MAT324: Real Analysis - Fall 2016
 Assignment 10 - Solutions

Problem 1: Let λ_{1}, λ_{2} and μ be measures on a measurable space (X, \mathcal{F}). Show that if $\lambda_{1} \ll \mu$ and $\lambda_{2} \ll \mu$ then $\left(\lambda_{1}+\lambda_{2}\right) \ll \mu$.
Solution. Suppose $E \in \mathcal{F}$ is such that $\mu(E)=0$. Since $\lambda_{1} \ll \mu$ and $\lambda_{2} \ll \mu, \lambda_{1}(E)=\lambda_{2}(E)=0$, so $\left(\lambda_{1}+\lambda_{2}\right)(E)=0$, thus $\lambda_{1}+\lambda_{2} \ll \mu$.

Problem 2: Let $X=[0,1]$ with Lebesgue measure and consider probability measures μ and ν given by densities f and g as follows

$$
\nu(E)=\int_{E} f d m \quad \text { and } \quad \mu(E)=\int_{E} g d m,
$$

for every measurable subset $E \subset[0,1]$. Suppose $f(x), g(x)>0$ for every $x \in[0,1]$. Is ν absolutely continuous with respect to μ (that is $\nu \ll \mu$)? If it is, determine the Radon-Nikodym derivative $\frac{d \nu}{d \mu}$. Is μ absolutely continuous with respect to ν (that is $\mu \ll \nu$)?
Solution. Let E be a Lebesgue measurable set and let m denote the Lebesgue measure. Notice that since $f>0, \mu(E)=\int_{E} f d m=0$ iff $m(E)=0$. In particular, if $\mu(E)=0$, then $\nu(E)=$ $\int_{E} g d m=0$, for $m(E)=0$, so $\nu \ll \mu$. The argument to show that $\mu \ll \nu$ is similar. Furthermore, since $\nu \ll \mu \ll m$, by proposition 7.7 , (ii) in the textbook,

$$
\frac{d \nu}{d m}=\frac{d \nu}{d \mu} \frac{d \mu}{d m}
$$

so $\frac{d \nu}{d \mu}=\frac{f}{g}$.
Problem 3: Suppose μ is a σ-finite measure on $([0,1], \mathcal{F})$ and $E_{1}, E_{2}, \ldots, E_{2014}$ are measurable subsets of $[0,1]$. Define ν on \mathcal{F} by $\nu(E)=\sum_{k=1}^{2014} \mu\left(E \cap E_{k}\right)$. Show that $\nu \ll \mu$ and find the RadonNikodym derivative $\frac{d \nu}{d \mu}$.
Solution. Notice that

$$
\mu\left(E \cap E_{k}\right)=\int_{E} \chi_{E_{k}} d m,
$$

So for each measure ν_{k}, defined by $\nu_{k}(E)=\mu\left(E \cap E_{k}\right)$, we have $\nu_{k} \ll m$. By problem $2, \nu=$ $\sum_{k=1}^{2014} \nu_{k} \ll m$. In addition, from $\nu_{k}(E)=\int_{E} \chi_{E_{k}} d m$, we know that $\frac{d \nu_{k}}{d m}=\chi_{E_{k}}$. By proposition 7.7 (i) in the textbook, $\frac{d \nu}{d m}=\sum_{k=1}^{2014} \chi_{E_{k}}$.

Problem 4: Let $\lambda_{1}, \lambda_{2}, \mu$ be measures on a σ-algebra \mathcal{F}. Show that
a) If $\lambda_{1} \perp \mu$ and $\lambda_{2} \perp \mu$ then $\left(\lambda_{1}+\lambda_{2}\right) \perp \mu$.
b) If $\lambda_{1} \ll \mu$ and $\lambda_{2} \perp \mu$ then $\lambda_{2} \perp \lambda_{1}$.

Solution.

a) If $\lambda_{1} \perp \mu$ and $\lambda_{2} \perp \mu$ then there exist disjoint sets $A_{i}, B_{i}, i=1,2$, such that $A_{i} \cup B_{i}=X$, $\mu\left(A_{i}\right)=0, \lambda_{i}\left(B_{i}\right)=0$. Then the sets $A=A_{1} \cup A_{2}$ and $B=B_{1} \cap B_{2}$ satisfy $X=A \cup B$, $A \cap B=\emptyset$, and

$$
\begin{aligned}
\mu(A) & \leq \mu\left(A_{1}\right)+\mu\left(A_{2}\right)=0 \\
\left(\lambda_{1}+\lambda_{2}\right)(B) & \leq \lambda_{1}\left(B_{1}\right)+\lambda_{2}\left(B_{2}\right)=0
\end{aligned}
$$

This implies that $\left(\lambda_{1}+\lambda_{2}\right) \perp \mu$.
b) Suppose $\lambda_{1} \ll \mu$ and $\lambda_{2} \perp \mu$. Let $A, B \in \mathcal{F}$ be disjoint sets, $A \cup B=X$, and $\lambda_{2}(A)=0$, $\mu(B)=0$. Since $\lambda_{1} \ll \mu$, we also have $\lambda_{1}(B)=0$, so $\lambda_{2} \perp \lambda_{1}$.

Problem 5: For a point x, define the Dirac measure δ_{x} to be

$$
\delta_{x}(A)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A .\end{cases}
$$

For a fixed set B define the Lebesgue measure restricted to B by $m_{B}(A)=m(A \cap B)$. Let $\mu=\delta_{1}+m_{[2,4]}$ and $\nu=\delta_{0}+m_{(1,2)}$. Show that $\nu \perp \mu$.
Solution. μ and ν are concentrated on disjoint sets, namely $\{1\} \cup[2,4]$ and $\{0\} \cup(1,2)$, respectively, so they are mutually singular.

