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Sequences and me (colourised)

Source (emojis): OpenMoji



Sequences being neat

▶ Divergence of harmonic
series

▶ Computing irrational
numbers

▶ Taylor series

(Riddle) Can you find uncountably many subsets of N such that
any pair has only finite intersection?
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Sequence properties

Theorem
Let X be a metrizable topological space. Then for all A ⊂ X , we
have x ∈ A if and only if there exists a sequence in A that
converges to x .

Proof.
⇐ Let xn be a sequence in A that converges to x . This means that
every neighbourhood of x has non-trivial intersection with A so
x ∈ A.
⇒ Suppose x ∈ A. Let Bn be (open) balls of radius 1

n centered at
x . Since x is in the closure of A, Bn ∩ A is non-empty for all n. So
we define xn to be any element that lies in this intersection. This
sequence (xn) converges to x by construction.



Theorem
Let X ,Y be metrizable topological spaces and f : X → Y a map
between them. Then f is continuous if and only if (xn) → x
implies f (xn) → f (x) for all convergent sequences (xn).

Proof.
⇒ Suppose f is continuous. Let V be a neighbourhood of f (x).
Then f −1(V ) is a neighbourhood of x . So (xn) eventually in
f −1(V ) hence f (xn) eventually in V .
⇐ Suppose A ⊂ Y is closed. Let (xn) → x be a convergent
sequence in f −1(A). By assumption f (xn) → f (x). Since A is
closed, we know f (x) ∈ A (by previous theorem) thus x ∈ f −1(A).
Thus f −1(A) contains its limit points and is therefore closed (again
by the previous theorem).
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Prerequisite definitions

Definition (Preorder)

Let Λ be a set. Then a binary relation on Λ ⪯ is a preorder if it is

▶ reflexive and,

▶ transitive

Definition (Directed set)

Let Λ be a set with ⪯ as a preorder. Then Λ is called an (upward)
directed set if there is an upper bound for every pair of elements.
In other words, for every λ1, λ2 ∈ Λ, we can find µ ∈ Λ such that
λ1 ⪯ µ and λ2 ⪯ µ.
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Nets: The what

Definition (Net)

Let X be any set and Λ an upward directed set. Then a function
f : Λ → X is called a net (in X ). It is typically denoted (xλ)λ∈Λ
where xλ := f (λ).

Definition (Convergence of nets)

A net (xλ)λ∈Λ in a topological space X converges to a point x ∈ X
if for every open neighbourhood U of x there exists λ′ ∈ Λ such
that we have xλ ∈ U for all λ′ ⪯ λ.
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Theorem
Let X be a topological space and A be some subset of X . Then
x ∈ A if and only if there exists a net in A converging to x .

Proof.
⇐ Suppose there exists a net (xλ) in A converging to some x .
This implies every neighbourhood of x has non-trivial intersection
with A. Thus x ∈ A.
⇒ Suppose x ∈ A. We define Λ to be the collection of open
neighbourhoods of x and ⪯:=⊇. For U ∈ Λ, we define xU by
choosing any point in U ∩ A which is non-empty by assumption.
Then xU → x by construction.
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Filters

Definition (Filter)

Let X be a set. Then a filter F is a collection of non-empty
subsets of X such that

▶ For all A,B ∈ F , A ∩ B ∈ F

▶ For all A ∈ F , A ⊂ B implies B ∈ F

Definition (Filter convergence)

A filter F in a topological space X converges to a point x if it
contains all the neighbourhoods of x .
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Examples of filters

Examples

Let X be a topological space and x ∈ X . Then we can have

▶ F := {X} (Trivial)

▶ F := {A ⊂ X : x ∈ A}
▶ F := {A ⊂ X : A is a neighbourhood of x} (Neighbourhood

filter)



Nets vs Filters

Theorem
Let X be a topological space and (xλ) a net in X . Then there exist
a filter F in X such that (xλ) converges to x if and only if F also
converges to x .

Proof.
We define F := {A ⊂ X : xλ eventually in A}. Then if xλ → x
then F must contain the neighbourhood filter of x . Conversely if
F → x then F contains the neighbourhood filter of x (by
definition of convergence of filters) so xλ is eventually in every
neighbourhood of x .
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Theorem
Let X be a topological space and F a filter in X . Then there
exists a net (xλ) in X such that F converges to x if and only if
(xλ) converges to x .

Proof.
Define Λ := {(x ,A) ∈ X × F : x ∈ A} and
(x ,A) ⪯ (y ,B) ⇔ A ⊇ B. The net is simply the projection onto
the first element, i.e., f (x ,A) := x . If F → x , then every
neighbourhood of x is in F , so the net is eventually in every
neighbourhood of x .
Suppose x(y ,A) converges to x . Let U be a neighbourhood of x .
There exists some (y ,A) such that for all (y ,A) ⪯ (z ,B) we have
f (z ,B) = z ∈ U. This holds for all z ∈ B so B ⊂ U. By
assumption B ∈ F implying U ∈ F .
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Nets Filters
Intuitive; complex definition Unintuitive; simple definition

Requires a separate set Uses only subsets of the space
Function Set

IT’S OBVIOUSLY FILTERS

FILTERS ARE MUCH BETTER

GOOGLE HOW COOL ULTRAFILTERS ARE

NO, I MEAN IT. GOOGLE IT!
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Exercises

0. Can you find uncountably many subsets of N such that any
pair has only finite intersection?

1. Define what a subnet should be. (Warmup: Give a rigorous
definition for subsequences.). Show that a topological space
X is compact if and only if every net in X has a convergent
subnet.

2. Show that Y ⊂ X is open if and only if Y ∈ F for every filter
F that converges to a point in Y .

3. Show that if U is an ultrafilter in a set X then for any
A ⊂ X , you have A ∈ U or X − A ∈ U .



Resources/References

▶ Gert Pederson, Analysis Now
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▶ Saitulaa Naranong, Translating between Nets and Filters,
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