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1.4 Chapter 2
1.4.1 The Subspace Topology

1. For x ∈ A let Ux be the open set containing x and is contained in A. Since for each x ∈ A,
there is some Ux, we see that A⊂

⋃
x∈A

Ux. On the other hand since each Ux is contained in A

the reverse inclusion also holds. Hence

A =
⋃
x∈A

Ux

Since the arbitrary union of open sets is open, A is open.
2. No
3. We see that φ and X are in TC because X−φ is all of X and X−X = φ which is in particular

countable.
Let {Uλ} be some indexed collection of non-empty elements of TC. Then we compute that

X−
⋃

Uλ =
⋂
(X−Uλ )

The latter set is countable as it is a subset of a countable set.
Let U1, . . . ,Un be some non-empty elements of TC. Then

X−
n⋂

i=1

Ui =
n⋃

i=1

(X−U1)

Since the finite union of countable sets is countable, the above set is countable. Hence we
conclude that TC is a topology.

4. (a) Suppose {Ta} is a family of topologies of X . They all contain φ and X , hence
⋂
Ta

contains φ and X .
Suppose {Uλ} is some indexed collection of elements of

⋂
Ta. Then each Uλ is in each

Ta. Since each Ta is a topology, each Ta contains the union of all {Uλ} and hence the
union is in

⋂
Ta. Identical argument for finite intersections.

However,
⋃
Ta is not necessarily a topology. Consider T1 = {φ ,{a,b,c},{a,b}} and

T2 = {φ ,{a,b,c},{b,c}}. We can easily check that both are topologies. Their union
contains both {a,b} and {b,c} but not their intersection {b} and hence cannot be a
topology.

(b)
⋂
{Tα} is the largest topology contained in all Tα . Suppose we had some other T ′ ⊂ Tα

for all α . Then T ′ ⊂
⋂
{Tα}.

Let {Sβ} be such that each Sβ is a topology satisfying Sβ ⊃
⋃
{Tα}. Then

⋂
Sβ is the

smallest topology containing all Tα .
(c) If Rl is finer than RK then there must exist

5. LetA be a basis for a topology on X . Let {TA} be all the topologies on X that containA. Let
T =

⋂
TA and T ′ be the topology generated by A. We recall that T ′ is simply the collection

of all unions of elements of A. As each of TA is a topology, they will contain each of the
unions and hence the collection of all unions will be in T . This implies that T ′ ⊂ T .
The reverse inclusion is clear because T ′ is a topology containing A and hence any element
of
⋂
TA can only contain elements from T ′.

1.4.2 Closed sets and limit points
6. (a) We recall that C =C∪C′. Thus all we need show is that A′ ⊂ B′. Let x ∈ A′ and U be

some neighbourhood containing x. We know that U intersects A at some point other
than A. Thus it must also intersect B at some point other than x. Then U ∩ (B−{x}) is
non-empty so x ∈ B′.
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(b) From the previous question, it is clear that A∪B⊂ A∪B. So we simply need show the
reverse inclusion.
Note that A∪B ⊂ A∪B since A ⊂ A and B ⊂ B. Therefore by the previous question
A∪B ⊂ A∪B. Note that A∪B is closed since the union of two closed sets is closed.
Hence A∪B⊂ A∪B.

(c) Clearly Aα ⊂
⋃

Aα for each α . Therefore by part a, Aα ⊂
⋃

Aα . Then
⋃

Aα ⊂
⋃

Aα .
In order to see that equality does not hold, we take An = (0,1− 1

n . Then An = [0,1− 1
n ]

so
⋃

An = [0,1). On the other hand
⋃

An = (0,1) = [0,1].
7. It’s possible that as we change our U , the neighbourhood intersects different Aα (see example

above), preventing x from being in the closure of any given Aα .
8. (a) We simply use Q6a to infer that A∩B⊂ A and A∩B⊂ B to conclude that A∩B⊂ A∩B.

However equality does not hold (consider A = (0,1) and B = (1,2) in the standard
topology on R).

(b) Same as above to conclude that
⋂

Aα ⊂
⋂

Aα but not necessarily equal.
9. Suppose x ∈ A and y ∈ B. Then U ×V be an open set containing x× y. Then U is a

neighbourhood of x and V is a neighbourhood of y so their intersection with A and B
respectively is non-empty. Thus the intersection of U×Y with A×B is non-empty. Hence
x× y ∈ A×B.
Suppose x× y ∈ A×B. If x ∈ A we are done. The suppose x /∈ A. Let U be any open set
containing x. Then U×Y is a neighbourhood of x× y hence intersections A×B. This means
that U intersects A and any point in this intersection is a point different from x implying that
x ∈ A′ ⊂ A. Arguing similarly for y, we conclude that x× y ∈ A×B.

10. Let X be a topological space with the order topology. Let a,b ∈ X such that a < b (in
particular then a,b are distinct). Now consider the interval (a,b). If this interval is empty, we
can take U1 = (−∞,b) and U2 = (a,∞) as disjoint neighbourhoods of a and b (the intersection
of U1 and U2 is exactly (a,b)). If the interval is not empty, we take x ∈ (a,b) and consider
U1 = (−∞,x) and U2 = (x,∞) as neighbourhoods instead where disjointness is clear.

11. Let X and Y be two Hausdorff spaces. Let x1× y1 and x2× y2 be two distinct points in X×Y
(equality of one component implies inequality of the other). Suppose x1,x2 are distinct and
that y1,y2 are distinct. Let U1,U2 be disjoint neighbourhoods for x1 and x2 respectively and
similarly let V1,V2 be disjoint neighbourhoods of y1 and y2. Then we claim that U1×V1 is
disjoint from U2×V2. Indeed, suppose this were not the case the point x′× y′ resided in their
intersection. Then this would imply that x′ is in the intersection of U1 and U2 and that y′ is in
the intersection of V1 and V2 leading to a contradiction.
Suppose instead that x1 = x2 but y1,y2 are still distinct. In this case, we let U be any
neighbourhood containing x1 and take V1,V2 to be disjoint neighbourhoods of y1 and y2
respectively. As before, we conclude that U×V1 and U×V2 are disjoint. The argument is
essentially identical if y1 = y2 while x1 and x2 are different.

12. Let x1,x2 be distinct points in some subspace A of X . We take disjoint open sets of X
containing the respective points and intersect them with A to find disjoint open sets in A.

13. Suppose X is a Hausdorff space. We show that that the complement of ∆ is open. First we
note that the complement of ∆ is {(x,y) ∈ X×X : x 6= y}. By Hausdorff, we have that there
exist disjoint open sets U1 and U2 that contain x and y respectively. Then U1×U2 is open
and does not intersect with ∆. This allows us to write the complement as a union of open
sets, implying that ∆ is closed.
Now suppose X is not a Hausdorff space. We show that ∆ is not closed as it does not contain
all of its limit points. Since X is not Hausdorff, there are elements x,y in X that are distinct
but who neighbourhoods always intersect. Now let W be a neighbourhood of x× y ∈ X×X .
We recall that the basis for the product topology is of the form U ×V where U and V are



1.4 Chapter 2 17

open in X and that any open set is some union of the basis elements. Hence in particular this
means we can find U and V open in X such that x× y ∈U×V . Since X is not Hausdorff, we
know that U ∩V is non-empty, so let z be an element in the intersection. Then z× z ∈U×V ,
so in particular W ∩∆ is non-empty. This implies that (x,y) is a limit point of ∆ not contained
in ∆ concluding the proof.

19. (a) Let x ∈ Int A. By definition of Int A, there exists an open U such that x ∈U ⊂ A.
Clearly, U cannot intersect X−A. Hence we find a neighbourhood of x that does not
intersect X−A and so x is not a limit point of X−A and hence not in Bd A.
We can write A = Int A∪ Bd A as A = Int A∪ (A∩X−A) = ( Int A∪A)∩ ( Int A∪
X−A). The first term is clearly just A and I claim that the second term, Int A∪X−A,
is just X . Indeed if this true, we see easily the equation is true as A∩X = A. To
verify the claim, we simply need to confirm that x ∈ A− Int A are accounted for
(all other elements are clearly in the union). If x ∈ A− Int A, then there does not
exist a neighbourhood of x that is contained in A. In particular, this means that every
neighbourhood of x must intersect X−A and so x ∈ X−A.

(b) Suppose Bd A = φ . Let x be a limit point of A. By assumption, x /∈ (X−A) and hence
not in X −A. Then x must be in A implying that that A contains all of its limit points
and is therefore closed. We can apply an identical argument to X−A to conclude that
X−A is closed and so A is open. If we instead assume that A is open and closed then
A = A and (X−A) = X−A their intersection is empty by definition. Hence Bd A = φ .

(c) First we note that U is open if and only if U = Int U . Suppose Bd U =U−U and so
U = Bd U ∪U From (a), we know that U = Int U t Bd U . Using these two equalities
and elementary set theory, we find that Int U =U and hence U is open. On the other
hand if U is open, we use that Int U =U and the equality from (a) to obtain the desired
result.

1.4.3 Continuous Functions
1. Let f : R→ R be a function that satisfies the ε−δ definition of of continuity. Let x ∈ R be

arbitrary and let V be some neighbourhood of f (x). As V is open in R, it is the union of
some open intervals and at least one of these intervals must contain f (x). Let J be one such
interval. We choose ε = min{supJ− f (x), f (x)− infJ}. Then by assumption, there exists a
δ such that f ((x−δ ,x+δ ))⊂ J ⊂V . Hence taking U = (x−δ ,x+δ ) we are done.

2. Consider f : (0,1)→ R where f (x) = 69 for all x. Then f ((0,1)) = {69} which does not
have 69 as a limit point.

3. (a) Suppose i is continuous. Let U ′ be open in X . Then i−1(U) = U is open in X ′ by
definition of continuity. This implies that T ′ is finer than T .
On the other hand suppose T ′ is finer than T . Let U be open in T ′. Then i−1(U) =U
which must also be open in T (as this topology is coarser). Therefore i is continuous.

(b) i is a homeomorphism implies that T ′ ⊃ T and i−1 continuous implies that T ⊃ T ′
hence T = T ′. If T = T ′, then i(U) =U is open so i−1 is continuous.

4. Clearly f is bijective. Let f (X) = X ×{y0}. Let U ×V ∩ (X ×{y0} = U × (V ∩{y0}) be
open in X ×{y0}. Then f−1(U ×{y0}) = U which is open implying that f is continuous.
Additionally f (U) =U×{y0} is open in f (X), so f−1 is continuous.

5. We have f : (a,b)→ (0,1) given by f (x) = x−a
b−a and g : [a,b]→ [0,1],g(x) = x−a

b−a .
6. We define f : R→ R,

f (x) =

{
x if x ∈Q
0 otherwise

which is only continuous at 0.
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7. (a)
(b) Suppose f : Rl → Rl is continuous. Let x ∈ Rl be arbitrary and let V be some neigh-

bourhood of f (x). We know there exists a neighbourhood U of x such that f (U)⊂V .
Let [y,z) ⊂U be a basis element containing x. Then [x,z) ⊂ [y,z) ⊂U implying that
f ([x,z))⊂V . Thus f must be continuous from the right.

Suppose f is continuous from the right. This means for that all x ∈ Rl and all ε > 0 there
exists a δ > 0 such that 0 < y− x < δ implies that | f (x)− f (y)|< ε .

8.
9. (a) We simply use the pasting lemma inductively.

(b) We define f : [0,1]→ R, given by f (x) = 1
x if x is not 0 and f (x) = 0 if x is 0. Let

A0 = {0} and An = [1
n ,1]. Then

⋃
∞
i=0 Ai = [0,1] and f |Ai for any i is continuous but

clearly f itself is not continuous.
(c) Let x ∈ X and let Ux be a neighbourhood that only intersects finitely many Aα , say

Aα1 , . . . ,Aαn . Then

Ux =
n⋃

i=1

(Ux∩Aαi)

Since f |Aαi is continuous, f |Ux∩Aαi
is continuous. Note that Ux∩Aαi is closed in Ux for

each αi hence by part a we know that f |Ux is continuous. Then as X =
⋃

Ux we are
done by Theorem 18.2.

10.
11. Suppose F : X×Y → Z is continuous. Let hy0 : X → Y be the map given by hy0(x) = x× y0.

Let ιy0 : X → X ×Y given by ιy0(x) = x× y0 is continuous as shown previously. Then
hy0 = F ◦ ιy0 hence is continuous.

12.
13. Let g : A→ Y,h : A→ Y be continuous maps such that g(x) = h(x) = f (x) for all x ∈ A. We

will show that g(x) = h(x) for all x ∈ A−A as well.
Suppose this is not the case. Let x ∈ A−A be such that g(x) 6= h(x). Note that this in
particular means that x ∈ A′. As Y is Hausdorff, we can find disjoint sets U and V containing
g(x) and h(x) respectively. Then g−1(U)∩h−1(V ) is a neighbourhood of x hence contains a
point from A as x is a limit point. Let us denote this point as y. However, since g and h agree
on A we must have that g(y) = h(y) which contradict disjointness of U and V .

1.4.4 Product Topology
1. Let (xα)α∈J ∈ ∏Xα . Then for each α there exists a Bα ∈ Bα such that xα ∈ Bα . Thus

(xα)α∈J ∈∏Bα . Let (xα)α∈J ∈∏Bα ∩∏B′α = ∏(Bα ∩B′α). For each Bα ∩B′α we can find
a Cα contained in the intersection that contains xα . Then (xα)α∈J ∈∏Cα ⊂∏(Bα ∩B′α).

2.
3.
4.
5.
6. Let x1,x2, . . . be a sequence in ∏Xα that converges to x. We will first show that for each α ,

we have πα(x1),πα(x2), . . . converging to πα(x) in both the product and box topology.
Let Uα be a neighbourhood of πα(x). Then π−1

α (Uα) is a neighbourhood of x (in both the
product and box topology). Then there exists some N ∈ N such that for all n≥ N, we have
xn ∈ π−1

α (Uα). Thus for all n≥ N, πα(xn) ∈Uα .
Now let x1,x2, . . . be a sequence in ∏Xα such that for each α we have πα(x1),πα(x2), . . .
converging to some xα . We will show that x1,x2, . . . converges to x = (xα) in the product
topology.
Let ∏Uα be a basis element of the product topology containing x. Then there are α1, . . . ,αk
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such that Uα = Xα if α /∈ {α1, . . . ,αk}. Each Uαi is a neighbourhood of xαi , hence there
exists some Ni such that for all n≥ Ni, we have παi(xn) ∈Uαi . Let N = max{Ni}. Then for
all n≥ N, we have πα(xn) ∈Uα for all α . Therefore for all such n, we get xn ∈∏Uα .
This unfortunately does not hold in the box topology. Consider the sequence

x1 = (1,1,1,1, . . .)

x2 = (0,2,2,2, . . .)

x3 = (0,0,3,3, . . .)
...

Then each πi(xn) converges to 0, however the open neighbourhood ∏i∈N(−1,1) of 0 contains
no elements of the sequence.

7. In the product topology, we claim R∞ = Rω . Let (xn)n∈N ∈ Rω be arbitrary. Let ∏Un be
some basis element of the product topology containing (xn)n∈N. Recall that there must
some N ∈ N such that Un = R for all n≥ N. Additionally xn ∈Un for all n ∈ N. Therefore
(x1, . . . ,xN ,0,0, . . .) ∈ R∞∩∏Un.
In the box topology, we claim that R∞ = R∞. We will show that Rω −R∞ is open.
Note that Rω −R∞ = {(xn ∈ Rω) : ∀M ∈ N∃N ∈ NxN 6= 0}. Let (xn)n∈N ∈ Rω −R∞. Then
(xn)n∈N ∈∏Ui where Ui = R if xi = 0 and Ui = R−{0} if xi 6= 0.

8. It is clear that h is bijective with

h−1((x1,x2, . . .)) =

(
1
a1

(x1−b1),
1
a2

(x2−b2), . . .

)
In order to see that h is continuous, we only need show that each hi. Let fi : R→ R, fi(x) =
aix+bi. Then hi = fi ◦πi. As the composition of two functions is continuous, hi is continuous
allowing us to conclude that h is continuous in the product topology. We can similarly
conclude that h−1 is continuous proving that h is a homeomorphism.

9.
10. (a) For each α , there is a topology Tα that makes fα continuous (consider the topology

generated by taking as subbasis the preimages of open sets). We have shown previously
that given any family of topologies {Tα} there is a unique smallest/coarsest topology
that contains all Tα .

(b) It is clear that S is a subbasis since it contains A itself. It is also clear that in the
topology generated by S, each fα is continuous. We also shown previously that the
topology generated by a subbasis is the coarsest topology containing the subbasis.
Thus the topology generated by S is the coarsest topology relative to which each fα

is continuous. Thus the topology generated by S must be T by the uniqueness shown
above.

(c) Suppose g : Y → A is continuous. Then fα ◦g is continuous for each α as the composi-
tion of continuous functions is continuous.
Now suppose that fα ◦g is continuous for each α . We only need show that the preimages
of the subbasis of A under g is open.
Let Uβ be open Xβ for some β . Then f

−1(Uβ )

β
∈ S . So g−1( f−1(Uβ )) = ( fβ ◦g)−1(Uβ ).

By assumption fβ ◦g is continuous so ( fβ ◦g)−1(Uβ ) is open as desired.
(d) We only need show that f maps basis elements to open sets since

f
(⋃

Aα

)
=
⋃

f (Aα)
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Since we have a subbasis, we know that the basis elements are going to be finite
intersections of these elements. Thus our basis elements are of the form

n⋂
i=1

f−1
βi

(Uβi)

for some {β1, . . . ,βn} ⊂ J where Uβi is open in Xβi .
As an aside, note in principle, our basis could also consist of some more sets. For
example if U1, . . . ,Un are open sets in some particular Xβ , then f−1

β
(U1)∩·· ·∩ f−1

β
(Un)

is also in our basis. However f−1
β

(U1)∩ ·· · ∩ f−1
β

(Un) = f−1
β

(U1 ∩ ·· · ∩Un), where
U1∩·· ·∩Un is open by properties of open sets. Thus without loss of generality, we can
assume that we only have (at most) one open set from each space.
Given a basis element, we will show there exists an open set U in ∏Xα that contains
the image of this basis element.
Let

⋂n
i=1 f−1

βi
(Uβi) be a basis element and let a be an arbitrary element of this basic set.

Then f (a) ∈
⋂n

i=1 π
−1
βi

(Uβi). This holds for all a in the given basic set hence we are
done.

Suppose (xk)k∈N converges to y ∈Rω with the box topology. Consider the neighbourhoods y of
the form

Uε = ∏(yn− ε,yn + ε)

We know there exists some N ∈ N such that for all k ≥ N, we have xk ∈Uε .

1.4.5 Metric Topology

1.
2. We define the following metric

d((x1,y1),(x2,y2)) =

{
1 if x1 6= x2

|y1− y2| if x1 = x2

We recall from an earlier exercise that the dictionary order topology on R is the same as the
product topology on Rd×R where Rd refers to R with the discrete topology and R refers to
R with the standard topology. Thus we simply need show that the topology generated by the
above metric is the same as the product topology on Rd×R.
A basis element in Rd×R is of the form {x}× (a,b). Then given any (x,y) ∈ {x}× (a,b),
we take δ = min{1,y−a,b− y} and note that Bd((x,y),δ )⊂ {x}× (a,b).
Conversely, let Bd((x,y),δ ) be given. If δ > 1 then our ball is the whole space, so we are
done. So suppose δ ≤ 1. Then Bd((x,y),δ ) = {x}× (y−δ ,y+δ ) which is a basis element
itself in Rd×R. Hence the spaces are equal.

1.4.6 The Fundamental Group

1. (a) A star shape where we take a0 to be the center
(b) Since every line connecting a0 to a point lies in A we can construct the straight-line

homotopy to contract all paths to the constant loop at a0
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2. Suppose γ = α ∗β . Then γ̂([ f ]) = [γ]∗ [ f ]∗ [γ] Then

[γ]∗ [ f ]∗ [γ] = [γ ∗ f ∗ γ]

= [β ∗α ∗ f ∗α ∗β ]

= [β ]∗ [α ∗ f ∗α]∗ [β ]

= β̂ ([α ∗ f ∗α])

= β̂ (α̂([ f ]))

3. Suppose π1(X ,x0) is abelian. Let α,β be any two paths from x0 to x1. Then we see that
[β ∗α] is in π1(X ,x0). Let [ f ] ∈ π1(X ,x0) be arbitrary. Then we know that

[β ∗α]∗ [ f ] = [ f ]∗ [β ∗α]

which implies that
[α]∗ [ f ]∗ [α] = [β ]∗ [ f ]∗ [β ]

as desired.
Now suppose that α̂ = β̂ for all paths α,β from x0 to x1. This implies that

[β ∗α]∗ [ f ] = [ f ]∗ [β ∗α]

Let g be any loop based on x0 and take β = [g∗α]. This gives us that [g]∗ [ f ] = [ f ]∗ [g] as
desired.


