
Definition 1.1 (Equicontinuous). We say E ⊂ C([a, b];R) (that is E is some
set of real-valued functions from the closed interval [a, b]) is equicontinuous at
x ∈ [a, b] if for every ϵ > 0, there exists a δ > 0 such that for every y ∈ [a, b]
satisfying |x − y| < δ we have |f(x) − f(y)| < ϵ for every f ∈ E. We say E is
equicontinuous if E is continuous at x for every x ∈ [a, b].

Theorem 1.2 (Ascoli-Arzela Theorem). Let E ⊂ C([a, b];R). The E is com-
pact if and only if E is closed, bounded and equicontinuous.

Proof. Note: the topology on C([a, b];R) is that induced by the supremum norm.
Suppose E is closed, bounded and equicontinuous. We wish to show that E

is compact, which we will do by showing that it sequentially compact.
Suppose (fn)n∈N is a sequence in E. We wish to find a convergent subse-

quence. First as E is closed, if we do find a convergent subsequence, we know
that the limit will be contained in E as well. So we only need find a Cauchy sub-
sequence of (fn). We know that E is bounded which means that there is some
M > 0 such that |f(x)| < M for all x ∈ [a, b] and f ∈ E. In particular then f(x)
is always contained in [−M,M ] which is compact hence sequentially compact.
This might inspire us to do the following: for every x ∈ [a, b], (fn(x))n∈N form a
sequence in [−M,M ] which we know has a convergent subsequence. This gives
us a candidate for a convergent subsequence. Unfortunately, this is not (neces-
sarily) it as although the the subsequence converges for some given x, the same
subsequence of functions might not converge for some other x′ ∈ [a, b]. However
this is easily fixed.

Let us call the convergent subsequence (f1,n)n∈N (1 for the number of points
where we know convergence is assured). Now we choose some other x′ and by
the same logic as above we can find a convergent subsequence of (f1,n) that
converges on x′ (we consider the sequence of real numbers f1,n(x

′) which is
also contained in [−M,M ]). We denote this new subsequence of functions as
(f2,n)n∈N. We can continue this process to obtain convergence on any finite
number of points in [a, b]. Let (gn)n∈N be the sequence of functions defined by
gn = fn,n and our hope is of course that as we obtain convergence on more
and more points, we begin to approximate a continuous function on [a, b] and
indeed converge towards it. In order to show this, we need to ascertain this we
need show that (gn(x))n∈N converges for very x ∈ [a, b] and moreover that the
convergence is uniform. This means we need show that for every ϵ > 0 we can
find some N ∈ N such that for every x ∈ [a, b] we have

|gn(x)− gm(x)| < ϵ

if n,m ≥ N .
LetX = x1, x2, . . . be the set of points on which we are asserting convergence

(these would be the x and x′ from above for example). We note now that there
are two things we would like to be true, that would allow us to prove the desired
inequality. First, we are trying to approximate the function using a countable
set of points, so it would be nice if for every x ∈ [a, b] we could always find some
xj in a neighbourhood of it. That is, we would like X to be a dense subset of
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[a, b] (some people may wish to take the rationals, but I am fairly certain that
any dense subset should suffice). Second, we would like to be able to bound
|gn(x)− gn(xj)| (where xj is some sufficiently close term to x) somehow as

|gn(x)− gm(x)| = |gn(x)− gn(xj) + gn(xj)− gm(xj) + gm(xj)− gm(x)|
≤ |gn(x)− gn(xj)|+ |gn(xj)− gm(xj)|+ |gm(xj)− gm(x)|

We can bound the central term using the fact that (gn(xj))n∈N is a convergent
sequence and we can simultaneously bound the other two terms using equicon-
tinuity!

We take x to an arbitrary element of [a, b] as before and suppose ϵ > 0 is
given. Let δ be such that |x − y| < δ implies that |f(x) − f(y)| < ϵ

3 for all
x, y ∈ [a, b] and all f ∈ E. The density of X means that there is some xj ∈ X
such that |x− xj | < δ. We know that (gn(xj))n∈N is convergent so there exists
some N ∈ N such that for n,m ≥ N we have

|gn(xj)− gm(xj)| <
ϵ

3

(Note: this may suggest that N depends on our choice of xj , however we can
easily remedy this. However, we can easily remedy this. We take δ as before
and cover [a, b] with δ−balls centered at xi for each xi ∈ X. The compactness
of [a, b] reduces this to a finite cover of δ−balls centered at x1, . . . , xk. We have
convergence of (gn(xi)))n∈N for every 1 ≤ i ≤ k hence for every i we can find
Ni such that

|gn(xi)− gm(xi)| <
ϵ

3

for every n,m ≥ Ni. We can then take our N to be the maximum of these Ni.)
We have thus found an N ∈ N such that for n,m ≥ N we get

|gn(x)− gm(x)| ≤ |gn(x)− gn(xj)|+ |gn(xj)− gm(xj)|+ |gm(xj)− gm(x)|

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

Now we show the converse. Suppose E is compact. We know it must be
bounded (consider balls of increasing radius centered at 0 which forms a cover
of M). As E is a compact subset of a Hausdorff space, it is closed. All that
remains to show then, is that E is equicontinuous. That is, we wish to show
that for every x ∈ [a, b] and every ϵ > 0 we can find a δ > 0 such that for every
f ∈ E and every y ∈ [a, b] we have that if |x − y| < δ then |f(x) − f(y)| < ϵ.
Compactness means that all the functions in E are close to a finite subset of
functions in E (more precisely, compactness guarantees the existence of a finite
collection of functions, say f1, . . . , fn, in E that can approximate any other
function in E to some given degree of precision). We would like to say that we
can

Let A be an open cover of E formed by ϵ
3−balls centered at every f ∈ E.

Compactness allows us to reduce this to a finite cover say B ϵ
3
(f1), . . . , B ϵ

3
(fn).
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For each fi, we can find a δi such that |x−y| < δi implies that |fi(x)−fi(y)| < ϵ
3 .

We then take δ to be minimum of all these δi. Then for any f ∈ E, we can find
some fi such that ∥f − fi∥ < ϵ

3 . Then given any x, y ∈ [a, b] with |x − y| < δ,
we have

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |fi(y)− f(y)|

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ
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