MAT 341: Applied Real Analysis - Fall 2015

HW9 - Comments

Sec. 3.3 - Problem 1: The problem is asking you to find some values of $u(x, t)$ such that

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<a, \quad t>0 ; \\
& u(0, t)=0, \quad u(a, t)=0, \quad t>0 ; \\
& u(x, 0)=f(x), \quad t>0 \\
& \frac{\partial u}{\partial x}(x, 0)=0, \quad 0<x<a .
\end{aligned}
$$

where $f(x)$ has the following equation:

$$
f(x)=\left\{\begin{array}{lll}
\frac{2 h}{a} x & \text { if } & 0 \leq x \leq \frac{a}{2} \\
-\frac{2 h}{a} x+2 h & \text { if } & \frac{a}{2}<x \leq a
\end{array}\right.
$$

You then need to write a table with the values $u(x, t)$ at the required times, such as $u(0.25 a, 0.2 a / c)$. The solution $u(x, t)$ is written in Equation 13, but without the function G_{e}. Note: In the textbook, \bar{f}_{o} means an odd periodic extension of f, while \bar{G}_{e} means an even periodic extension of G.

Sec. 3.3 - Problem 2: You fix time $t=0,0.2 a / c, 0.4 a / c, 0.8 a / c, 1.4 a / c$ and you sketch 5 graphs of $u(x, t)$. For example, you need to sketch the graph of $u(x, 0.4 a / c)$ as a function of x. You may assume $a=1$ if it helps. The graphs should look like Figure 3 from Section 3.2.

Sec. 3.3 - Problem 5: The solution $u(x, t)$ verifies the PDE:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<a, \quad t>0 ; \\
& u(0, t)=0, \quad u(a, t)=0, \quad t>0 ; \\
& u(x, 0)=0, \quad 0<x<a ; \\
& \frac{\partial u}{\partial t}(x, 0)=\alpha c, \quad 0<x<a .
\end{aligned}
$$

where α is just a constant, unrelated to a.
Sec. 4.1 - Problem 2: The sketch of the surfaces should look like the graphs below.
Regarding the boundary conditions: you have to evaluate $u(x, y), \frac{\partial u}{\partial x}(x, y)$ and $\frac{\partial u}{\partial y}(x, y)$ at the given values. For example, if $u(x, y)=x y$ then $u(0, b)=0$ and $u_{x}(0, b)=b, u_{y}(0, b)=0$.

Figure 1: A sketch of the surface $z=x^{2}-y^{2}$.

Figure 2: A sketch of the surface $z=x y$.

Sec. 4.2 - Problem 5: You are asked to solve the following PDE:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<1, \quad 0<y<b \\
& u(0, y)=0, \quad u(1, y)=0, \quad 0<y<b \\
& u(x, 0)=0, \quad u(x, b)=\sin (3 \pi x), \quad 0<x<1
\end{aligned}
$$

You may assume that b is any constant. However, once you reach a formula for $u(x, y)$ as in Equation 9 (page 266) there is no need to compute the coefficients, simply use the fact that you already have $\sin (3 \pi x)$ as a Fourier series and look for the coefficient of $n=3$ (the rest are all zeros). To sketch the level curves, one has to do as in Figure 2, page 268 (see next page).
(*Problem 4.2:5 Sketch of level curve. *)
a = 1;
b $=0.5$;
const $=0.1$;
ContourPlot $\left[\frac{\operatorname{Sinh}[3 * \pi * y]}{\operatorname{Sinh}[3 * \pi * b]} \operatorname{Sin}[3 \pi * x]=\operatorname{const},\{x, 0, a\},\{y, 0, b\}\right]$

$$
\operatorname{Plot} 3 \mathrm{D}\left[\frac{\operatorname{Sinh}[3 * \pi * y]}{\operatorname{Sinh}[3 * \pi * b]} \sin [3 \pi * x],\{x, 0, a\},\{y, 0, b\}\right]
$$

Figure 3: Top: Level curves $u(x, y)=$ const drawn in Mathematica. Bотtom: The surface $z=u(x, y)$. The level curves are obtained by cutting the level surface by a plane transversly.

Sec. 4.2 - Problem 6: You are asked to solve the following PDE:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<a, \quad 0<y<b \\
& u(0, y)=0, \quad u(a, y)=1, \quad 0<y<b \\
& u(x, 0)=0, \quad u(x, b)=0, \quad 0<x<a
\end{aligned}
$$

