure 14 for reference). The inverse map w = f(z) is a conformal map from the
rectangle to the upper-half plane. We can extend this map beyond the rectangle to the entire
plane by repeatedly reflecting across its sides. This defines a double periodic, meromorphic
function on C with group of periods generated by 4K, 2i K’

and

~
A

z = F(w) - K+iK' F(oo) K+iK’
—_—

- K K

—
|
—
—
T~ @

Figure 14: Mapping upper half-plane to a rectangle

We can do the same thing with a triangle with angles aj7, asm, agm. We will choose
our three points on the real axis to be 0,1 and oo. Then the map is

z=F(w) = /Ow w ™ (w —1)*27!

The inverse defines a map from the triangle to the upper half plane and we can ask
again whether this map can be extended to the entire plane by reflection. In order for the
reflections to line up, we would need to be able to able to tile the entire plane with these
triangles in such a way that there are an even number of triangles around every vertex.
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Therefore we have agm = 27/2ny, for integers ng. Then since the sum of the ay is 1 in a
triangle we have

1 1 1

—+—+—=1

niy no ns
One can then verify that there are only 3 sets of natural numbers satisfying this. Namely,
(3,3,3),(2,4,4) and (2,3,6).

8 Normal families of Meromorphic Functions

Much like we did with holomorphic functions, we want to find the normal families (i.e. the
(pre)compact subsets) of the collection of meromorphic functions. One can simply think of
meromorphic functions as functions that take values in S? instead of just C. A nice way to
‘deal with’ S? is the previously mentioned chordal metric. Recall that the chordal metric
is the Euclidean distance in R? between two points on the Riemann sphere under the usual
stereographic projection map and is given by

2 _
Az w) = ——2 =0
\/1+ \2\2\/1+ |wl?

for z,w # oo. As mentioned previously, an important property of the chordal metric is that
d(z,w) = d(1/z,1/w) (which also tells us how the find the distance between finite points
and the point at infinity).

Of course our starting point when studying normal families is the Arzela—Ascoli theorem,
which tells us that a family of continuous functions with values in the Riemann sphere
equipped with the chordal metric is normal if and and only if it is equicontinuous (every
function is automatically bounded since the chordal metric is itself at most 2).

Lemma 8.1 Let {f,} be a sequence of meromorphic function on a domain 2 which
converges uniformly on compact sets with respect to the chordal metric. Then the
limit f is either meromorphic or identically oo.

Proof. Let zp € Q be arbitrary. Suppose |f(29)| < co. Then f is bounded in a neighbour-
hood of zg. This means that f, — f on compact sets in a neighbourhood of zy with respect
to the Euclidean metric (because the two metrics are equivalent on bounded subsets of C).
This means that f is holomorphic on a neighbourhood of z.

Alternatively we might have f(zp) = oo, then we simply repeat the above argument
with {1/f,} instead. In particular, {1/f,} are bounded in a neighbourhood of zy for n
large enough. So 1/f is holomorphic in a neighbourhood of zy and 1/f is 0 at zp. Either
the zeroes of 1/f are isolated (in which case f is meromorphic) or 1/f is identically 0 in a
neighbourhood of zj. O

Example 8.2. The sequence {z,} converges uniformly on compact subsets in the com-
plement of D to oco.

Corollary 8.3 Let {f,} be a sequence of holomorphic functions on a domain Q which
converges uniformly on compact sets with respect to the chordal metric. Then the limit f is
either holomorphic or identically oo.
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Proof. Done in an assignment. O

What we would like to do is generalise Montel’s Theorem to work for meromorphic
functions. For this we will need to introduce the spherical derivative.

8.1 Spherical Derivative

Definition 8.4 (Spherical Derivative). If f is a meromorphic function defined on a
domain  C C, then the spherical derivative of f is defined by

w—rz |z—w‘

where of course by d we mean the chordal metric.

Therefore the spherical derivative is always a non-negative real number. If we take €2 to
be a subset of the Riemann sphere, then we use the chordal metric in the denominator as
well. Notice that if z is not a pole then using the definition of the chordal metric we have

) — tim UG S@)

w—z ’z—w|

L 20f() - fw)
w—rz |Z — U)| \/1 + |Z|2\/1 + |U]|2
(w)] 2

o ) = )]
w—rz |Z*U}‘ \/1—|—|Z|2\/1+|’LU|2
21f'(2)]
L+ [f(2)]”

This is a very useful formula as it relates the spherical derivative with the true derivative.
For example, we can use it to find a version of the chain rule for spherical differentiation.

ooy~ 2fea)(G) _ 21f(g(2))
J e ) = Fen P ~ 1+1/4(2)

Despite always being a real number (and always a non-negative one at that), the spher-
ical derivative can still give us a fair bit of information. For example by the calculation
above we see that if f7(2) # 0 then f’(z) # 0 so we know that f is locally 1-1. Moreover,
by properties of the chordal metric, we have that f# = (1/f)#. This identity allows us to
find the spherical derivative at poles. In fact this means that f# is a continuous function
on all of €, including the poles. The spherical derivative is what allows us to generalise
Montel’s Theorem to a statement about meromorphic functions.

”ﬂd@ﬂzfﬂﬂ@ﬂd&ﬂ

Theorem 8.5 (Marty’s Theorem) A family of meromorphic functions . on a do-
main Q is normal (with respect to the chordal metric) if and only if .S# = {f#
f €7} is locally bounded.
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Proof. First suppose .7 is a normal family of meromorphic functions and suppose .## is
not locally bounded. Because the Euclidean metric and chordal metric are equivalent on
bounded subsets of C, they share the same normal families (assuming no poles). We will
use this along with the relationship between f# and f’ to get a contradiction.

Since .## is not locally bounded, there exists a point zg € € such that .## is not
bounded in any neighbourhood of z;. This means there exists a sequence of functions
fn C % and a sequence of points z, — 2o such that f# (zn) — o00. By normality we can
assume that this sequence of functions converges to some meromorphic function f (passing
to a subsequence if necessary). Then we know by Lemma 8.1 that f is either meromorphic
or identically infinity.

Suppose f is bounded at zy. It is then bounded in a neighbourhood U of zy. We can take
U to be a bounded subset of C so that the f,, in fact converge to f on U in the Euclidean
metric. Then f](29) — f'(20). But then ff(zo) — f#(20) leading to a contradiction. If f
is not bounded at zy, we can repeat the argument with 1/f.

In order to see the converse, suppose .7 is locally bounded. Let zg € © be arbitrary
and let D be a closed disk centered at zq so that {f# : f € .#} is bounded by M on D. By
definition this means that

Lo AU ), f(w)

Z2—w |z—w|

<M

In particular for w, there exists a d,, such that if |z — w| < §,, then d(f(z), f(w))/ |z — w| <
2M or in other words d(f(z), f(w)) < 2M |z —w|. We cover D by such neighbourhoods
(notice that the size of the neighbourhoods may vary with w). Let § be a Lebesgue number
for this covering (which exists by compactness of D) so that {|z — w| < 6} C {|z — w| < dw}
for all w € D.

Now let w,w’ be arbitrary points in D. Connect them via a line segment and partition
the line {wo, ..., w,} with wg = w and w, = w’ such that |w;+; —w;| < (see Figure 15).
Then

d(f(w'), f(w)) <> d(f(w;), f(wj-1))

j=1
n
< QMZ |wj — wj_1]
j=1
=2M ‘w’ —w‘

Therefore all the f in . are in particular Lipschitz with Lipschitz constant 20 and hence .%
is equicontinuous on D (with respect to the chordal metric) and hence form a normal family
by the Arzela—Ascoli Theorem. Since the collection of such disks cover D, we conclude that
by the ‘suitable cover lemma’ (see Lemma 5.1) that .# is itself a normal family on .

O

Theorem 8.6 (Picard’s Big Theorem) If f(z) is holomorphic with an essential
singularity at zg, then there exists A € C such that in any neighbourhood zy, f
assumes every value except maybe \ (infinitely many times).
Equivalently, if f(z) is meromorphic in a punctured disk 0 < |z — zo| < § and f omits
3 values in CU {oo}, then f is meromorphic in |z — zp| < 4.
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Figure 15: Partition the line segment connecting w and w’

Proof of equivalence. We first show why the above statements are equivalent. Suppose the
first statement about holomorphic functions holds. Then by composing with an FLT if
necessary we can assume that f omits oo and 2 other (finite) values. Then f on 0 <
|z — 20| < § is a holomorphic function that misses 2 values which means that zy cannot be
an essential singularity of f and therefore must be a pole.

Now suppose the statement about meromorphic functions holds. Let f be an entire
function and zp an essential singularity. Consider f on 0 < |z — zg| < § (for any J. Notice
that such a punctured disk is contained in every punctured neighbourhood of zp). Then
f omits the value oo on this punctured disk (since it is holomorphic). Then if it missed 2
more distinct complex numbers we could conclude that f is meromorphic on the entire disk
which we know is not true. Therefore f can miss at most one more value. O

We will see that Picard’s Big Theorem is in fact a fairly straightforward consequence of
Montel’s Big Theorem.

Theorem 8.7 (Montel’s Big Theorem) A family of meromorphic functions on a
domain Q which omits 3 distinct values in CU {oo} is normal in the chordal metric.

However before proving Montel’s Big Theorem, we need the following important result.

Lemma 8.8 (Zalcman’s Lemma) A family of meromorphic functions . on a domain
Q is not normal in the chordal metric if and only if there exists a sequence a, — ag €
Q, a sequence of positive numbers p, — 0 and a sequence function f, € % such that
9n(2) = fulan + pnz) converges uniformly on compact sets (in the chordal metric) to
a non-constant function g(z). This function g(z) is meromorphic on all of C and is
such that g7 (z) < 1 for all z and g7 (0) = 1.

The statement seems like a strange one initially because we check for normality by
finding a convergent limit. In fact the non-normality condition is exactly related to the
non-constant condition of g. It is useful to consider an example where we apply the lemma.
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Example 8.9. Suppose we have . = {f,,} where f,,(z) = 2™ which is normal on D and
C\ D but not on any domain containing the unit circle (because any neighbourhood of
a point on the unit circle will contain points that lie in the interior of the disk and the
exterior. Points in the interior tend to 0 and points in the exterior tend to infinity, so
we can’t have normality). We can verify this using the lemma above. For example if we
have a,, = 1 and p, = 1/n. Then

fulan + pnz) = (1 + %)n — e =g(2)

Then notice that g is meromorphic on all of C and

by 2RI 20
L+ g () 1+ ex]* ~

and g*(0) = 1.

Proof. Suppose . is normal. Suppose we have any sequence {f,} C .¥ and by normality
we can assume that the f,, converge to f (uniformly on compact subsets with respect to the
chordal metric). Now take any sequence a,, — ag € Q and positive real numbers p,, — 0.
Then we see that

gn(2) = fulan + pnz) — f(ao)

and hence is constant. This follows from the fact that the f, are equicontinuous (we
know this from Arzela—Ascoli). Therefore for any ¢ > 0 there exists some ¢ such that if
lan + pnz — ag| < d then |fr(an + pnz) — fu(ao)| < €. Clearly for any z, we can find n large
enough so that |a, + pnz — ap| < J. But then if z is on a compact set, we can make this
choice for n independently of z. Therefore g,, converge to a constant function.

Now suppose ¥ is not normal. We will construct the appropriate data from this. First,
since .7 is not normal, we know that .## is not locally bounded so just as we did before
we find b, — by € Q and f, € . such that f#(bn) — 00 as n — oo. By translating if
necessary we can assume that by = 0 and that 2 contains a closed disk of radius r centered
at 0. Then define

My, = sup (r — [¢]) f#(C)
I<|<r

Since |¢| < r is a compact, we know the above sup is actually achieve so there is some a,,
in this closed disk such that

My, = (r — |an‘)ff(an)

We notice that M,, — oo as n — oo (since we know that f#(bn) — 00). Now we take
pn =1/ 7 (ay) and consider

gn(2) = fa (an + m)

which is defined on |z| < M,, since

n

||
< ’an’"i‘

n T+
! 17 (an) ()

< ‘an"f’

=lap| +7—|ap| =7

z
f#(an)
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Now fix R < oo. Since M,, — oo, we know for sufficiently large n we have R < M,.
Then for |z| < R we have

_ f#(zn + Z/f#(an))

# « : 9
97 (2) (“chain rule”)
! [ # (an)
M. _
< = m . ]W|an| (definition of M,,)
r—|an + z/fi (ay) n
r— |an| . . .
< " (Reverse triangle inequality)
r— |an| = |zul / fi (an)
1
= factor out r —
1= 12 /M, ( rout 7 — |ay)
Then notice the last line converges to 1 as n — oo (again since M,, — c0). Then by Marty’s
Theorem we know {g,} is a normal family so has a subsequence that converges uniformly
on compact subsets in the chordal metric. Without loss of generality, we can assume this
subsequence is {g,} itself and define g := lim, g,. Notice by the above arguement that

g7 (0) = 1 and ¢g#(z) < 1. Then g is a meromorphic function and since g#(0) # 0, it is
non-constant. Finally, we can have a, converging to ag € €0 by passing to a subsequence
(recall they form a sequence in the compact set |(]| < 7). O

Theorem 8.10 (Montel’s Big Theorem) A family . of meromorphic functions in
a domain Q@ which omit 3 given distinct values a,b,c in CU {oo} is normal in the
chordal metric.

Proof. First recall that we can check for normality on a domain by checking normality on
all disks contained within the domain (see Lemma 5.1). Therefore without loss of generality
we can assume that {2 = D. Moreover, by composing with a fractional linear transformation
if necessary we can assume that the values omitted at 0,1 and co. Therefore . is a family
on holomorphic functions on the disk D that omits 0 and 1. Now define

Fm ={f € H(D): f omits 0 and *™*/*" k= 0,...,2™ — 1}

In other words .%, is the collection of holomorphic functions on the disk that miss the
2™-th roots of unity. Notice that . C %y so S is non-empty. Moreover every f € 7,
is non-vanishing so has a well-defined square root f1/2 which is necessarily contained in
Fm+1. Therefore no %, is empty.

Now suppose that .7 is not normal. Then there exists some {f,} C . C . that
does not contain a convergent subsequence. Then { fé/ 2} C & also has no convergent
subsequence so .} could not be normal. Continuing in this manner we conclude that none
of the .¥, are normal. Let g, be the corresponding “g” given by Zalcman’s Lemma for
each .%,. Zalcman only guarantees that g,, is meromorphic but by Corollary 8.3 we can

conclude that g,, must be holomorphic (and hence entire) as well.
We also know by Zalcman’s lemma that ) gﬁ(z)‘ < 1 for all z and for all m. Therefore

we can apply Marty’s Theorem to conclude that the g, form a normal family. As usual
then we can assume that the g,, are convergent and let g be the limit. Notice that g is
non-constant because g (0) = 1 since each g7 (0) = 1. Moreover, being the limit of the gy,
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we must have that g omits all the 2 roots of unity. Then ¢g(C) is either contained within
the disk or contained in C\ D. In either case either g is bounded or 1/g is bounded which
would imply by Liouville that g is constant, leading to a contradiciton. O

Theorem 8.11 (Picard’s Big Theorem) A meromorphic function in a punctured
disk which omits 3 distinct values in CU{oo} extends to a meromorphic function on
the entire disk.

Proof. As usual we can assume that the disk is centered at 0 and the values omitted are
0,1 and oco. Let €, be a sequence of positive real numbers that strictly decrease to 0. Then
consider .7 := {f,(2) := f(enz)} which is a normal family on ©Q := {0 < |z| < 2} (we
choose €, to be make this a valid domain) by Montel’s Big Theorem. Let g be the limiting
function. Since each f(e,z) is holomorphic, by the problem set we know that ¢ is either
holomorphic on €2 or identically co.

Suppose ¢ is holomorphic on 2. Let M be such that |g(z)] < M < oo for |z| = 1
which means that |f,(z)| < M for |z| = €,. In fact by convergence, there is some ngy such
that for all n > ng we have |f,(2)] < M + 1 on |z| = €,. Therefore we can apply the
maximum modulus principle (see Theorem 1.13) which roughly says that the modulus of
a non-constant holomorphic function f can only achieve a maximum on the boundary of
its domain of definition. Considering f, restricted to the annulus €,11 < |z| < €,, we
then conclude that |f,(z)] < M + 1 on this annulus (again for n > ng). This means that
|f(2)] < M +10on0 < |z| < ey, Since f is bounded in a neighbourhood of 0, we conclude
that 0 is a removable singularity and hence f extends to be holomorphic on the entire disk.

On the other hand if ¢ is identically infinity, then we can apply the same argument to
1/f(enz) to conclude 1/f extends to be holomorphic at 0 and hence f is meromorphic on
the disk. O

Theorem 8.12 (Picard’s Little Theorem) Any non-constant entire function omits
at most 1 value.

Proof. An entire function either has a pole or an essential singularity at infinity. If we have
a pole, then the function is a polynomial so we hit every value in C. Otherwise we have an
essential singularity at infinity and since C is a neighbourhood of this essential singularity,
we know it’s image can omit at most 1 value of C. UJ

9 Riemann Surfaces

9.1 Complex Manifolds

A manifold with a complex structure of dimension n is a Hausdorff topological space with
a countable basis such that every point has a neighbourhood which is homeomorphic to an
open subset of C". Moreover, for any two so-called coordinate charts (y;, U;) and (¢;,Uj)
we have that the map ¢; o ¢; ' : ¢;(U; NU;) — »;(U; NU;) is holomorphic. We will mostly
be interested in the case of n = 1.

Example 9.1 (Riemann Sphere). An important example of a manifold with a complex
structure, and one we have already discussed in a fair bit of detail, is the Riemann sphere.
In this case we can cover the entire sphere with 2 coordinate charts. Let U = 52\ {N}
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Figure 16: A manifold is covered by a collection of compatible charts

and define
oy U — C
(0., 8) = T2
and V := §%\ {S} with
(o) v V —-C
T —1y
t
(x7y7 )'_> 1+t

Recall that the transition map ¢y o ¢y;' : C\ {0} = oy (UNV) = ¢y (UNV) =C\ {0}
is given by z — 1/z which is certainly holomorphic on C\ {0}.

A map f: M — N between manifolds with complex structures is holomorphic if 9; o
fow; ! (defined on ;(U; N f~1(V;))) are holomorphic for every i and j, see Figure 17,

A holomorphic map f : M — N is an isomorphism (or biholomorphism) if it is a
homeomorphism with a holomorphic inverse. We say two complex structures are equivalent
if the identity map is a biholomorphism. Now we can finally given the proper definition of
a complex manifold.

Definition 9.2 (Complex Manifold). A complex manifold is a manifold with an
equivalence class of complex structures.

A complex manifold of dimension 1 is called a complex curve or more commonly a(n
abstract) Riemann surface.
The simplest examples of complex manifolds are of course C and S? or open subsets of
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Pjofop;

Figure 17: Map between manifolds with complex structure is holomorphic if it’s holomorphic
when viewed through charts

them. A slightly more interesting example is C/Z where we say that z ~ 2’ if z — 2/ € Z.
We can easily give this a complex structure. Let p : C — C/Z be the projection map on
the quotient. Then for every zy € C, we can find an open neighbourhood V of zy such that
ply is injective (for example we could take V' to be a disc of radius 1/2). Then p~—! acts as
a coordinate chart on p(V).

Another example in a similar vein that we will explore more thoroughly is C/I" where
I’ is a discrete subgroup of C (viewed as an additive group of course). Then we know
that topologically C/T" is a torus but different choices of I' may lead to torii with different
complex structures (in particular C/T'; and C/T's need not be biholomorphic).

Importantly, the local properties of holomorphic functions holds for complex manifolds
as well, practically by definition. Examples of such properties are the principle of analytic
continuation, the maximum modulus principle, the mean value property, etc. A meromor-
phic function on a complex manifold M is a holomorphic map from M to S2. For example,
we have a 1-1 correspondence between meromorphic functions on C/T" and meromorphic
functions on C with I' as group of periods.

9.2 Differential Forms

The next step of course is to determine how we integrate on complex manifolds. As usual,
we integrate forms. A holomorphic differential (1-)form w on a complex manifold M assigns
a covector of the tangent space to every point on the manifold in a holomorphic manner.
Another way to say this is that when viewed through coordinate charts w is a holomorphic
differential form on an open subset of C (as we have dealt with earlier).

To be precise suppose (y;,U;) is a coordinate charts on M. Then we get a differential
form w; on ¢;(U;) by pushing forward w (we can do this because ¢; is a biholomorphism
onto its image). Since w; is a differential form on an open subset of C we know it is of the
form w; = f;(z)dz where f; is a holomorphic map.

Now suppose (¢;, Uj) is another coordinate chart where we denote the coordinates by w
(which is to say w = ¢;(x) for x € U;). Then as before we get a differential form on ¢;(Uj),
which we denote w; = f;(w)dw. We of course want the two forms to agree on the overlap,
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©i(U; NUj). What does it mean to agree on the overlap? Let g;; be the biholomorphism
from ¢;(U; NU;) to ¢;(U; NU;) so that w = g;j(z). Therefore we have

wj = fiw)dw = fi(gi(2))d(gij(2)) = fi(9ij(2))gi;(2)d=

Then to say that the forms agree on the overlap we must have

£i(9ij(2))gi;(2)dz = fi(2)d=

As before if w is a holomorphic differential form on a complex manifold M, then by
Cauchy’s Theorem we know that a holomorphic differential form w is closed and therefore
has a local primitive. This means for every point, there exists a neighbourhood of it such
that there is a holomorphic function g defined on this neighbourhood such that w = dg.
In general, w will not have a global primitive. As before, a differential form has a global
primitive (i.e. is exact) if and only if

/ w=~0
.

for every closed curve «. In particular this means that every holomorphic differential form
on a simply connected complex manifold has a global primitive. Even if the integral of w
over closed curves is not zero, it provides important information about the form and the
geometry of the surface. We call the integral of w over closed curves the periods of w.

One of the most important tools for evaluating complex integrals is the Residue The-
orem. The theorem still holds on general complex manifolds and hence serves as a very
powerful tool for studying the geometry of these surfaces.

Suppose w is a holomorphic differential form defined on the complement on a discrete
set £ C M and let a € E. Recall that the residue of w at a is then defined to be

1
Res(w,a) = o /UJ
g

where v is a simple closed curve with winding number 1 (with respect to a). We can
compute it using local coordinates. Let z be local coordinates at a and we can assume that
z(a) = 0. Then

w:(f(z)+%+%+~-)dz

where f is holomorphic near a. Then we compute that the residue of w at a is ¢;. With
our understanding of residues, the Residue Theorem exactly as it did before.

Theorem 9.3 (Residue Theorem) Let 2 be an open subset of a complexr manifold
M and f(z) a holomorphic function on the complement of a discrete set in Q. Let
K be a compact subset of Q with piecewise C' boundary T'. Then

/Ff(z)dz = 27i Z Res(f, zi)

zrEK
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where S is the set of singular points of f in K.

9.3 Riemann Surfaces

Let Y be a complex curve (most often C, S? or an open subset of these). Then a Riemann
surface over Y is a connected complex curve X along with a nonconstant holomorphic map
p: X =Y.

A branch point of ¢ (or of X) is a point where ¢ has multiplicity greater than 1
(equivalently where ¢’ is 0). Branch points are isolated and the preimage of any point
of Y is discrete (both statement follow form the fact that zeroes of a non-zero holomorphic
function are isolated). A Riemann surface without branch points is called unramified.
Importantly, ¢ need not be injective even if the the surface is unramified.

Example 9.4. A simple example to start with is to take Y = C\ {0} and X = C with
¢: X — Y given by ¢(z) = €*.

In this case not only is X a Riemann surface over Y, it in fact forms a covering space
of Y. This means that X is an unramified surface and every point of Y has an open
neighbourhood V' such that ¢~!(V) is a disjoint union of open sets U; where each Uj is
mapped homeomorphically to V' via ¢. In this case with X, Y, ¢ as above, for b e Y =

C\ {0} we can take V = {|z — b| < |b]}.

Figure 18: log has a holomorphic branch on V serving as a coordinate map

Example 9.5. A very important use of Riemann surfaces is to make multi-valued func-
tions single-valued. Consider for example the square root function y = 21/2. In order to
make this single-valued, consider

X ={(z,y) e CxClz = 92}

This forms a Riemann surface over Y = C with ¢ : X — C given by ¢(x,y) = x. Then
the square root function Y — C given by z — /z lifts to the map p(z,y) = y from X
to C.
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(x,y) > X
. -
%

r2Y
9.4 Worked Example
9.4.1 Manifold construction
Consider the multivalued function

y= (2"

We want to find a Riemann surface so that this function is single-valued over it. As we did
with /z we take

X:={(z,y) eCxC:23+9>=1}
We first show that X is a manifold. Consider the function

fla,y) =2’ +y°

Notice that
of
a—y(ato, yo) = 3up

Therefore if yg # 0 then %(l‘o,yo) # 0 so by the Implicit Function Theorem (see Theo-
rem 3.0), we can express y as a function of x implying that z serves as a coordinate in this
region. In particular, near (zg,y0) X is given as the graph of the function z +— v/1 — 3
with a choice of branch which is equal to yo when & = xy. Hence, to be precise, for every
(xo,y0) € X where yg # 0, we have that the projection onto the first coordinate x (along
with a choice of choice of cube root) serves locally as a coordinate chart. Similarly if zg # 0
then y (i.e. projection onto the second coordinate) serves as a local coordinate on X.

We want to check that the transition maps, when xg # 0 and yg # 0, are holomorphic.
The first coordinate chart ¢ is given by (z, v/1 — 23) = (z,y) — = and the second chart
@2 by (/1 =93 y) = (z,y) = y. Then

(propyN(y) = V1—y?

which is holomorphic since we chose a holomorphic branch of /1 —y? (to be specific we
chose a branch so that zop = {/1—yg). The analogous argument holds for ¢3 o gol_l.
Therefore X is indeed a manifold.

Now we want to consider the original function y = +v/1 — 23 and its lift to X. The
commutative diagram is then the exact same as above
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x3Y
with Y = C and p(z,y) = y, as we had before.

In general, for a given y, there are 3 distinct points in X such that p(z,y) = y. These
correspond to the three choices of the cube root of course. However, these points coincide
when x is a cube root of unity since then we are taking the cube root of 0. Therefore
(1,0), (4,0) and (j2,0), where j = €>™/3 are branch points of X (although quite often we
identify the branch points with their images in Y, so one might simply say that the branch
points of the Riemann surface are 1, j and j2).

9.4.2 Extension of Riemann Surface

Currently X is simply a Riemman surface over C. One might wonder whether it extends
to be a Riemann surface over S2. This is analogous to how the real line is a smooth (real)
curve in C but it can be compactified and extended to be a curve (and in fact a closed
curve) in S2.

Therefore first we will need to compactify X and find the ‘points at infinity’. Then we
will verify whether these points can be mapped to co € S? holomorphically.

We compactify the curve by considering it as a subset of P2(C). Recall that we have

P*(C) = {[w,y,t] : t # 0} U {[w,y,t] : t # 0}

The first set can be identified with C x C with the coordinate chart [z,y,t] — (x/t,y/t).
Then the line (notice line, not point) through infinity is exactly the second set, where ¢ = 0.
With respect to the identification above, the equation of the curve X is given by

() -

24y = 13

which we can rearrange to

This is exactly what it means to homogenise the equation. Let X’ be the points in P?(C)
that satisfy this equation (this is the compactification of X). The points at infinity are
exactly when ¢t = 0. Therefore they are given by [z, y, 0] satisfying

2?4+ % =0

Of course the point (0,0, 0) is not an element of P?(C) so in particular y must be non-zero
(in fact both x and y must be non-zero). Finally since [z, y,0] = [z/y, 1, 0], we can conclude
that the 3 points at infinity are [—1,1,0],[—74,1,0] and[—j2,1,0] where recall j = /3,
Therefore

X'=XU {[_17 L, 0]7 [_jv L, 0]7 [_j27 170]}

Let ¢’ : X’ — 52 be an extension of ¢ : X — C so that it agrees with ¢ on X and maps
the 3 points at infinity to oo € S?. We want to check whether not ¢ is holomorphic. We
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already know this is the case for points away from the points at infinity so we only need to
check at those three points.

Notice that at the three points at co y is never 0. Therefore we can verify holomorphicity
in this chart. In this chart the curve is given by dehomogenising with respect to y so that
we are looking at

-3 4+1=0

where 2/ = x/y and ' = t/y. Since the partial derivative of the left hand side with respect
to x is non-zero at (—j*,0) for k = 0,1,2 we conclude that # acts as a local coordinate
with 2’ = {/1 — (¢/)3. Then we compute what this map looks like at the level of coordinate
charts.

C\{0}>U > X/ y S2\{S} ———— C

3/1— /)3 /
o [T )3, 1,¢] — ([ Ly e
where for the final mapping we use the coordinates at infinity in S? (so although as a map
into C we had ¢([z,y,1]) = =, when we switch to the coordinates at co this becomes
[z,y,1] — 1/z). Therefore overall the map is given by

t,
. —
¢/1—(t)3
which is holomorphic in a neighbourhood of ¢ = 0. In fact these are 3 different functions
that arise from the 3 choices of cube root but this aligns with the fact that we had 3 points
at infinity (so each choice of cube root corresponds to one of the points at infinity).

Recall that the Riemann surface was introduced to better understand the function y =
(1 — 2%)Y/3. Thus one thing we may want to do is check how this function acts on closed
curves. Of course this function is multivalued on the complex plane so we will instead try
to understand this behaviour by “pulling back” to the Riemann surface.

Suppose 7 is a closed curve in C that encloses (the images of) the three branch points.
Then let ¢ be a lift of . In other words, J is a curve on X such that ¢ od = ~. Notice that
0 itself need not be closed.

Since y = (1 — 23)/3 lifts to the map (x,y) — y on the Riemann surface X, we want to
compute

1 dy
2mi Js y
Differentiating the defining equation of X we get

322dx + 3y%dy = 0

Therefore

dy —x%dr —z’dx

y oy 1-af
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Now we observe the remarkable fact that

1 fdy 1 [
omi Js y  2mi J5 1 — a3

1 —22
= — * d
omi J5 7 <1—23 Z>

dzx

1 —22
= d
270 Jois) 1= 2
1 _ .2
= B

— -
211 Wl—z

where ¢* in the second line is the pullback.
We can use the Residue Theorem to compute the final integral. The poles of the form
are exactly the cube roots of 1 and the residues at each of them is 1/3. Therefore
2
L. @:i ldz:1+1 1:1
2mi Js y 2w ), 1—23 3 3 3

Since the integral evaluates to an integer, we conclude that the image of 6 under the map
is indeed a closed curve (in particular the argument of y changes by exactly 27). However,
it is clear that this only occurs because « encircles all 3 branch points/poles. If 4 only
contained one of the branch points then the argument would change by 27 /3 and with two
branch points the argument would change by 47/3. In either of these cases, the result
would not be a closed curve. This corresponds exactly with the fact that y = (1 — 2%)%/3 is
multivalued on C. By the above discussion, we can make this single-valued by introducing
cuts on C as in Figure 19.

By adding these cuts, any closed curve needs to encircle either none or all 3 branch
points (if a curve doesn’t encircle any of the branch points in one orientation it encircles
all of them once the orientation is flipped) which in particular means that the image of
any closed curve will be a closed curve. Hence the function y = (1 — 2%)'/3 is well-defined.
However, we have 3 different choices of the cube root and each choice gives a well-defined
holomorphic branch of this function. Therefore the Riemann surface for this function will
‘look like’ 3 copies of the plane with these cuts but these so-called sheets are glued together
along these cuts. This is analogous to how the Riemann sphere ‘looks like’ two copies of C
that are glued along C\ {0}.

Remark 9.6. The cuts made above are somewhat arbitrary. Any choice of cuts that
forces closed curves to encircle all 3 branch points is valid.

9.4.3 Evaluation of a real integral

One very nice use of the above construction(s) is that it allows us compute real integrals.
For example, suppose we want to evaluate

/1 dx
o (1—a3)1/3
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Figure 19: Any closed curve avoiding the cuts either encircles none of the branch points or
all of them (remember curves can also extend to co)

We will do so by viewing this integral in the complex numbers. Of course, the function
is multi-valued over C so we will go to the Riemann surface so that we have a well-defined
holomorphic function.

Since we want to integrate from 0 to 1, we will introduce suitable cuts and integrate
along a contour as in Figure 20.

To be precise, we want to know what happens as we let the countour approach the
cut. We can break this integral as the sum of the 6 straight lines (the integrals over the
circular arcs have negligible contribution in the limit). However, notice that every time
we go around a branch point, the argument of the denominator increases by 27/3. For
example, let us denote the integral over 7, the integral from 0 to 1, by I (this is what we
are trying to evaluate). The integral over 7, is the same integral from 1 to 0 so it should
be the same as I except we pick up a negative sign due reversing the orientation and the
denominator picks up a factor of j = ¢2™/3. Thus we have

dz dz 1 2
/71 (1_23)1/3 +/Y2 (1_Z3)1/3 _I_;I_I_] !

Now we want to compute the integral over 73. Notice that vy3(t) = j - v1(¢). Moreover,
since the denominator picked up a factor of j when going around 1, we have

/ dz _/ d(jz) _/ dz _7
W =B L =G e L, =
Similarly we get
dz 2
[ =
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Figure 20: We introduce cuts from the origin to branch points and integrate just slightly
around them

and of course the same thing will hold for the remaining two curves due to the same reasoning

dz
e
/75 (=27

dz 2
[ ==

Then if we denote the entire contour by § we have

dz .
/6(1_23)1/3 = 3(I — j°I)

On the other hand, we can also use the Residue Theorem to compute the left hand side.
In particular we will use the residue at co.

In order to compute the residue at oo, we will simply switch to coordinates at oo so let
u=1/x. Then

dx d(1/u) du du

(1—23)1/3 ~ (1— (/w3 _u2(1 —1/ud)B Tyl — 1)1/3

The residue of this form at v = 0 is —1/(—1)"/3. Notice we have 3 different answers
corresponding to the three distinct lifts of § or the three distinct points at oo. Therefore

dz
31 —3°N= | —= =97 - £1,7, 42
(I—5°1) /5(1_23)1/3 7i - {one of 1,j,5°}

In order to determine what the value of the integral is, we use the fact that I is a
real integral and hence the answer should be real. Trying the three different options, we
determine that the only possible choice is 7 which gives

I_/1 dx B 2
Jo (T-a8)3 3V3
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9.5 Riemann surfaces and Elliptic Curves

Suppose we have an equation of the form
y* = P(x)

where P is a polynomial of degree 3 with 3 distinct roots. Without loss of generality we
can assume that the coefficient of 22 is 0 by completion of the cubic (for example if we have
P(z) = 2 4+ ax?® + bz + ¢ then we can consider P(z — a/3) which has no quadratic term).
Therefore we can write

y? = 423 — 20a02 — 28ay (9.1)

where ag, a4 are just suggestively labeled constants.

We then get a Riemann surface ¢ : X — C where X is the curve defined by the given
equation in C x C where ¢ is the projection onto the x coordinate (exactly as we had earlier).
We can then complete this to the curve X’ € P2(C). We saw in Subsection 3.2 that there
is a single point at infinity [0,1,0] and the extension ¢’ : X’ — S? is holomorphic at this
point.

Consider the form dz which is given by

dx

Y

when z is a local coordinate (i.e. y # 0). Computing the differential of both sides of (9.1),
we see that

2udy = 122% — 20azdx

This means that

dx dy

y 622 — 10as

Therefore when y is a local coordinate (i.e.when = # 0) we can use the right hand side to
evaluate the integral.

The holomorphic differential form w has a local primitive at every point of X. Globally
the primitive is a multi-valued function given by the integral of w = dz/y. Notice that any
branch of z serves as a coordinate in a neighbourhood of any point of X.

At [0,1,0], the chart is given by [2/,1,#] which in our usual coordinates is [z//t/,1/t/, 1]
so that © = 2//t’ and y = 1/¢'. Thus

dzx
w=—
Yy
=td(2"/t)
/
=dz’ — x—dt'
t/
12 .
=di’ — 2 122~ + dz’

where g is a holomorphic function satisfying g(0) = 0.
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Recall from our discussion of p that if I' is a discrete group and

as =3 Z 1/w* and ay = 5 Z 1/w8

wer\{0} wel\{0}

then the meromorphic transformation z = p(z) and y = ¢'(2) induces a biholomorphism
C/T — X' given by z — [p(2),¢'(2),1]. Notice that dz = ¢/(2)dz = ydz so dz = dz/y.
Thus in particular the inverse of the biholomorphism is given by the multivalued function

o= fae= [T o

The branches of z differ by the constants in I'. Abel’s Theorem below tells us that this
result has something of a converse. Namely given an elliptic curve, we can recover the
discrete group.

Theorem 9.7 (Abel’s Theorem) Suppose we are given constants as,as such that
P(x) = 42> — 20asx — 28a4 has 3 distinct roots. Then there erists a discrete group
[ such that ay = 3> 1/w* and ay = 55 1/wb. It follows that y* = P(x) has a
parameterisation given by x = p(z) and y = @' (z).

We will give a sketch of the proof as the complete proof requires some algebraic topology
and other results. The proof requires 2 lemmas.

Lemma 9.8 Let z = [w = [dy/z by the multivalued function arising from the
curve y?> = P(x). Then branches of z differ from each other by constants that form a
discrete group I' of C where I' is generated by two complex numbers es and es which
are linearly independent over R.

Proof. Notice that z = [w is well definied up to the addition of a period, i.e. up to the
addition of fvw where v is a C! closed curve (technically a a 1-cycle or a 1-chain with
0 boundary) in X’. If v is the boundary of a 2-chain, then m(y) = fvw = 0 by Stokes’
Theorem.

Then 7 induces a homomorphism from the first homology group H;(X,Z) to C. Thus
z: X' — C/T where I' = {m(v) : v € Hi(X',Z)} is the group of periods. By the Riemann-
Hurwitz formula, we compute that Hy(X’,Z) = Z & Z. In particular then T is generated
by two complex numbers e; and es. They are either linearly independent over the reals or
they are not. If they are then we get a lattice as claimed. If not then I' is contained in a
1-dimensional subspace of C. We show this cannot happen.

Suppose I' is contained in a 1-dimensional subspace of C. Then by applying an appro-
priate rotation, i.e. by multiplying by an appropariate unit complex number o we get that
al is contained in the imaginary axis. In particular then Re(an(y)) for all v € Hy (X', Z)
is 0. Recall we argued above that the branches of z can only differ by an element of I'.
Therefore if Re(am()) is 0 for all v then Re(az) is a (single-valued) harmonic function on
X’. Since X’ is a compact, the function attains a maximum. But then by the maximum
modulus principle we conclude that Re(az) is constant. Since a holomorphic function is
constant if and only if its real part is constant, this would imply that z is constant, leading
to a contradiciton.

O
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Figure 21: If T" is contained in a 1-dimensional subspace, we can rotate it to be contained
in the imaginary axis

Now that we have found a lattice we want to show that this lattice gives rise to the
same elliptic curve.

Lemma 9.9 The map X' — C/T given by

(where pg is the point at infinity [0,1,0]) is a biholomorphism and in fact the com-
position

X' - C/T - X"
p =z [p(2),0(2),1]

1s the identity.

Proof. The first part of the lemma about z being a biholomorphism requires some algebraic

topology so we will simply believe it.

Notice that x is a meromorphic function on X’ with a pole of order 2 at py := [0, 1,0].
This follows from work we’ve done previously. The coordinates near co of X’ are given by
[/, 1,t'] where we know from Subsection 3.2 that

' = 42" — 320as2" + - - -

In our usual [z,y, 1] coordinates then we have

x x!

¥ 42 = 3200277 + - - -

xr =
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Then via the biholomorphism z, we can pull back z to a function on C/T". Since z maps
po to 0, we know that = has a pole of order 2 at z = 0. Therefore

c d
2c d
/
Then since dz = dxz/y we have 2/(z) = y. Therefore

nr:’(z)2 = y? = 42> — 209z — 28ay

Substituting the above series and equating coefficients we conclude that ¢ = 1, d = 0 and
e = 0. This means that z(z) and p(z) (with respect to the lattice I') have the same principal
part so x(z) — p(z) is a doubly periodic, entire function so must be constant. Since the
difference is 0 at 0, we conclude that z(z) = p(z) everywhere. O
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