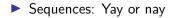
Nets, ahoy!

Rishibh Prakash

July 2022

(ロ)、(型)、(E)、(E)、 E) の(()



- Sequences: Yay or nay
- Nets: The what, the how and the why

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Sequences: Yay or nay
- Nets: The what, the how and the why

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Joke

- Sequences: Yay or nay
- Nets: The what, the how and the why

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Joke
- Filters

Sequences and me (colourised)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Source (emojis): OpenMoji

Divergence of harmonic series

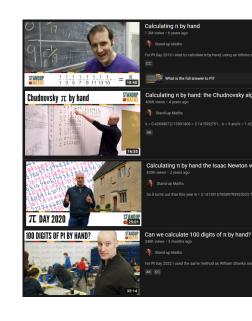
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 Divergence of harmonic series

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 Computing irrational numbers

- Divergence of harmonic series
- Computing irrational numbers



 Divergence of harmonic series

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Computing irrational numbers
- Taylor series

- Divergence of harmonic series
- Computing irrational numbers
- Taylor series

(Riddle) Can you find uncountably many subsets of \mathbb{N} such that any pair has only finite intersection?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The set of convergent sequences in a space determines its topology.

metrizable

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The set of convergent sequences in a space determines its topology.

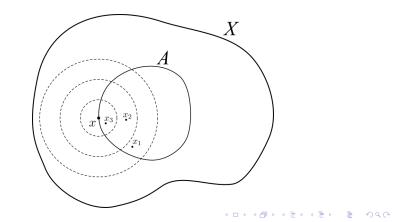
Theorem

Let X be a metrizable topological space. Then for all $A \subset X$, we have $x \in \overline{A}$ if and only if there exists a sequence in A that converges to x.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

Let X be a metrizable topological space. Then for all $A \subset X$, we have $x \in \overline{A}$ if and only if there exists a sequence in A that converges to x.



Theorem

Let X be a metrizable topological space. Then for all $A \subset X$, we have $x \in \overline{A}$ if and only if there exists a sequence in A that converges to x.

Proof.

 \Leftarrow Let x_n be a sequence in A that converges to x. This means that every neighbourhood of x has non-trivial intersection with A so $x \in \overline{A}$.

⇒ Suppose $x \in \overline{A}$. Let B_n be (open) balls of radius $\frac{1}{n}$ centered at x. Since x is in the closure of A, $B_n \cap A$ is non-empty for all n. So we define x_n to be any element that lies in this intersection. This sequence (x_n) converges to x by construction.

Theorem

Let X, Y be metrizable topological spaces and $f : X \to Y$ a map between them. Then f is continuous if and only if $(x_n) \to x$ implies $f(x_n) \to f(x)$ for all convergent sequences (x_n) .

Theorem

Let X, Y be metrizable topological spaces and $f : X \to Y$ a map between them. Then f is continuous if and only if $(x_n) \to x$ implies $f(x_n) \to f(x)$ for all convergent sequences (x_n) .

Proof.

⇒ Suppose f is continuous. Let V be a neighbourhood of f(x). Then $f^{-1}(V)$ is a neighbourhood of x. So (x_n) eventually in $f^{-1}(V)$ hence $f(x_n)$ eventually in V.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem

Let X, Y be metrizable topological spaces and $f : X \to Y$ a map between them. Then f is continuous if and only if $(x_n) \to x$ implies $f(x_n) \to f(x)$ for all convergent sequences (x_n) .

Proof.

⇒ Suppose f is continuous. Let V be a neighbourhood of f(x). Then $f^{-1}(V)$ is a neighbourhood of x. So (x_n) eventually in $f^{-1}(V)$ hence $f(x_n)$ eventually in V. \Leftarrow Suppose $A \subset Y$ is closed. Let $(x_n) \to x$ be a convergent sequence in $f^{-1}(A)$. By assumption $f(x_n) \to f(x)$. Since A is closed, we know $f(x) \in A$ (by previous theorem) thus $x \in f^{-1}(A)$. Thus $f^{-1}(A)$ contains its limit points and is therefore closed (again by the previous theorem).

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Equivalences are fun

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Why not
- Equivalences are fun
- Convergence is what topology is all about!!

Prerequisite definitions

Definition (Preorder)

Let Λ be a set. Then a binary relation on $\Lambda \preceq$ is a preorder if it is

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- reflexive and,
- transitive

Prerequisite definitions

Definition (Preorder)

Let Λ be a set. Then a binary relation on $\Lambda \preceq$ is a preorder if it is

reflexive and,

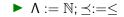
transitive

Definition (Directed set)

Let Λ be a set with \leq as a preorder. Then Λ is called an (upward) directed set if there is an upper bound for every pair of elements. In other words, for every $\lambda_1, \lambda_2 \in \Lambda$, we can find $\mu \in \Lambda$ such that $\lambda_1 \leq \mu$ and $\lambda_2 \leq \mu$.

Examples of directed sets

Examples



Examples of directed sets

Examples

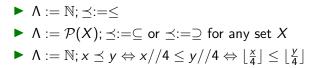
►
$$\Lambda := \mathbb{N}; \preceq := \leq$$

► $\Lambda := \mathcal{P}(X); \preceq := \subseteq$ or $\preceq := \supseteq$ for any set X

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Examples of directed sets

Examples



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition (Net)

Let X be any set and Λ an upward directed set. Then a function $f : \Lambda \to X$ is called a *net* (in X). It is typically denoted $(x_{\lambda})_{\lambda \in \Lambda}$ where $x_{\lambda} := f(\lambda)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

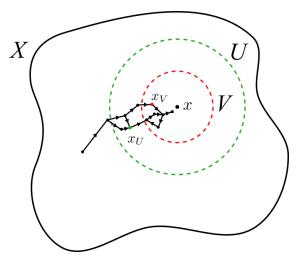
Definition (Net)

Let X be any set and Λ an upward directed set. Then a function $f : \Lambda \to X$ is called a *net* (in X). It is typically denoted $(x_{\lambda})_{\lambda \in \Lambda}$ where $x_{\lambda} := f(\lambda)$.

Definition (Convergence of nets)

A net $(x_{\lambda})_{\lambda \in \Lambda}$ in a topological space X converges to a point $x \in X$ if for every open neighbourhood U of x there exists $\lambda' \in \Lambda$ such that we have $x_{\lambda} \in U$ for all $\lambda' \leq \lambda$.

Nets: The how



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Theorem

Let X be a topological space and A be some subset of X. Then $x \in \overline{A}$ if and only if there exists a net in A converging to x.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem

Let X be a topological space and A be some subset of X. Then $x \in \overline{A}$ if and only if there exists a net in A converging to x.

Proof.

 \Leftarrow Suppose there exists a net (x_{λ}) in A converging to some x. This implies every neighbourhood of x has non-trivial intersection with A. Thus $x \in \overline{A}$.

- ロ ト - 4 回 ト - 4 □

Theorem

Let X be a topological space and A be some subset of X. Then $x \in \overline{A}$ if and only if there exists a net in A converging to x.

Proof.

 \Leftarrow Suppose there exists a net (x_λ) in *A* converging to some *x*. This implies every neighbourhood of *x* has non-trivial intersection with *A*. Thus *x* ∈ *Ā*. \Rightarrow Suppose *x* ∈ *Ā*. We define Λ to be the collection of open neighbourhoods of *x* and $\preceq:=\supseteq$. For *U* ∈ Λ, we define *x_U* by choosing any point in *U* ∩ *A* which is non-empty by assumption. Then *x_U* → *x* by construction.

Theorem

Let $f : X \to Y$ be a map between topological spaces. Then f is continuous if and only if $(x_{\lambda}) \to x \in X$ implies $f(x_{\lambda}) \to f(x) \in Y$ for every convergent net (x_{λ}) in X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

Let $f : X \to Y$ be a map between topological spaces. Then f is continuous if and only if $(x_{\lambda}) \to x \in X$ implies $f(x_{\lambda}) \to f(x) \in Y$ for every convergent net (x_{λ}) in X.

Proof.

 \Rightarrow Let V be a neighbourhood of f(x), implying $f^{-1}(V)$ is an open neighbourhood of x (by continuity if f). Therefore x_{λ} eventually in $f^{-1}(V)$ and hence $f(x_{\lambda})$ eventually in V.

⇐ Suppose $A \subset Y$ is closed. Let x_{λ} be a convergent net in $f^{-1}(A)$ converging to x. Then by assumption $f(x_{\lambda}) \to f(x)$ so $f(x) \in A$ by previous theorem and closure of A. Therefore $x \in f^{-1}(A)$ and $f^{-1}(A)$ is closed (again by the previous theorem).

Joke

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Now that we're all *caught up* with nets...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Filters

Definition (Filter)

Let X be a set. Then a *filter* \mathscr{F} is a collection of non-empty subsets of X such that

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ▶ For all $A, B \in \mathscr{F}$, $A \cap B \in \mathscr{F}$
- ▶ For all $A \in \mathscr{F}$, $A \subset B$ implies $B \in \mathscr{F}$

Filters

Definition (Filter)

Let X be a set. Then a *filter* \mathscr{F} is a collection of non-empty subsets of X such that

For all
$$A, B \in \mathscr{F}$$
, $A \cap B \in \mathscr{F}$

▶ For all
$$A \in \mathscr{F}$$
, $A \subset B$ implies $B \in \mathscr{F}$

Definition (Filter convergence)

A filter \mathscr{F} in a topological space X converges to a point x if it contains all the neighbourhoods of x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples of filters

Examples

Let X be a topological space and $x \in X$. Then we can have

•
$$\mathscr{F} := \{X\}$$
 (Trivial)
• $\mathscr{F} := \{A \subset X : x \in A\}$

F := {A ⊂ X : A is a neighbourhood of x} (Neighbourhood filter)

Theorem

Let X be a topological space and (x_{λ}) a net in X. Then there exist a filter \mathscr{F} in X such that (x_{λ}) converges to x if and only if \mathscr{F} also converges to x.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

Let X be a topological space and (x_{λ}) a net in X. Then there exist a filter \mathscr{F} in X such that (x_{λ}) converges to x if and only if \mathscr{F} also converges to x.

Proof.

We define $\mathscr{F} := \{A \subset X : x_{\lambda} \text{ eventually in } A\}$. Then if $x_{\lambda} \to x$ then \mathscr{F} must contain the neighbourhood filter of x. Conversely if $\mathscr{F} \to x$ then \mathscr{F} contains the neighbourhood filter of x (by definition of convergence of filters) so x_{λ} is eventually in every neighbourhood of x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

Let X be a topological space and \mathscr{F} a filter in X. Then there exists a net (x_{λ}) in X such that \mathscr{F} converges to x if and only if (x_{λ}) converges to x.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

Let X be a topological space and \mathscr{F} a filter in X. Then there exists a net (x_{λ}) in X such that \mathscr{F} converges to x if and only if (x_{λ}) converges to x.

Proof.

Define $\Lambda := \{(x, A) \in X \times \mathscr{F} : x \in A\}$ and $(x, A) \preceq (y, B) \Leftrightarrow A \supseteq B$. The net is simply the projection onto the first element, i.e., f(x, A) := x. If $\mathscr{F} \to x$, then every neighbourhood of x is in \mathscr{F} , so the net is eventually in every neighbourhood of x. Suppose $x_{(y,A)}$ converges to x. Let U be a neighbourhood of x. There exists some (y, A) such that for all $(y, A) \preceq (z, B)$ we have

 $f(z,B) = z \in U$. This holds for all $z \in B$ so $B \subset U$. By assumption $B \in \mathscr{F}$ implying $U \in \mathscr{F}$.

Nets	Filters
Intuitive; complex definition	Unintuitive; simple definition
Requires a separate set	Uses only subsets of the space
Function	Set

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Nets	Filters
Intuitive; complex definition	Unintuitive; simple definition
Requires a separate set	Uses only subsets of the space
Function	Set

IT'S OBVIOUSLY FILTERS

Nets	Filters
Intuitive; complex definition	Unintuitive; simple definition
Requires a separate set	Uses only subsets of the space
Function	Set

IT'S OBVIOUSLY FILTERS

FILTERS ARE MUCH BETTER

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Nets	Filters
Intuitive; complex definition	Unintuitive; simple definition
Requires a separate set	Uses only subsets of the space
Function	Set

IT'S OBVIOUSLY FILTERS

FILTERS ARE MUCH BETTER

GOOGLE HOW COOL ULTRAFILTERS ARE

Nets	Filters
Intuitive; complex definition	Unintuitive; simple definition
Requires a separate set	Uses only subsets of the space
Function	Set

IT'S OBVIOUSLY FILTERS

FILTERS ARE MUCH BETTER

GOOGLE HOW COOL ULTRAFILTERS ARE

NO, I MEAN IT. GOOGLE IT!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Exercises

- 0. Can you find uncountably many subsets of N such that any pair has only finite intersection?
- Define what a subnet should be. (Warmup: Give a rigorous definition for subsequences.). Show that a topological space X is compact if and only if every net in X has a convergent subnet.
- 2. Show that $Y \subset X$ is open if and only if $Y \in \mathscr{F}$ for every filter \mathscr{F} that converges to a point in Y.

3. Show that if \mathscr{U} is an ultrafilter in a set X then for any $A \subset X$, you have $A \in \mathscr{U}$ or $X - A \in \mathscr{U}$.

Resources/References

- ► Gert Pederson, Analysis Now
- ► James Munkres, *Topology*
- Saitulaa Naranong, Translating between Nets and Filters,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Slides: http://individual.utoronto.ca/rishibhp/notes/cumc22.pdf

Resources/References

- ► Gert Pederson, Analysis Now
- ► James Munkres, *Topology*
- Saitulaa Naranong, Translating between Nets and Filters,

Slides: http://individual.utoronto.ca/rishibhp/notes/cumc22.pdf

