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1. Introduction 

Quaternions are an extension of the complex numbers first introduced by William 

Rowan Hamilton in the 19th century(Byrne). His goal was to find a number system 

which incorporates rotations in 3 dimensions, analogous to how the product of 

complex numbers results in rotations in 2 dimensions. Initially, he tried to work with 

two imaginary numbers i  and j , which, unfortunately, led to contradictions. Famously, 

while walking along the Royal Canal in Dublin with his wife, he realised that the solution 

was introducing a third imaginary number, k . Hamilton instantly carved this onto 

Brougham Bridge, so as not to forget it(Graves 434-435).  

As is the case with such things in mathematics, Hamilton’s ideas were initially ridiculed, 

with some like Oliver Heaviside going so far as to call them evil: “So far as the vector 

analysis I required was concerned, the quaternion was not only not required, but was 

a positive evil of no considerable magnitude”(Crowe 171). Quaternions have, 

nonetheless, become incredibly popular as robotics, virtual reality, augmented reality, 

etc.  rise in popularity as they all require 3D rotations. Furthermore, there is little doubt 

that the need for computing 3D rotations will only continue to increase, as these grow 

more popular. In the past few years, quaternions have become the standard way of 

performing these rotations. As was shown by Andy Matuschak, an ex-employee of 

Apple, even our phones use them on a regular basis in order to determine orientation 

and such.  

There are other ways of computing 3D rotations, each with their own advantages and 

disadvantages. Understanding the differences is important in order to implement the 

different methods effectively. Therefore, in this essay I would like to demonstrate how 

quaternions operate and provide some intuition as to how they can be used to compute 
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these rotations, while also discussing the nuances of using them in order to gain a 

better understanding of when to use them.  

2. Quaternions 

2.1 Definition 

As mentioned previously, quaternions are an extension of the complex numbers. A 

complex number is a number z  can be defined as: 

 2,  ,  and 1z a bi a b i= + ∈ = −   

Similarly, a quaternion is a number q  that can be defined as: 

 ,  ,  , , ,q a bi cj dk q a b c d= + + + ∈ ∈H   

Where H  represents the set of quaternions and , ,i j k  represent imaginary numbers 

which Hamilton(46) defined as 

 2 2 2 1i j k ijk= = = = −   

a  is often referred to as the real or scalar component of the quaternion, while 

bi cj dk+ +  is called the imaginary or vector component. This allows us to write 

quaternions in a different form: 

( ) 3, , ,q a q a q= ∈ ∈
 

   

A quaternion whose vector component is zero is called a scalar quaternion(or simply 

scalar) and a quaternion whose scalar component is zero is called a pure or vector 

quaternion. Despite vector notation being used for q , it should be noted that it is still 

a quaternion. The notation is simply a reminder of its imaginary nature. The reason for 

vector notation will be made apparent in the following section. 
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2.2 Vector space of quaternions 

As we will see, it is useful to conceptualise quaternions as vectors. Hence, we will start 

by showing this is a valid interpretation of quaternions by proving that they form a 

vector space over the real numbers.  

Adding two quaternions is a simple component wise addition.  

Let 0 1 2 3p p p i p j p k= + + +  and 0 1 2 3q q q i q j q k= + + +   

 ( ) ( ) ( ) ( )0 0 1 1 2 2 3 3p q p q p q i p q j p q k+ = + + + + + + +  

 ( ) ( ) ( ) ( )0 0 1 1 2 2 3 3q p q p i q p j q p k= + + + + + + +   

 q p= +   

The second step above is justified by the commutativity of addition of real numbers. 

The associativity of addition is also simple to see. 

For , ,p q r∈H   

 ( ) ( )( ) ( )( ) ( )( ) ( )( )0 0 0 1 1 1 2 2 2 3 3 3p q r p q r p q r i p q r j p q r k+ + = + + + + + + + + + + +   

 ( )( ) ( )( ) ( )( ) ( )( )0 0 0 1 1 1 2 2 2 3 3 3p q r p q r i p q r j p q r k= + + + + + + + + + + +   

 ( )p q r= + +   

Once again, we can use associativity of addition of real numbers to justify the second 

step. 

The additive identity, 0, in H  is 0 0 0 0i j k+ + +  ,  

( ) ( ) ( ) ( )0 1 2 30 0 0 0 0q q q i q j q k+ = + + + + + + +  
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 0 1 2 3q q i q j q k q= + + + =   

For every q∈H , there exists a corresponding q− ∈H , such that ( ) 0q q+ − = . 

Let ( ) ( ) ( ) ( )0 1 2 3q q q i q j q k− = − + − + − + − , then 

( ) ( )( ) ( )( ) ( )( ) ( )( )0 0 1 1 2 2 3 3q q q q q q i q q j q q k+ − = + − + + − + + − + + −  

0 0 0 0i j k= + + +   

We can hence conclude that quaternions form an abelian group under addition.  

To establish that quaternions form a vector space, we need to confirm the properties 

of scalar multiplication. The product of a quaternion and a real number is defined as:

0 1 2 3 , ,aq qa aq aq i aq j aq k a q= = + + + ∈ ∈H  

 For some ,a b∈  and q∈H : 

 ( ) ( )0 1 2 3a bq a bq bq i bq j bq k= + + +   

 0 1 2 3abq abq i abq j abq k= + + +  

 ( )0 1 2 3b aq aq i aq j aq k= + + +   

 ( )b aq=   

1 from the field of reals also acts as the identity element for quaternions. 

 0 1 2 31 1 1 1 1q q q i q j q k= + + +   

 0 1 2 3q q i q j q k= + + +  

 q=   
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Finally, we need to confirm the distributivity of scalar multiplication with respect to 

vector and scalar addition. For ,a b∈  and ,p q∈H : 

 ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 3 3a p q ap aq ap aq i ap aq j ap aq k+ = + + + + + + +   

 ( ) ( )0 1 2 3 0 1 2 3ap ap i ap j ap k aq aq i aq j aq k= + + + + + + +  

 ap aq= +   

 ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 3 3a b q aq bq aq bq i aq bq j aq bq k+ = + + + + + + +   

 ( ) ( )0 1 2 3 0 1 2 3aq aq i aq j aq k bq bq i bq j bq k= + + + + + + +  

 aq bq= +  

We have thus proven that quaternions form a vector space over the real numbers, 

which allows us to think of quaternions as vectors in 4
  with the basis vectors 

{1, , , }i j k . In fact, the imaginary components are often thought of as spanning the 

familiar x, y and z axes while the real numbers live in the ‘fourth’ dimension. We can 

now use the tools of linear algebra if and when necessary to understand how 

quaternionic operations affect the space.  

2.3  Quaternionic multiplication 

Quaternions have an additional operation, multiplication. The product of any two 

quaternions can be found using the definition of the imaginary numbers. For example, 

since 1i i× = −  and 1i jk× = − , then i jk= . Similarly, we can conclude that ij k= . 

Right multiplying both sides by j  results in .i kj− =  This means that multiplication with 

quaternions is non-commutative. Similar methods can be used to form a set of 

equations, dictating the product of any two imaginary numbers. 
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i jk i kj
j ki j ik
k ij k ji

= − =
= − =
= − =

  

The above identities can be used to find the product of any two quaternions. First let 

us find the product of two vector quaternions. 

If ( ) 1 2 30,r r r i r j r k= = + +
  and ( ) 1 2 30,s s s i s j s k= = + +

 , then 

( ) ( ) ( ) ( )1 1 2 2 3 3 2 3 3 2 3 1 1 3 1 2 2 1rs r s r s r s r s r s i r s r s j r s r s k= − − − + − + − + − , 

The real component is computationally equivalent to the negative dot product of the 

two vectors, while the imaginary component is equivalent to the cross product. We can 

therefore write the product more succinctly as: 

( ),rs r s r s= − ⋅ ×
      

This allows us to find the product of two general quaternions. 

( )0 0 0 0,pq p q p q p q q p p q= − ⋅ + + ×
       

( ) ( )0 0 1 1 2 2 3 3 0 1 1 0 2 3 3 2p q p q p q p q p q p q p q p q i= − − − + + + −

( ) ( )0 2 1 3 2 0 3 1 0 3 1 2 2 1 3 0p q p q p q p q j p q p q p q p q k+ − + + + + − +  

2.3 Conjugates 

Similar to complex numbers, all quaternions have conjugates. For a quaternion, 

0 1 2 3q q q i q j q k= + + + , its conjugate is ( )*
0 1 2 3q q q i q j q k= − + + . Multiplying a quaternion 

with its conjugate produces a positive real number: 

2* 2 2 2 2
0 1 2 3qq q q q q q= + + + =  
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q  is the modulus of q , commonly referred to as the norm of q . It can be thought of 

as the ‘length’ of q . A quaternion of norm 1 is called a unit quaternion.  

A unit quaternion, q , can also be represented as such: 

( ) [ ]3
1 2 3cos ,sin  cos sin sin sin ,  , 1, 0, 2q v v i v j v k v vθ θ θ θ θ θ θ π= = + + + ∈ = ∈

  

  

This refers to a quaternion that has been rotated θ  radians from the real number line 

on the 1 v−   plane(the plane spanned out by the real numbers and v ). These two lines 

are necessarily perpendicular because the real numbers are all perpendicular to the 

three imaginary numbers. v  is simply a linear combination of the imaginary numbers 

therefore it must also be perpendicular to the real number line. This can easily be 

confirmed by the fact that if represented as vectors in 4
  their dot product is 0. A 

diagram has been drawn below. 

An important property of conjugates is the following:  

 ( ) ( )*
0 0 0 0,pq p q p q p q q p p q= − ⋅ − − − ×

        

Figure 2:1 Quaternion q on the 1-v plane 
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 ( ) ( ) ( )( )0 0 0 0,q p q p q p p q q p= − ⋅ − + − + − ×−
        

* *q p=  

Conjugates are also very useful because they allow us to find the multiplicative inverse 

of a quaternion, 1q−  which is defined like so: 

 1 1qq− =   

We can rearrange the equation of norm above to get: 

*

2 1qq
q

=  

Hence, it becomes simple to see that  

 
*

1
2

qq
q

− =   

It also becomes clear that if q  is a unit quaternion, then its inverse is equivalent to its 

conjugate. 

Conjugation also helps us realise an important aspect of quaternionic multiplication. 

 ( )( )2 *pq pq pq=   

 * *pqq p=    

 ( )* *p qq p=   

 2 *q pp=   

 2 2q p=   
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 pq p q∴ =   

This means that the norm of the product of two quaternions is equal to the product of 

their norms.  

3. Rotations 

3.1 Intuition for Quaternionic Rotation 

In this section, we will explore the nature of quaternionic multiplication and see how 

rotations are a natural consequence of how quaternions transform 4
 . 

Since quaternions can be treated as vectors in 4
  we will start by studying how 

quaternionic multiplication transforms this space. The properties of quaternion 

multiplication ensure that the transformation(or mapping) is linear. This means we can 

decompose this transformation to its effects on the basis vectors and construct a 

matrix based on this. In this section, all quaternions will be unit quaternions. 

Let ( ) 1 2 3cos ,sin  cos sin sin sinq v v i v j v kθ θ θ θ θ θ= = + + +
  

( )1 2 3 1 2 31 cos sin sin sin 1 cos sin sin sinq v i v j v k v i v j v kθ θ θ θ θ θ θ θ= + + + = + + +  

( )1 2 3 1 3 2cos sin sin sin sin cos sin sinqi v i v j v k i v i v j v kθ θ θ θ θ θ θ θ= + + + = − + + −  

( )1 2 3 2 3 1cos sin sin sin sin sin cos sinqj v i v j v k j v v i j v kθ θ θ θ θ θ θ θ= + + + = − − + +  

 ( )1 2 3 3 2 1cos sin sin sin sin sin sin cosqk v i v j v k k v v i v j kθ θ θ θ θ θ θ θ= + + + = − + − +   
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We can represent these transformations concisely using a matrix: 

1 2 3

1 3 2

2 3 1

3 2 1

cos sin sin sin
sin cos sin sin
sin sin cos sin
sin sin sin cos

v v v
v v v

Q
v v v
v v v

θ θ θ θ
θ θ θ θ
θ θ θ θ
θ θ θ θ

− − − 
 − =
 −
 − 

  

As can be seen the matrix is constructed of four-unit vectors(even without checking, 

we know this to be true since the product of norms is equal to the norm of the product). 

Importantly, all the vectors remain orthogonal to one another. This can be confirmed 

by taking the dot product of any two columns. If we take a look at the transformed 

1(real numbers) and i , for example, we get: 

 

1

1

2 3

3 2

cos sin
sin cos
sin sin
sin sin

v
v
v v
v v

θ θ
θ θ
θ θ
θ θ

−   
   
   ⋅
   
   −  

  

 2 2
1 1 2 3 2 3cos sin sin cos sin sin 0v v v v v vθ θ θ θ θ θ= − + + − =   

A similar situation occurs when the dot product of any of the five remaining pairs is 

taken.  

Another important property of Q  is:  

 

1 2 3 1 2 3

1 3 2 1 3 2

2 3 1 2 3 1

3 2 1 3 2 1

cos sin sin sin cos sin sin sin
sin cos sin sin sin cos sin sin
sin sin cos sin sin sin cos sin
sin sin sin cos sin sin sin

T

v v v v v v
v v v v v v

QQ
v v v v v v
v v v v v v

θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ

− − − 
 − − − =
 − − −
 − − −  cosθ

 
 
 
 
 
 

 

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

I

 
 
 = =
 
 
 
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This allows us to conclude that Q  is an orthogonal matrix. A fundamental property of 

an orthogonal matrix is conservation of dot product, and hence the angle between two 

vectors. The preservation of angles and determinant of +1(which ensures no scaling 

or changes in orientation) allow us to conclude that Q  acts as a rotation in 4
 .  

One might imagine since unit quaternions can perform rotations in 4
 , then correctly 

chosen quaternions must also perform rotations in 3
  which is simply a subspace of 

4
 . This, unfortunately, is not the case as unit quaternions do not encode every 

possible rotation in 4
 . As Aurélie Richard et al. discussed, a general rotation in 4

  

produces two distinct rotations on(at least) two orthogonal planes that only intersect 

at one point, usually the origin. Two planes, A  and B  are said to be orthogonal if for 

every v A∈  and w B∈ , 0v w⋅ = (Weisstein “Orthogonal Subspaces”). These 

orthogonal planes are called the invariant planes since vectors that start on this plane 

remain on this plane after the rotation. A simple example of such a rotation would be: 

cos sin 0 0
sin cos 0 0

0 0 cos sin
0 0 sin cos

a α
α α

β β
β β

− 
 
 
 −
 
 

  

This matrix corresponds to a rotation by α  in the 1 i−  plane and by β  in the j k−  

plane(similar methods as before can be used to confirm that the matrix is orthogonal 

and has a determinant of +1). Quaternions allow us to encode the specific case where 

the magnitude of the two angles is the same, which are called isoclinic rotations. If the 

angles are of the same sign, the rotation is called left-isoclinic, while rotations with 

oppositely signed angles are called right-isoclinic. We will see that left and right 

multiplication correspond to left and right-isoclinic rotations respectively 



12 
 

 

 

In the case of quaternions, the invariant planes are relatively easy to find and have 

already been shown above. 

Let ( ) ( )cos ,sin  , 0,q v v vθ θ= =
   

Figure 3:1 Left-isoclinic rotations in 2 orthogonal planes 

Figure 3:2 Right-Isoclinic rotations in 2 orthogonal planes 
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 ( )( )cos ,sin  0,qv v vθ θ=
    

( ) ( )( )sin ,cos sinv v v v vθ θ θ= − ⋅ + ×
      

 ( )sin ,cos vθ θ= −
  

 sin cos vθ θ= − +
   

Hence, we can see with left multiplication, the 1 v−   plane is invariant. To find the other 

invariant plane we can use the definition of orthogonal planes. Let us view how this 

transformation acts on a vector orthogonal to v .  

Let n  be a vector such that 0v n⋅ =
   

( )( )cos ,sin 0,qn v nθ θ=
   

 ( ) ( )( )sin ,cos sinv n n v nθ θ θ= − ⋅ + ×
       

( )cos sinn v nθ θ= + ×
     

n  and v n×   are both orthogonal to v  and 1, providing us with the second invariant 

plane. As additional assurance, we can confirm that v n×   remains on this plane as 

well. 

 ( )( )cos ,sin 0,v v nθ θ ×
     

 ( ) ( ) ( )( )sin ,cos sinv v n v n v v nθ θ θ= − ⋅ × × + × ×
          

 ( ) ( ) ( )( )( )0,cos sinv n v v n n v vθ θ= × + ⋅ − ⋅
          

 ( )sin cosn v nθ θ= − + ×
     
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A visualisation of these rotations can be seen in Figure 3.1 above. Note how the 

rotation in the n v n− ×
    plane is precisely what we want in order to perform an axis-

angle rotation, a transformation that performs a rotation by θ  in the plane orthogonal 

to some given axis v . Unfortunately, this only occurs in the case where the vector to 

be rotated is orthogonal to v , which will of course, not be true for some general vector 

in 3
 . The component parallel to v  will be rotated ‘into the fourth dimension’ towards 

the real numbers. In this case, the idea of left and right isoclinic rotations becomes 

useful. Above we performed left-isoclinic rotations using quaternions. Let us now see 

how we can perform right-isoclinic rotations.  

Since quaternion multiplication is non-commutative, it is natural to wonder how 

reversing the order of multiplication affects the transformation. 

( )1 cos ,sin vθ θ   

( )cos ,sin vθ θ=
  

 ( )( )0, cos ,sinv vθ θ   

 ( ) ( )( )sin ,cos sinv v v v vθ θ θ= − ⋅ + ×
      

 sin cos vθ θ= − +
  

The rotation in the 1 v−   plane stay the same. Let us now consider the other plane. 

( )( ) ( )0, cos ,sin cos sinn v n v nθ θ θ θ= − ×
       

 ( ) ( )( )cos sinn v nθ θ= − + − ×
     

( )( ) ( )0, cos ,sin cos sinv n v v n nθ θ θ θ× = × +
        
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 ( ) ( )( )sin cosn v nθ θ= − − + − ×
     

The direction of rotation has been reversed in the n v n− ×
    plane, hence we can 

conclude that right multiplication by a unit quaternion corresponds to a right-isoclinic 

rotation. It now becomes clear that to perform the desired rotation, we require a right-

isoclinic rotation by θ−  to restore the component parallel to v . This quaternion must 

be: 

( ) ( )( )' cos ,sinq vθ θ= − −
  

 ( )cos , sin vθ θ= −
   

1q−=  

Hence to rotate about some arbitrary axis v  in 3
 , we first left multiply by q  and then 

right multiply by 1q−  in order to restore the component parallel to v . A natural 

consequence of the right multiplication is that the plane where we wish the rotation, 

n v n− ×
    plane, is further rotated by θ , resulting in an overall rotation of 2θ . Therefore, 

to rotate a vector, r , θ  about v , the operation is: 

 ( ) 1cos ,sin 0, cos , sin
2 2 2 2

r v r v qrqθ θ θ θ −   ′ = − =   
   

    

 

3.2 Quaternions versus Euler angles/Matrices 

One might question the use quaternions to perform these rotations, when other 

methods such as Euler angles and matrices are available. In fact, Euler angles, which 

tell us the amount 3 perpendicular axes have rotated, only require storing three 

numbers, while quaternions require four, making them more efficient in terms of 
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storage. Furthermore, the matrix multiplication to perform this rotation can be done 

quite quickly by computers as many have optimised matrix multiplication to a large 

extent(Dam et al. 31).  

One issue with using Euler angles is their dependence on the hierarchy of axes. 

Essentially, it is important to keep track of the order in which the individual axes are 

being rotated, since rotations in 3D are non-commutative. There is little agreement 

between industries(and even within industries) about this order(Rotenberg 4). 

The biggest issue with Euler angles, however, is gimbal lock, which occurs when two 

of axes of rotation line up with one another causing a loss of a degree of 

freedom(Strickland).  

 

The different colours represent rotations about different axes. As we can see in the 

second picture, the green and blue circles have lined up therefore the plane has lost 

the ability to rotate about what is commonly referred to as the ‘yaw’ axis, signified by 

the blue circle. This means that we would not be able orient the plane towards us from 

the second position. This will always be a problem with Euler angles.  

Figure 3:1 Illustration of Gimbal lock(Mathspoetry) 
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As Brooks et al. pointed out in their book Chariots for Apollo : The NASA History of 

Manned Lunar Spacecraft to 1969, a terrifying example of gimbal lock occurred during 

the Apollo 10 mission. As the crew were returning to Earth in their lunar module, 

Snoopy, experienced gimbal lock and “seemed to be throwing a fit, lurching wildly 

about”(310). Luckily the pilots onboard were able to Snoopy back under control without 

any serious damage. Modern rockets tend to use quaternions; especially as greater 

research is done into Reusable Launch Vehicles(RLVs)(Ambar et al.). 

This is not to say that Euler angles are useless. They can be incredibly useful for 

simple rotations, because of their temporal and spatial efficiency. The aircraft industry 

still uses Euler angles to talk about and perform rotations(“Axis of rotation”). Since 

planes only tend to move along one axis at a time, this means that interpolation is not 

as big of an issue. It also provides more intuitive control for the pilots which is likely 

one of their greater concerns. Additionally, as mentioned by Rotenberg, having a solid 

ground allows other vehicles to be represented intuitively using Euler angles(5). 

For more intricate tasks, Euler angles unfortunately do not suffice. Instead, one could 

use a matrix . A rotation matrix, R , to represent axis-angle rotations would be: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

2

2

cos 1 cos 1 cos sin 1 cos sin
1 cos sin cos 1 cos 1 cos sin
1 cos sin 1 cos sin cos 1 cos

x x y z x z y

y x z y y z x

z x y z y x z

u u u u u u u
R u u u u u u u

u u u u u u u

θ θ θ θ θ θ
θ θ θ θ θ θ
θ θ θ θ θ θ

 + − − − − +
 = − + + − − − 
 − − − + + − 

 

Where θ  is the angle of rotation and u  is the axis of rotation, 
x

y

z

u
u u

u

 
 =  
  

 (Cole 257) 

Matrices are also incredibly versatile since nearly every transformation, scaling, 

reflection, rotation, can be encoded within them which makes concatenating 

transformations simpler. This also means that programmers and developers don’t 
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have to work with different mathematical objects, allowing for greater compatibility. 

Furthermore, most programmers are likely going to be quite familiar with matrices, 

which means that they will be more comfortable using them and will find it easier to 

find mistakes and bugs in their code. Although this may seem trivial, there is an 

undeniable cost to learning something new. Being familiar with the framework could 

help save a lot of time and effort. 

On the other hand, matrices are less efficient in terms of storage, since they require 

storing nine numbers, more than double required for quaternions. This trade-off 

between temporal and spatial efficiency is a common one in the world of computers. 

The trait to sacrifice depends entirely on the use case, as some applications may value 

time over space.  

One of the bigger issues with working with matrices is orthogonalization. Rounding 

and floating-point errors are inevitable in computation. Successive rotations with 

matrices will cause errors to accumulate and lead to deviations from intended results. 

This can be solved by orthogonalizing the resultant matrix. A popular algorithm for this 

is Singular Value Decomposition(SVD) which can be computationally 

expensive(Vasudevan). 

By contrast, quaternions are far easier to normalise as it simply requires dividing the 

quaternion by its norm, which itself requires taking the square root of the dot product 

of the vector with itself. Taking a brief side-step into complexity theory, allows us to 

make quantitative comparisons. Since finding the dot product of a vector involves n  

multiplications and n  additions, it can be said to take linear time, or ( )O n . On the other 

hand, SVD decomposition for an n n×  matrix takes a time complexity of 3( )O n

(Vasudevan). This means matrix orthogonalization will take approximately 6.75 times 
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more operations and hence take about 6.75 times longer to compute. In fact, 

normalisation can be made even more efficient if done regularly as it allows use of 

approximations (e.g. Taylor series or Padé approximants) that remove the need to 

compute a square root altogether. One of the biggest advantages of quaternions, 

however, is interpolation. 

4. Interpolation 

Interpolation is the process by which values between two known values of a function 

can be found(Weisstein, “Interpolation”). This is very useful in this case as it allows us 

to find the positions of an object between any two given orientations, making animation 

possible, for example. Quaternions allow easy implementation of Spherical Linear 

Interpolation(SLERP), which allows us to find the parametric formula for the unit-radius 

arc between any two unit vectors(Shoemake, “Animating Rotation with Quaternion 

Curves” 248). This is a fairly popular rotation interpolation method. 

The formula to perform SLERP using quaternions is (Shoemake, “Animating Rotation 

with Quaternion Curves” 248): 

( )1
1 0 0

t
q q q q−=  

0q  and 1q  represent the initial and final positions as unit vector quaternions while t  is 

some parameter between 0 and 1. Before proving this result, we need to define 

exponentiation with respect to quaternions. For this, we can use the following definition 

of exponents: 

2 3

1
2! 3! !

n
a a a ae a

n
= + + + + + + 
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Euler’s formula can then be extended to find that any unit quaternion can be written 

like so: 

 ( ) [ ] 3cos sin  cos ,sin  , 0, 2 , , 1ve v v v vθ θ θ θ θ θ π= + = ∈ ∈ =


   

   

Here is a short proof of the above result 

 ( ) ( )( )2 0, 0,v v v=
     

 ( ),v v v v= − ⋅ ×
      

 ( )2 ,0v= −
  

 1= −   

 

 

Therefore, 

 ( ) ( ) ( ) ( )2 3 4 5

1
1! 2! 3! 4! 5!

v v v v vve θ θ θ θ θθ
= + + + + + +



   




  

 
2 3 4 5

1
2! 3! 4! 5!

v vv θ θ θ θθ= + − − + +
 



   

Since the series is absolutely convergent, the terms can be rearranged to: 

 
2 4 3 5

1
2! 4! 3! 5!

v v ve vθ θ θ θ θ   
= − + − + − + −   
   



 



 

  

 
2 4 3 5

1 1
2! 4! 3! 5!

vθ θ θ θ   
= − + − + − + −   
   



 

  

cos sinvθ θ= +

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The final step is achieved by recognising the sums as the Maclaurin series for cosθ  

and sinθ . What this means is that for any unit quaternion q ,  

( )tt vq e θ=  

 ( )v te θ=   

 ( ) ( )cos sint t vθ θ= +
   

This is analogous to exponentiation with complex numbers. 

Let’s say we wish to interpolate between unit vectors 0q  and 1q  in 3
 . This will 

correspond to finding the shortest path between them on the unit sphere, which 

translates to finding the geodesic between 0q  and 1q . This geodesic must necessarily 

lie on the plane spanned out by these two vectors allowing us to draw a diagram like 

so: 

Figure 4:1 Plane spanned out by q0 and q1 
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 Our goal is to find a parametric equation to describe the arc between 0q  and 1q  in 

terms of 0q  and 1q . If we had some properly oriented n  that was orthogonal to both 

0q  and 1q  then we could perform a simple multiplication and achieve a rotation in the 

0 1q q−  plane, as desired. 

Let ( )cos ,sinr nθ θ=
   

( )( )0 0cos ,sin 0,rq n qθ θ=
   

 ( )0 0cos sinq n qθ θ= + ×
     

As we allow θ  to vary from 0 to 2π , the resulting quaternion traces out a circle like so: 

This means that if we set the value of r  as ( )cos ,sin nΩ Ω
  where ( )1

0 1cos q q−Ω = ⋅
  , 

then we can write an equation for the arc as: 

 ( )0 0 0cos sin , 0 1tt q t n q r q tΩ + Ω × = ≤ ≤
     

Figure 4:2 Circle spanned out by q0 and n x q0 
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Looking at the formula for r , we can see that it is incredibly similar to the product of 

the quaternions 0q  and 1q .  

 ( )0 1 0 1 0 1,q q q q q q= − ⋅ ×   

( )cos ,sin n= − Ω Ω
  

n  even has the correct orientation relative to 0q  and 1q . The only difference is the sign 

of the real component. This is easily fixed by changing the sign of 0q , which is the 

same as taking its inverse, as it is a unit vector quaternion. This changes the formula 

for r  to 1
0 1q q− . However, because of the negative sign the direction of the cross-

product vector is reversed. To correct the direction of the cross-product vector we can 

reverse the order of multiplication allowing us to construct the following function to 

perform spherical interpolation entirely out of quaternions. 

( ) ( )1
0 1 1 0 0, ,

t
Slerp q q t q q q−=  

As Dam et al.(43) showed in their paper, this can equivalently be written as: 

 ( ) ( )11
0 1 1 1 0, ,

t
Slerp q q t q q q

−−=   

 ( )11
0 1 1

t
q q q

−−=  

 ( )1
0 0 1

t
q q q−=  

Because the parameter t  directly controls the angle between the resultant vector and 

0q , SLERP allows the rotation to maintain a constant angular velocity. This makes the 

rotation both intuitive and aesthetically pleasing. This kind of interpolation is nearly 

impossible to achieve with Euler angles alone. The obvious method of interpolating 
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the angles independently in the three axes can produce highly erratic 

results(Shoemake, “Animating Rotation with Quaternion Curves” 247). Direct linear 

interpolation using matrices may cause the image to collapse into a line or even a 

point(Shoemake, “Matrix Animation and Polar Decomposition” 260). To properly 

interpolate using matrices would involve extracting the axis vector and such which is 

very expensive computationally. Furthermore, there is very little guarantee that either 

of these methods would produce a rotation with constant angular velocity or span a 

geodesic. 

Admittedly, there are some issues with SLERP. Interpolating between successive 

orientations can cause sharp turns in the rotations. A smoother version of SLERP was 

suggested by Dam et al. called Squad, which is comparable to how Bezier curves 

make linear interpolation smoother.  

One major disadvantage of SLERP is its computational slowness. As Jonathan Blow 

wrote in his article, “if you’re calling SLERP in the first place, you are already in a world 

of slowness”. Nevertheless, even the alternatives he provided, such as quaternion 

normalised LERP(linear interpolation) and log-quaternion LERP, involve using 

quaternions. Although SLERP itself may not be the optimal function, it seems that 

quaternions as a whole certainly provide a very nice framework for interpolation. 

5. Conclusion 

In conclusion, quaternions provide a natural way of encoding 4D rotations through 

their multiplication. Careful manipulation of this multiplication allows us to perform 

rotations in 3D. Expanding known definitions of exponentiation also allowed us to find 

a method to animate any given rotation known as SLERP. This simple method can 

also be refined to produce more pleasing animations.  
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Quaternions help avoid serious issues such as gimbal lock, while also taking 

comparatively little storage space. However, the choice of whether to use quaternions 

or other methods depends entirely on the use case. For aircraft, especially manned, 

the intuition provided Euler angles proves to be of greater importance. For other tasks, 

like space travel, quaternions are more effective. Additionally, although quaternions 

may be spatially efficient, they can take longer to compute than matrices. This sacrifice 

of computational time for space may be undesirable in certain circumstances such as 

computer games, where you want rotations and transformations to occur as fast as 

possible, without incurring any time lag for the player. And while matrices may be 

quicker to compute, they take longer to orthogonalise, making them undesirable when 

many consecutive rotations are to take place. A summary of the comparisons has 

been provided below. 

 Advantages Disadvantages 
Euler angles - Only require three 

numbers 
- Simple to use and 

understand 
- Computationally fast 

- Gimbal lock 
- Interpolation is difficult 

Matrices(axis-
angle) 

- Axis-angle representation 
more intuitive and useful 

- Matrices are versatile 
- Computationally fast 
- Familiar to 

developers/coders 

- Require nine numbers 
- Computationally expensive 

to orthogonalise 

Quaternions - Only require four 
numbers 

- Easy normalisation 
- Easy interpolation 
- SLERP maintains 

constant angular velocity 

- Foreign to 
developers/coders 

- SLERP computationally 
slow 
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We would be doing ourselves a disservice if we thought that quaternions were only 

limited to computing rotations. They can be found everywhere in physics. Maxwell’s 

equations of electromagnetism were originally written using quaternions(Jack). 

Research into physical space it itself has suggested that it has a quaternion 

structure(Jack). This illustrates the surprising usefulness of mathematical structures in 

describing the universe. With the emergence of octonions and sedenions, which are 

further extensions of complex numbers into 8 and 16 dimensions, one can only 

imagine their potential uses and the wonderful mathematics that awaits within them. 
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