1.4 Chapter 2

1.4.1 The Subspace Topology

1. For $x \in A$ let U_x be the open set containing x and is contained in A. Since for each $x \in A$, there is some U_x , we see that $A \subset \bigcup_{x \in A} U_x$. On the other hand since each U_x is contained in A the reverse inclusion also holds. Hence

$$A = \bigcup_{x \in A} U_x$$

Since the arbitrary union of open sets is open, A is open.

- 2. No
- 3. We see that ϕ and X are in \mathcal{T}_C because $X \phi$ is all of X and $X X = \phi$ which is in particular countable.
 - Let $\{U_{\lambda}\}$ be some indexed collection of non-empty elements of \mathcal{T}_{C} . Then we compute that

$$X - \bigcup U_{\lambda} = \bigcap (X - U_{\lambda})$$

The latter set is countable as it is a subset of a countable set. Let U_1, \ldots, U_n be some non-empty elements of \mathcal{T}_C . Then

$$X - \bigcap_{i=1}^{n} U_i = \bigcup_{i=1}^{n} (X - U_1)$$

Since the finite union of countable sets is countable, the above set is countable. Hence we conclude that T_C is a topology.

4. (a) Suppose $\{\mathcal{T}_a\}$ is a family of topologies of *X*. They all contain ϕ and *X*, hence $\bigcap \mathcal{T}_a$ contains ϕ and *X*.

Suppose $\{U_{\lambda}\}$ is some indexed collection of elements of $\cap \mathcal{T}_a$. Then each U_{λ} is in each \mathcal{T}_a . Since each \mathcal{T}_a is a topology, each \mathcal{T}_a contains the union of all $\{U_{\lambda}\}$ and hence the union is in $\cap \mathcal{T}_a$. Identical argument for finite intersections.

However, $\bigcup \mathcal{T}_a$ is not necessarily a topology. Consider $\mathcal{T}_1 = \{\phi, \{a, b, c\}, \{a, b\}\}$ and $\mathcal{T}_2 = \{\phi, \{a, b, c\}, \{b, c\}\}$. We can easily check that both are topologies. Their union contains both $\{a, b\}$ and $\{b, c\}$ but not their intersection $\{b\}$ and hence cannot be a topology.

(b) ∩{T_α} is the largest topology contained in all T_α. Suppose we had some other T' ⊂ T_α for all α. Then T' ⊂ ∩{T_α}.

Let $\{S_{\beta}\}$ be such that each S_{β} is a topology satisfying $S_{\beta} \supset \bigcup \{T_{\alpha}\}$. Then $\bigcap S_{\beta}$ is the smallest topology containing all T_{α} .

- (c) If \mathbb{R}_l is finer than \mathbb{R}_K then there must exist
- 5. Let \mathcal{A} be a basis for a topology on X. Let $\{\mathcal{T}_A\}$ be all the topologies on X that contain \mathcal{A} . Let $\mathcal{T} = \bigcap \mathcal{T}_A$ and \mathcal{T}' be the topology generated by \mathcal{A} . We recall that \mathcal{T}' is simply the collection of all unions of elements of \mathcal{A} . As each of \mathcal{T}_A is a topology, they will contain each of the unions and hence the collection of all unions will be in \mathcal{T} . This implies that $\mathcal{T}' \subset \mathcal{T}$.

The reverse inclusion is clear because \mathcal{T}' is a topology containing \mathcal{A} and hence any element of $\bigcap \mathcal{T}_A$ can only contain elements from \mathcal{T}' .

1.4.2 Closed sets and limit points

6. (a) We recall that C = C ∪ C'. Thus all we need show is that A' ⊂ B'. Let x ∈ A' and U be some neighbourhood containing x. We know that U intersects A at some point other than A. Thus it must also intersect B at some point other than x. Then U ∩ (B − {x}) is non-empty so x ∈ B'.

(b) From the previous question, it is clear that $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$. So we simply need show the reverse inclusion.

Note that $A \cup B \subset \overline{A} \cup \overline{B}$ since $A \subset \overline{A}$ and $B \subset \overline{B}$. Therefore by the previous question $\overline{A \cup B} \subset \overline{\overline{A} \cup \overline{B}}$. Note that $\overline{A} \cup \overline{B}$ is closed since the union of two closed sets is closed. Hence $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$.

- (c) Clearly $A_{\alpha} \subset \bigcup A_{\alpha}$ for each α . Therefore by part a, $\overline{A_{\alpha}} \subset \overline{\bigcup A_{\alpha}}$. Then $\bigcup \overline{A_{\alpha}} \subset \overline{\bigcup A_{\alpha}}$. In order to see that equality does not hold, we take $A_n = (0, 1 - \frac{1}{n})$. Then $\overline{A_n} = [0, 1 - \frac{1}{n}]$ so $\bigcup \overline{A_n} = [0, 1)$. On the other hand $\overline{\bigcup A_n} = \overline{(0, 1)} = [0, 1]$.
- 7. It's possible that as we change our U, the neighbourhood intersects different A_{α} (see example above), preventing x from being in the closure of any given A_{α} .
- 8. (a) We simply use Q6a to infer that $\overline{A \cap B} \subset \overline{A}$ and $\overline{A \cap B} \subset \overline{B}$ to conclude that $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. However equality does not hold (consider A = (0, 1) and B = (1, 2) in the standard topology on \mathbb{R}).
 - (b) Same as above to conclude that $\overline{\bigcap A_{\alpha}} \subset \bigcap \overline{A_{\alpha}}$ but not necessarily equal.
- 9. Suppose $x \in \overline{A}$ and $y \in \overline{B}$. Then $U \times V$ be an open set containing $x \times y$. Then U is a neighbourhood of x and V is a neighbourhood of y so their intersection with A and B respectively is non-empty. Thus the intersection of $U \times Y$ with $A \times B$ is non-empty. Hence $x \times y \in \overline{A \times B}$.

Suppose $x \times y \in \overline{A \times B}$. If $x \in A$ we are done. The suppose $x \notin A$. Let *U* be any open set containing *x*. Then $U \times Y$ is a neighbourhood of $x \times y$ hence intersections $A \times B$. This means that *U* intersects *A* and any point in this intersection is a point different from *x* implying that $x \in A' \subset \overline{A}$. Arguing similarly for *y*, we conclude that $x \times y \in \overline{A} \times \overline{B}$.

- 10. Let X be a topological space with the order topology. Let $a, b \in X$ such that a < b (in particular then a, b are distinct). Now consider the interval (a, b). If this interval is empty, we can take $U_1 = (-\infty, b)$ and $U_2 = (a, \infty)$ as disjoint neighbourhoods of a and b (the intersection of U_1 and U_2 is exactly (a, b)). If the interval is not empty, we take $x \in (a, b)$ and consider $U_1 = (-\infty, x)$ and $U_2 = (x, \infty)$ as neighbourhoods instead where disjointness is clear.
- 11. Let X and Y be two Hausdorff spaces. Let $x_1 \times y_1$ and $x_2 \times y_2$ be two distinct points in $X \times Y$ (equality of one component implies inequality of the other). Suppose x_1, x_2 are distinct and that y_1, y_2 are distinct. Let U_1, U_2 be disjoint neighbourhoods for x_1 and x_2 respectively and similarly let V_1, V_2 be disjoint neighbourhoods of y_1 and y_2 . Then we claim that $U_1 \times V_1$ is disjoint from $U_2 \times V_2$. Indeed, suppose this were not the case the point $x' \times y'$ resided in their intersection. Then this would imply that x' is in the intersection of U_1 and U_2 and that y' is in the intersection of V_1 and V_2 leading to a contradiction.

Suppose instead that $x_1 = x_2$ but y_1, y_2 are still distinct. In this case, we let U be any neighbourhood containing x_1 and take V_1, V_2 to be disjoint neighbourhoods of y_1 and y_2 respectively. As before, we conclude that $U \times V_1$ and $U \times V_2$ are disjoint. The argument is essentially identical if $y_1 = y_2$ while x_1 and x_2 are different.

- 12. Let x_1, x_2 be distinct points in some subspace A of X. We take disjoint open sets of X containing the respective points and intersect them with A to find disjoint open sets in A.
- 13. Suppose X is a Hausdorff space. We show that that the complement of Δ is open. First we note that the complement of Δ is $\{(x, y) \in X \times X : x \neq y\}$. By Hausdorff, we have that there exist disjoint open sets U_1 and U_2 that contain x and y respectively. Then $U_1 \times U_2$ is open and does not intersect with Δ . This allows us to write the complement as a union of open sets, implying that Δ is closed.

Now suppose X is not a Hausdorff space. We show that Δ is not closed as it does not contain all of its limit points. Since X is not Hausdorff, there are elements x, y in X that are distinct but who neighbourhoods always intersect. Now let W be a neighbourhood of $x \times y \in X \times X$. We recall that the basis for the product topology is of the form $U \times V$ where U and V are open in X and that any open set is some union of the basis elements. Hence in particular this means we can find U and V open in X such that $x \times y \in U \times V$. Since X is not Hausdorff, we know that $U \cap V$ is non-empty, so let z be an element in the intersection. Then $z \times z \in U \times V$, so in particular $W \cap \Delta$ is non-empty. This implies that (x, y) is a limit point of Δ not contained in Δ concluding the proof.

- 19. (a) Let x ∈ Int A. By definition of Int A, there exists an open U such that x ∈ U ⊂ A. Clearly, U cannot intersect X A. Hence we find a neighbourhood of x that does not intersect X A and so x is not a limit point of X A and hence not in Bd A. We can write A = Int A ∪ Bd A as A = Int A ∪ (A ∩ X A) = (Int A ∪ A) ∩ (Int A ∪ X A). The first term is clearly just A and I claim that the second term, Int A ∪ X A, is just X. Indeed if this true, we see easily the equation is true as A ∩ X = A. To verify the claim, we simply need to confirm that x ∈ A Int A are accounted for (all other elements are clearly in the union). If x ∈ A Int A, then there does not exist a neighbourhood of x that is contained in A. In particular, this means that every neighbourhood of x must intersect X A and so x ∈ X A.
 - (b) Suppose $\operatorname{Bd} A = \phi$. Let x be a limit point of A. By assumption, $x \notin \overline{(X A)}$ and hence not in X - A. Then x must be in A implying that that A contains all of its limit points and is therefore closed. We can apply an identical argument to X - A to conclude that X - A is closed and so A is open. If we instead assume that A is open and closed then $\overline{A} = A$ and $\overline{(X - A)} = X - A$ their intersection is empty by definition. Hence $\operatorname{Bd} A = \phi$.
 - (c) First we note that U is open if and only if U = Int U. Suppose Bd $U = \overline{U} U$ and so $\overline{U} = \text{Bd } U \cup U$ From (a), we know that $\overline{U} = \text{Int } U \sqcup \text{Bd } U$. Using these two equalities and elementary set theory, we find that Int U = U and hence U is open. On the other hand if U is open, we use that Int U = U and the equality from (a) to obtain the desired result.

1.4.3 Continuous Functions

- Let *f* : ℝ → ℝ be a function that satisfies the ε − δ definition of of continuity. Let *x* ∈ ℝ be arbitrary and let *V* be some neighbourhood of *f*(*x*). As *V* is open in ℝ, it is the union of some open intervals and at least one of these intervals must contain *f*(*x*). Let *J* be one such interval. We choose ε = min{sup*J* − *f*(*x*), *f*(*x*) − inf*J*}. Then by assumption, there exists a δ such that *f*((*x*−δ,*x*+δ)) ⊂ *J* ⊂ *V*. Hence taking *U* = (*x*−δ,*x*+δ) we are done.
- 2. Consider $f: (0,1) \to \mathbb{R}$ where f(x) = 69 for all x. Then $f((0,1)) = \{69\}$ which does not have 69 as a limit point.
- 3. (a) Suppose *i* is continuous. Let U' be open in X. Then i⁻¹(U) = U is open in X' by definition of continuity. This implies that T' is finer than T.
 On the other hand suppose T' is finer than T. Let U be open in T'. Then i⁻¹(U) = U which must also be open in T (as this topology is coarser). Therefore *i* is continuous.
 - (b) *i* is a homeomorphism implies that $\mathcal{T}' \supset \mathcal{T}$ and i^{-1} continuous implies that $\mathcal{T} \supset \mathcal{T}'$ hence $\mathcal{T} = \mathcal{T}'$. If $\mathcal{T} = \mathcal{T}'$, then i(U) = U is open so i^{-1} is continuous.
- 4. Clearly f is bijective. Let $f(X) = X \times \{y_0\}$. Let $U \times V \cap (X \times \{y_0\}) = U \times (V \cap \{y_0\})$ be open in $X \times \{y_0\}$. Then $f^{-1}(U \times \{y_0\}) = U$ which is open implying that f is continuous. Additionally $f(U) = U \times \{y_0\}$ is open in f(X), so f^{-1} is continuous.
- 5. We have $f:(a,b) \to (0,1)$ given by $f(x) = \frac{x-a}{b-a}$ and $g:[a,b] \to [0,1], g(x) = \frac{x-a}{b-a}$.
- 6. We define $f : \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x \text{ if } x \in \mathbb{Q} \\ 0 \text{ otherwise} \end{cases}$$

which is only continuous at 0.

- 7. (a)
 - (b) Suppose f: R_l → R_l is continuous. Let x ∈ R_l be arbitrary and let V be some neighbourhood of f(x). We know there exists a neighbourhood U of x such that f(U) ⊂ V. Let [y,z) ⊂ U be a basis element containing x. Then [x,z) ⊂ [y,z) ⊂ U implying that f([x,z)) ⊂ V. Thus f must be continuous from the right.

Suppose *f* is continuous from the right. This means for that all $x \in \mathbb{R}_l$ and all $\varepsilon > 0$ there exists a $\delta > 0$ such that $0 < y - x < \delta$ implies that $|f(x) - f(y)| < \varepsilon$.

- 8.
- 9. (a) We simply use the pasting lemma inductively.
 - (b) We define $f: [0,1] \to \mathbb{R}$, given by $f(x) = \frac{1}{x}$ if x is not 0 and f(x) = 0 if x is 0. Let $A_0 = \{0\}$ and $A_n = [\frac{1}{n}, 1]$. Then $\bigcup_{i=0}^{\infty} A_i = [0, 1]$ and $f|_{A_i}$ for any *i* is continuous but clearly *f* itself is not continuous.
 - (c) Let $x \in X$ and let U_x be a neighbourhood that only intersects finitely many A_{α} , say $A_{\alpha_1}, \ldots, A_{\alpha_n}$. Then

$$U_x = \bigcup_{i=1}^n (U_x \cap A_{\alpha_i})$$

Since $f|A_{\alpha_i}$ is continuous, $f|_{U_x \cap A_{\alpha_i}}$ is continuous. Note that $U_x \cap A_{\alpha_i}$ is closed in U_x for each α_i hence by part *a* we know that $f|_{U_x}$ is continuous. Then as $X = \bigcup U_x$ we are done by Theorem 18.2.

- 10.
- 11. Suppose $F: X \times Y \to Z$ is continuous. Let $h_{y_0}: X \to Y$ be the map given by $h_{y_0}(x) = x \times y_0$. Let $\iota_{y_0}: X \to X \times Y$ given by $\iota_{y_0}(x) = x \times y_0$ is continuous as shown previously. Then $h_{y_0} = F \circ \iota_{y_0}$ hence is continuous.
- 12.
- 13. Let $g:\overline{A} \to Y, h:\overline{A} \to Y$ be continuous maps such that g(x) = h(x) = f(x) for all $x \in A$. We will show that g(x) = h(x) for all $x \in \overline{A} A$ as well.

Suppose this is not the case. Let $x \in \overline{A} - A$ be such that $g(x) \neq h(x)$. Note that this in particular means that $x \in A'$. As *Y* is Hausdorff, we can find disjoint sets *U* and *V* containing g(x) and h(x) respectively. Then $g^{-1}(U) \cap h^{-1}(V)$ is a neighbourhood of *x* hence contains a point from *A* as *x* is a limit point. Let us denote this point as *y*. However, since *g* and *h* agree on *A* we must have that g(y) = h(y) which contradict disjointness of *U* and *V*.

1.4.4 Product Topology

- 1. Let $(x_{\alpha})_{\alpha \in J} \in \prod X_{\alpha}$. Then for each α there exists a $B_{\alpha} \in \mathcal{B}_{\alpha}$ such that $x_{\alpha} \in B_{\alpha}$. Thus $(x_{\alpha})_{\alpha \in J} \in \prod B_{\alpha}$. Let $(x_{\alpha})_{\alpha \in J} \in \prod B_{\alpha} \cap \prod B'_{\alpha} = \prod (B_{\alpha} \cap B'_{\alpha})$. For each $B_{\alpha} \cap B'_{\alpha}$ we can find a C_{α} contained in the intersection that contains x_{α} . Then $(x_{\alpha})_{\alpha \in J} \in \prod C_{\alpha} \subset \prod (B_{\alpha} \cap B'_{\alpha})$.
- 2.
- 3.
- 4.
- 5.
- 6. Let x₁,x₂,... be a sequence in ΠX_α that converges to x. We will first show that for each α, we have π_α(x₁), π_α(x₂),... converging to π_α(x) in both the product and box topology. Let U_α be a neighbourhood of π_α(x). Then π_α⁻¹(U_α) is a neighbourhood of x (in both the product and box topology). Then there exists some N ∈ N such that for all n ≥ N, we have x_n ∈ π_α⁻¹(U_α). Thus for all n ≥ N, π_α(x_n) ∈ U_α.

Now let x_1, x_2, \ldots be a sequence in $\prod X_{\alpha}$ such that for each α we have $\pi_{\alpha}(x_1), \pi_{\alpha}(x_2), \ldots$ converging to some x_{α} . We will show that x_1, x_2, \ldots converges to $x = (x_{\alpha})$ in the product topology.

Let $\prod U_{\alpha}$ be a basis element of the product topology containing x. Then there are $\alpha_1, \ldots, \alpha_k$

such that $U_{\alpha} = X_{\alpha}$ if $\alpha \notin \{\alpha_1, ..., \alpha_k\}$. Each U_{α_i} is a neighbourhood of x_{α_i} , hence there exists some N_i such that for all $n \ge N_i$, we have $\pi_{\alpha_i}(x_n) \in U_{\alpha_i}$. Let $N = \max\{N_i\}$. Then for all $n \ge N$, we have $\pi_{\alpha}(x_n) \in U_{\alpha}$ for all α . Therefore for all such n, we get $x_n \in \prod U_{\alpha}$. This unfortunately does not hold in the box topology. Consider the sequence

```
x_1 = (1, 1, 1, 1, ...)

x_2 = (0, 2, 2, 2, ...)

x_3 = (0, 0, 3, 3, ...)

:
```

Then each $\pi_i(x_n)$ converges to 0, however the open neighbourhood $\prod_{i \in \mathbb{N}} (-1, 1)$ of 0 contains no elements of the sequence.

7. In the product topology, we claim $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\omega}$. Let $(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\omega}$ be arbitrary. Let $\prod U_n$ be some basis element of the product topology containing $(x_n)_{n \in \mathbb{N}}$. Recall that there must some $N \in \mathbb{N}$ such that $U_n = \mathbb{R}$ for all $n \ge N$. Additionally $x_n \in U_n$ for all $n \in \mathbb{N}$. Therefore $(x_1, \ldots, x_N, 0, 0, \ldots) \in \mathbb{R}^{\infty} \cap \prod U_n$.

In the box topology, we claim that $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\infty}$. We will show that $\mathbb{R}^{\omega} - \mathbb{R}^{\infty}$ is open.

Note that $\mathbb{R}^{\omega} - \mathbb{R}^{\infty} = \{(x_n \in \mathbb{R}^{\omega}) : \forall M \in \mathbb{N} \exists N \in \mathbb{N} x_N \neq 0\}$. Let $(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\omega} - \mathbb{R}^{\infty}$. Then $(x_n)_{n \in \mathbb{N}} \in \prod U_i$ where $U_i = \mathbb{R}$ if $x_i = 0$ and $U_i = \mathbb{R} - \{0\}$ if $x_i \neq 0$.

8. It is clear that h is bijective with

$$h^{-1}((x_1, x_2, \dots)) = \left(\frac{1}{a_1}(x_1 - b_1), \frac{1}{a_2}(x_2 - b_2), \dots\right)$$

In order to see that *h* is continuous, we only need show that each h_i . Let $f_i : \mathbb{R} \to \mathbb{R}$, $f_i(x) = a_i x + b_i$. Then $h_i = f_i \circ \pi_i$. As the composition of two functions is continuous, h_i is continuous allowing us to conclude that *h* is continuous in the product topology. We can similarly conclude that h^{-1} is continuous proving that *h* is a homeomorphism.

- 9.
- 10. (a) For each α , there is a topology \mathcal{T}_{α} that makes f_{α} continuous (consider the topology generated by taking as subbasis the preimages of open sets). We have shown previously that given any family of topologies $\{\mathcal{T}_{\alpha}\}$ there is a unique smallest/coarsest topology that contains all \mathcal{T}_{α} .
 - (b) It is clear that S is a subbasis since it contains A itself. It is also clear that in the topology generated by S, each f_{α} is continuous. We also shown previously that the topology generated by a subbasis is the coarsest topology containing the subbasis. Thus the topology generated by S is the coarsest topology relative to which each f_{α} is continuous. Thus the topology generated by S must be T by the uniqueness shown above.
 - (c) Suppose g: Y → A is continuous. Then f_α ∘ g is continuous for each α as the composition of continuous functions is continuous. Now suppose that f_α ∘ g is continuous for each α. We only need show that the preimages of the subbasis of A under g is open. Let U_β be open X_β for some β. Then f_β^{-1(U_β)} ∈ S. So g⁻¹(f⁻¹(U_β)) = (f_β ∘ g)⁻¹(U_β).

Let U_{β} be open X_{β} for some β . Then $f_{\beta} \in S$. So $g^{-1}(f^{-1}(U_{\beta})) = (f_{\beta} \circ g)^{-1}(U_{\beta})$ By assumption $f_{\beta} \circ g$ is continuous so $(f_{\beta} \circ g)^{-1}(U_{\beta})$ is open as desired.

(d) We only need show that f maps basis elements to open sets since

$$f\left(\bigcup A_{\alpha}\right) = \bigcup f(A_{\alpha})$$

Since we have a subbasis, we know that the basis elements are going to be finite intersections of these elements. Thus our basis elements are of the form

$$\bigcap_{i=1}^n f_{\beta_i}^{-1}(U_{\beta_i})$$

for some $\{\beta_1, \ldots, \beta_n\} \subset J$ where U_{β_i} is open in X_{β_i} .

As an aside, note in principle, our basis could also consist of some more sets. For example if U_1, \ldots, U_n are open sets in some particular X_β , then $f_\beta^{-1}(U_1) \cap \cdots \cap f_\beta^{-1}(U_n)$ is also in our basis. However $f_\beta^{-1}(U_1) \cap \cdots \cap f_\beta^{-1}(U_n) = f_\beta^{-1}(U_1 \cap \cdots \cap U_n)$, where $U_1 \cap \cdots \cap U_n$ is open by properties of open sets. Thus without loss of generality, we can assume that we only have (at most) one open set from each space.

Given a basis element, we will show there exists an open set U in $\prod X_{\alpha}$ that contains the image of this basis element.

Let $\bigcap_{i=1}^{n} f_{\beta_i}^{-1}(U_{\beta_i})$ be a basis element and let *a* be an arbitrary element of this basic set. Then $f(a) \in \bigcap_{i=1}^{n} \pi_{\beta_i}^{-1}(U_{\beta_i})$. This holds for all *a* in the given basic set hence we are done.

Suppose $(x_k)_{k\in\mathbb{N}}$ converges to $y\in\mathbb{R}^{\omega}$ with the box topology. Consider the neighbourhoods *y* of the form

$$U_{\varepsilon} = \prod (y_n - \varepsilon, y_n + \varepsilon)$$

We know there exists some $N \in \mathbb{N}$ such that for all $k \ge N$, we have $x_k \in U_{\varepsilon}$.

1.4.5 Metric Topology

1.

2. We define the following metric

$$d((x_1, y_1), (x_2, y_2)) = \begin{cases} 1 \text{ if } x_1 \neq x_2 \\ |y_1 - y_2| \text{ if } x_1 = x_2 \end{cases}$$

We recall from an earlier exercise that the dictionary order topology on \mathbb{R} is the same as the product topology on $\mathbb{R}^d \times \mathbb{R}$ where \mathbb{R}_d refers to \mathbb{R} with the discrete topology and \mathbb{R} refers to \mathbb{R} with the standard topology. Thus we simply need show that the topology generated by the above metric is the same as the product topology on $\mathbb{R}_d \times \mathbb{R}$.

A basis element in $\mathbb{R}^d \times \mathbb{R}$ is of the form $\{x\} \times (a,b)$. Then given any $(x,y) \in \{x\} \times (a,b)$, we take $\delta = \min\{1, y - a, b - y\}$ and note that $B_d((x,y), \delta) \subset \{x\} \times (a,b)$.

Conversely, let $B_d((x,y), \delta)$ be given. If $\delta > 1$ then our ball is the whole space, so we are done. So suppose $\delta \le 1$. Then $B_d((x,y), \delta) = \{x\} \times (y - \delta, y + \delta)$ which is a basis element itself in $\mathbb{R}_d \times \mathbb{R}$. Hence the spaces are equal.

1.4.6 The Fundamental Group

- 1. (a) A star shape where we take a_0 to be the center
 - (b) Since every line connecting a_0 to a point lies in A we can construct the straight-line homotopy to contract all paths to the constant loop at a_0

2. Suppose $\gamma = \alpha * \beta$. Then $\widehat{\gamma}([f]) = [\overline{\gamma}] * [f] * [\gamma]$ Then

$$\begin{split} [\overline{\gamma}] * [f] * [\gamma] &= [\overline{\gamma} * f * \gamma] \\ &= [\overline{\beta} * \overline{\alpha} * f * \alpha * \beta] \\ &= [\overline{\beta}] * [\overline{\alpha} * f * \alpha] * [\beta] \\ &= \widehat{\beta}([\overline{\alpha} * f * \alpha]) \\ &= \widehat{\beta}(\widehat{\alpha}([f])) \end{split}$$

3. Suppose $\pi_1(X, x_0)$ is abelian. Let α, β be any two paths from x_0 to x_1 . Then we see that $[\beta * \overline{\alpha}]$ is in $\pi_1(X, x_0)$. Let $[f] \in \pi_1(X, x_0)$ be arbitrary. Then we know that

$$[\boldsymbol{\beta} \ast \overline{\boldsymbol{\alpha}}] \ast [f] = [f] \ast [\boldsymbol{\beta} \ast \overline{\boldsymbol{\alpha}}]$$

which implies that

$$[\overline{\alpha}] * [f] * [\alpha] = [\overline{\beta}] * [f] * [\beta]$$

as desired.

Now suppose that $\widehat{\alpha} = \widehat{\beta}$ for all paths α, β from x_0 to x_1 . This implies that

$$[\boldsymbol{\beta} \ast \overline{\boldsymbol{\alpha}}] \ast [f] = [f] \ast [\boldsymbol{\beta} \ast \overline{\boldsymbol{\alpha}}]$$

Let *g* be any loop based on x_0 and take $\beta = [g * \alpha]$. This gives us that [g] * [f] = [f] * [g] as desired.