1 Exercises 1.1

1.1.1 Transitive: Let z,y, z € R such that z < y and y < z. This means by
definition that y —z € Rand z—y € R. Hence z—z = (z—y)+ (y—x) € R
by definition of cone.

Reflexive: We note that x — 2z = 0 and we know 0 € R as RN —R = {0}.
Hence z < z.

Antisymmetric: Let x,y € R such that x <y and y < x. By definition, this
means that y —x € Rand v —y € R. Let 2 = y —x. Then z € R and
z € —$R, so by definition of generation cone, this means that z = 0. Hence

T =y.

If we wish to make the order total, then we require that for every pair
x,y € R we have that either x —y € R or y — x € R. Hence if we had that
R U—NR = X (along with the conditions of generating cone) we could have
a total order.

1.1.2 Transitive: Let z = (z1,22),y = (y1,%2), 2 = (21, 22) € Z X Z such
that © <y and y < z. Then a(y; — 1) < y2 — x2 and a(z; — y1) < 22 — Yo.
Hence

afz1 —x1) = alzr —y1) +alyr —x1) < (22 —y2) + (Y2 — 22) = 22 — 22

Reflexive: Obvious because a(x; — 1) =0 <0 =29 — 2, s0 x < .
Antisymmetric: Let x = (z1,22),y = (y1,y2) € Z X Z such that x < y and
y < x. Then a(y; —x1) < yo — 22 and a(x; —y1) < 92 —yo. Multiplying the
second inequality by —1 we get that a(y; — x1) > y2 — 2. The combination
of these two inequality tells us that a(y; — 1) = y2 — x2. If y1 — x1 were
non-zero then « could be written as the quotient of two integers which
contradicts irrationality. Hence y; = 21 which implies that yo — 22 = 0 so
yo = x3. Overall then we get that z = y.

Total: Let z = (x1,22) and y = (y1,y2) be arbitrary elements of Z x Z.
Then by total order on R we know that either a(y; — 1) < y2 — a2 or
a(yr —x1) > yo — x9. If it’s the first case, we can conclude that = < y. If
it’s the second case we multiply by —1 to conclude that y < x.

1.1.3 Let X and Y be well ordered sets. Let ¢ : Xy — Yy and ¢ : Xy, —
Y, be two order isomorphisms from segments of X to segments of Y. We
define ¢ < ¢ if Xy C Xy. In particular, this means that if ¢ < ¢ then



Y |x o= ¢ which implies that Y, C Y. Let T be some chain of such order
isomorphisms. In other words, T is a totally ordered subset of the order
isomorphisms. We define

r:Jxs— Y Tlx,=¢

oeT oeT

We can think of I' as the combination of all the functions. Since for ¢ < ),
we have that Yy C Y, there is no ambiguity in definition. Suppose x € X
and x € Xy, for distinct ¢,% in T'. Since T' is well ordered, we can assume
without loss of generality that ¢ < 1. Therefore, X4 C Xy and ¥ |x =@
hence both ¢ and 1 must map x to the same value.

It is clear that

I Y= X T y=07!
oeT oeT

where we know the final quantity exists by virtue of ¢ being an isomorphism.
Hence I' is a bijection.

Finally, we note that I' is order preserving. Let z € X4 and y € X, with
x <y for some ¢, € T. Suppose that ¢ < 1. Then Xy C Xy therefore
z,y € Xy. Since I' [x,= ¥, it follows that I'(z) = ¥(z) < ¥(y) = ['(y).
This shows that every chain of order isomorphisms is bounded hence there
is a maximal element ¢ by Zorn’s lemma.

Suppose the maximal element ¢ : X, — Y, is such that X, # X and
Yy # Y. Then X\X, and Y\Y, are non-empty subsets of X and Y and
hence by the well-ordering they both contain a smallest element xy and yo.
Note that zp and yo must be in Upper(X) and Upper(Y') respectively. This
is because X, and Yy are segments hence are of the form lower(z’) and
lower(y') for some 2’ € X and ¢y € Y hence have no lower bound (or if
they do, they are contained in the respective sets). Hence by defining gz~5
which agrees with ¢ everywhere but additionally has <Z~>(a:0) = 19, We get a
contradiction since ¢ < ¢.

1.1.4 Let {a;}jes be a collection of ordinal numbers indexed by some
set J. Let {X;}jes such that the ordinal number for each X; is a;. We
choose some particular X;. If X; is order isomorphic to segments of all other
sets then we are done as «; is the smallest. If X; is not the smallest then
the smaller X; are isomorphic to (proper) segments of X;. However these
segments are well ordered (their intersection being the smallest element).
Thus there is a smallest X; and we are done.



2 Exercises 1.2

1.2.7 Let us equip R with the topology T generated by a basis consisting of
half-open intervals of the form [y, z) for y, z € R with y < z. In order to show
that all the basis elements are closed we simply show their complement is
open. Let [y, z) be some basis element. It’s complement is (—oo,y) U [z, 00).
We can write (—oo,y) as the union of all [z,y) where x < y. Similarly
we write [z,00) as the union of all [z,z) where z > z. Since we can write
the complement as some union of the basis elements it follows that the
complement is open and hence [y, z) is closed.

I claim that the rationals are dense in (X, 7). Let x € X arbitrary and
U some arbitrary neighbourhood of x. We wish to show that U contains
some rationals. It is sufficient to show this holds if U is a basis element.
Suppose U = [y, z) once again for some y,z € R where y < z. If y € Q we
are done. If y ¢ @, then we consider the interval (y,z) which is a subset
of U. We know that all open intervals intersect with the rationals so in
particular this one does. Since the rational numbers are countable we are
done.

This topology satisfies the first axiom of countability. Let x € R be
arbitrary and consider A, (z) = [z,2 4+ 1) for n € N. Clearly every neigh-
bourhood of = will contain some A, (x).

Let # be some basis for 7 and let x € R. Then we claim that there
must exist B € £ such that x = inf(B). Suppose this were not the case.
Consider U = [z, x + §) for some § > 0 which is open in 7. Then U can be
written as the union of some B € 4 such that for each B, we have B C U.
Since the infimum of U is x which is contained in U, at least one of the B
must have this be the case as well. Thus we can construct a surjection from
2 (at least the ones that are bounded below) to R where we map each basic
set to its infimum. However this means that % cannot be countable.

1.2.8 I claim that Q x Q is dense in (R?,7?). As before, it suffices to
show that Q x Q has non-empty intersections with the basis elements. Let
[y1,21) X [y2,22) be some arbitrary basis element. We know from before
that there exists a rational number p in [y1,21) and a rational number ¢
in [y2,22). Then clearly (p,q) in the chosen basis element. As Q x Q is
countable, (R2,7?) is separable by definition.

In order to show that S = {(z,y) € R? : x + y = 0} is discrete in the
relative topology, it suffices to show that the singleton set {(z, —z)} is open
in the relative topology for all z. Since the arbitrary union of open sets is



open, it would follow that every possible subset is open. Then to see that
{(z, —z)} is open relative to S consider U = [z, z+J) X [-z, —x +0) for any
0 > 0 and its intersection with S. Intersections occur exactly when there
exist s,t € R such that 0 < s,¢t < § with

(x+s)+(—x+1t)=0

It follows quite immediately that the above equation is satisfied only when
s = —t. Since s and t are both non-negative this can only occur when they
are both 0 and hence UN S = {(z, —x)} as desired.

In order to see that S is closed we simply show that the complement is
closed. Then let (x,y) € R?\S. Suppose x +y = & > 0. Then consider
B=l[z,x40) x [~z +0,—x +2§). Tt is clear that (z,y) = (x,—x + ) € B.
Additionally we see that B does not intersect S since

(x+s)+(—x+t)=0&s+t=0

where 0 < s < 6§ and 0 < § <t < 26. Therefore B C R?\S.

On the other hand suppose x +y = — < 0 (we still assume that 6 > 0).
Then we consider B = [z, z+ %) X[—x—0,—x— g) Once again we see easily
that (z,y) = (z, —z — 0) € B. Additionally, B does not intersect S since

(x+s)+(—x—t)=0<s—-t=0
where 0 < s < % and g <t < 4. Hence t is always greater than s. Since
the intersection of B with S is empty, we get that B C R?\S. Since for
each point in the complement, we can find a basis that contains the point
and is a subset of the complement, it follows that the complement is open.
Therefore S is closed.

1.2.9 Let U(z;0) = {y € X : d(z,y) < 6}. Then consider A,(z) =
U (x; %) Thus T satisfies the first axiom of countability.

We know that the second axiom of countability implies separability (we
simply choose any element from each of the basis elements). In order to
see the reverse, we assume that (X, 7)) is separable. Let Y be a countable,
dense subset of X. Now we consider

B = U{An(y)nEN}
yey

where A, (y) = {z € X : d(z,y) < 2}. We claim that 2 is a basis for T.
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Let « € U for some open U. By definition, there exists some € > 0 such
that U(z;€) C U. By density of Y, we know there exists a y € Y N U(x; §).
Let N € N be such that 3 < £. Then z € Ay(y) C U. Therefore we can
write U as a union of such elements from %. We note that £ is countable
because there is a surjection between & and N x N.

Since the Sorgenfrey line is separable but does not satisfy the second
axiom of countability, it cannot be metrizable.

1.2.10 Let (X, 7T) be a topological space that satisfies the second axiom
of countability. Let o be an open covering of X.



3 Exercises 1.3

1.3.4 Suppose Y C X is open. Let .% be a filter that converges to some
y €Y. Then Y € O(y) and by definition O(y) C .#. Therefore Y € .# for
all such ..

In order to see the converse, let Y be such that for every filter .# that
converges to some point y in Y, we have that Y € .%. For each y € Y, we
define

Fy={ACX:3U, e TyelU, C A}

It is clear that O(y) C %, hence each .%, converges to y. Thus by assump-
tion, each %, contains Y. In particular, this means that for each y € Y
there exists U, open such that U, C Y. Therefore we can write

Y:UUy

yey

which implies that Y is open.

Let ¢ be a filter with .# as a subfilter. Let x be a convergence point of
Z. Then O(z) C .Z. Since F C 9, it follows that O(x) C 4 and hence G
converges to x.

1.3.5 Let % be an ultrafilter. Let Y be some arbitrary subset of X and
suppose % contains neither Y nor X\Y. It is clear that % does not contain
any subset of Y (if it did by the second condition ¥ would be in % and we
would be done). Similarly % cannot contain subsets of X\Y. Let %' be U
along with Y and all the necessary subsets needed to make %’ a filter (in
particular the intersections of all members of % with Y as well as all sets
that contain Y) We know that the intersection of any A € % with Y cannot
be empty as that would imply that A is a subset of X\Y. Thus %" is a filter
that contains % as a proper filter leading to a contradiction. Additionally,
we note that both ¥ and X\Y cannot be in % as their intersection is the
empty set which is definitionally not an element of any filter.

Let .Z be a filter {.#;};e be the collection of filters such that .# C .%;
for all j. Their union is clearly a filter so by Zorn’s lemma there is a maximal
filter % and by maximality it cannot be properly contained in any other
filter.

1.3.6 Let (z))xea be a net in X. Let .# be defined as follows

F ={AC X : (z)) eventually in A}



Clearly ¢ ¢ .#. Let A, B be elements of .%. Then there exists Aj, A2 € A
such that for all A > A1 we have x) € A and for A\ > Ay we have x) € B.
Since A is upward filtering, there exists A’ that is greater than both \; and
MX2. Then for A > X we have ) € A and z, € B thus z, € AN B. This
means that AN B € .#. The second condition clearly holds.

Suppose (x) converges to some x € X. This means that (z)) is eventu-
ally in every A € O(x). Thus O(z) C % implying that .# also converges to
. On the other hand suppose the corresponding filter for the net converges
to some x € X and hence contains O(z). By definition, this means that the
net is eventually in every A € O(x). Hence the net converges to x.

1.3.7 Let (xz,A) € A. It is clear that (z,A) < (z,A) since A C A.
Additionally let (x, A), (y, B) and (z,C) be such that (z, A) < (y, B) and
(y,B) < (2,C). This means that B C A and C C B. This directly implies
that C' C A and hence (z, A) < (z,C). This confirms that the < defined is
indeed a preorder. In order to see that its upward filtering let (z, A) and
(y, B) be arbitrary elements of A. Since A, B are elements of a filter, we know
that their intersection is non-empty. Let z € ANB. Then (2, A) < (2, ANB)
and (y, B) < (2, AN B) and so we are done.

Suppose .# converges to a point z € X. Then O(x) C .%. Let (z4,A) €
A where A € O(x). Let (xp, B) be any majorant of (x4, A). Then B C A
therefore xp € A implying that for all elements greater than (x4, A), the
net is always in A. Hence the net converges to x.

In order to see the converse, suppose the net converges to x € X. Let
A be some arbitrary set in O(z). Then there is some z) that is in A. In
particular this means that there is some (zp, B) € A such that xtp € B C A.
Since B € .# this means that A € .#. Hence O(z) C .# allowing us to
conclude that the filter converges to x.

Lemma 3.1. Additionally, let % an ultrafilter and A € % . Then for all
B C A we have that either B € % or A\B € % .

Proof. By previous results, we know that either B € % or X\B € 7. If
B € %, we are done. If X\B € %, we simply not that A\B = AN (X\B)
and we are done. O



4 Exercises 1.4

1.4.6 Let X, Y, Z be topological spaces and f : X XY — Z continuous. For
every x € X, we define f, : Y — Z as f,(y) = f(x,y). Then we claim that
fz is continuous for all . First for z € X, we define i, : Y — X x Y given
by ix(y) = (z,y) which is clearly continuous. Then we simply note that
fz = f oig. Since the composition of continuous functions is continuous, it
follows that f, is continuous.

1.4.8 We first wish to show that x is a limit of point of A and y is a
limit point of B if and only if (x,y) is a limit point of A x B.

First we assume that  and y are limit points of A and B respectively.
Then let W be any neighbourhood of (x,y) in X x Y. There must exist
U,V open in X and Y respectively such that (z,y) € U x V C W. By
assumption, there exists 2’ # x in UN A and 3’ # y in V N B. This means
that (2/,y) € UxVNAx B. Since W was an arbitrary neighbourhood, this
holds for all neighbourhoods allowing us to conclude that (z,y) is a limit
point of A x B.

Now let us assume that (z,y) is a limit point of A x B. Let U be some
open neighbourhood of  and V' some open neighbourhood of y. Then U x V/
intersects A X B in a point distinct from (z,y).

1.4.16 Let X be a topological space and F and F' closed subsets such
that FUF = X. Then we show that X and E N F being connected implies
that both F and F are connected. As usual, it is easier to work with
disconnectedness so we will instead prove that F or F' being disconnected
implies that at least one of FU F and F N F' is disconnected.

Without loss of generality, suppose FE is disconnected. Then by F 1.4.13
E contains non-trivial clopen sets. Let A be such a set. If AN F = ¢, then
A is clopen in E'U F since F' C X\A (so in particular we can write X as
the union of A and X\A).

1.4.19 Let f: R™ — Y be continuous. We define F' : [0,1] x R — Y as
F(t,z) = f((1 —t)x). We see that F' is continuous because ' = f o h where
h:[0,1] x R" — R™ with h(s,z) = (1 — s)x. Since f and g are continuous,
it follows that F' is continuous.

Similarly for g : X — R" we define G(t,z) = (1 — t)g(x).



1.4.20 Let X,Y,Z be topological spaces. Then it is clear that X is
homotopic to itself since we can take f and g to be the identity maps them-
selves. It is clear from the definition that if X is homotopic to Y then
Y is homotopic to X. Thus all that remains to show is that homotopy is
transitive. First we show that if g ~ idx and f continuous then fog ~ f.

Let F': [0,1) x X — Y be the homotopy between g and idx. Then let G :
[0,1] x X — Y with G(t,z) = f(G(t,x)). It is clear that G(0,z) = f(g(z))
and G(1,z) = f(x). Additionally G is continuous as it is the composition
of two continuous functions.

Now suppose X ~Y and Y ~ Z. Let fi: X - Y and g1 : Y — X be
continuous maps from such that f; o g1 ~ idy and g1 o fi ~ idx. Let fo
and go be similar maps between Y and Z. Then f5 o f; is a continuous map
from X to Z and g1 o g2 is a continuous map from Z to X. Additionally

(fao fi)o(gi0g2) ~ fao(fiogi)oga~ faoidy oga ~ faogs ~idz

It is clear then that (g1 o0 g2) o (f2 o f1) ~ idx therefore X ~ Z. Hence
we conclude that homotopy is an equivalence relation.

It is clear that homeomorphic spaces are homotopic as we can simply
take f to be a homeomorphism with f~! as its inverse.

1.4.21 Suppose X is homotopic to a point. Let z € X be a point with
f:X = {2} and g: {z} — X with g(z) = 2/ such that fog and go f are
homotopic to the respective identities. Then note that g o f is a constant
map that is homotopic to the identity.

Now suppose idx is homotopic to a constant function. Let x € X be
the constant that they are mapped to. Then we define f : X — {2z} and
g :{z} - X with g(z) = z. Clearly f o g is the constant function that is
homotopic to idy. On the other hand, g o f =id(;). This means that X is
homotopic to a point and is thus contractible.

Let X C R™ be convex. Choose ¢ € X. We define F': [0,1] x X — X
defined by F(t,z) = (1 —t)z + tc. Clearly F is continuous and homotopy
between idx and a constant function and hence X is contractible.

1.4.23 Let f,g : [0,1] — S? be loops. For convenience, we use spher-
ical/polar coordinates, i.e. f(t) = (1,6, ¢¢). Then we define H : [0,1] x
[0,1] — 5% where H(s,t) = (1, (1 =)0+ s0y1), (1 — )b 1)+ ¢g(r)). This
means that any two loops are homotopic so 7(5%) = {0}.



1.4.24 Let X and Y be homotopic spaces. This means there exists
f: X —=>Yand g:Y — X continuous with f og and g o f homotopic to
the identity. We define Hy : 7(X) — w(Y') with Hy([l]) = [f(I)]. Similarly
we have Hy : m(Y) = n(X) with Hy([k]) = [g(k)]. I claim that Hy and H,
are inverses of one another.

Hy(Hy([K])) = Hy([9(k)]) = [f(9(K))]

Since f o g is homotopic to the identity it follows that [f(g(k))] = [k]. The
other equation is also easily verified confirming that the above are inverses.
All that remains to show is that Hy and H, preserve the group operation.
In other words, what we wish to show is that

[f(ll2)] = [f(L)][f(2)]
We note that

li(t) forO Stﬁ%
l1ly =

lo(t)  for 172§t§1
Then

f(la(t)) for0<t<
fla(t)) for 1@

This is of course exactly f(l1)f(l2) and hence the desired equality holds.

1
2

f(lilg) = {
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