MAT324: Real Analysis - Fall 2016
 Assignment 1 - Solutions

Problem 1: Let \mathcal{C} be the Cantor middle-thirds set constructed in the textbook. Show that \mathcal{C} is compact, uncountable, and a null set.
Solution. The textbook proves that \mathcal{C} is a null set (page 19). To check that \mathcal{C} is compact, notice that it is bounded, $\mathcal{C} \subset[0,1]$, and each \mathcal{C}_{n} constructed in the definition of \mathcal{C} is closed, so that

$$
\mathcal{C}=\bigcap_{n=1}^{\infty} \mathcal{C}_{n}
$$

is a closed set. Hence, by the Heine-Borel Theorem, \mathcal{C} is closed. To prove that \mathcal{C} is uncountable, consider for each $x \in \mathcal{C}$ its infinite ternary expansion ${ }^{1}$

$$
x=\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}} .
$$

As shown in the textbook, since $x \in \mathcal{C}, a_{k}=0$ or 2 , for each $k \in \mathbb{N}$. Suppose there is an enumeration of the Cantor set, $\mathcal{C}=\left\{x_{1}, x_{2}, \cdots,\right\}$, where

$$
\begin{aligned}
& x_{1}=\sum_{k=1}^{\infty} \frac{a_{1 k}}{3^{k}} \\
& x_{2}=\sum_{k=1}^{\infty} \frac{a_{2 k}}{3^{k}}
\end{aligned}
$$

Then $x=\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}$ where, $a_{k}=\left|2-a_{k k}\right|$ is not on the list, and belongs to the Cantor middlethird set, hence \mathcal{C} is uncountable (check that the a_{k} 's are not eventually zero!).

Problem 2: Let A be the subset of $[0,1]$ which consists of all numbers which do not have the digit 4 appearing in their decimal expansion. Find $m(A)$.

Solution. Let $x=\sum_{k=1}^{\infty} \frac{x_{k}}{10^{k}}$ be the infinite decimal representation of x. By a similar argument given in the construction of the Cantor middle-third set, one can construct A by the following procedure:

1. Let $A_{0}=[0,1]$.
2. Define A_{1} by removing from A_{0} the set $\left(\frac{4}{10}, \frac{5}{10}\right)$, i.e., all the numbers x whose infinite decimal representation is such that $x_{1}=4$.

[^0]3. Define A_{2} by removing from A_{1} the sets $\left(\frac{4+10 k}{100}, \frac{5+10 k}{100}\right)$, where $0 \leq k \leq 9$ thus removing all the numbers left in A_{1} such that $x_{2}=4$.
4. Assume A_{n} has been defined. Define A_{n+1} removing from A_{n} all the intervals of the form
$$
\left(\frac{4+10^{n} k}{10^{n+1}}, \frac{5+10^{n} k}{10^{n+1}}\right)
$$
for $0 \leq k \leq 10^{k}-1$, thus removing from A_{n} all the numbers left in A_{1} such that $x_{n+1}=4$.
Now this description is not optimal, since some of the intervals have already been removed in the previous steps. In fact, in the n-th step we remove 9^{n-1} disjoint intervals, each of them with lenght 10^{-n}. In addition, $A=\cap_{n \in \mathbb{N}} A_{n}$ and
$$
m\left(A_{n}\right)=1-\sum_{k=1}^{n} \frac{9^{n-1}}{10^{n}}
$$

Since the A_{n} form a descreasing sequence (i.e., $A_{n} \supset A_{n-1}$),

$$
m(A)=m\left(\cap A_{n}\right)=\lim _{n \rightarrow \infty} m\left(A_{n}\right)=1-\sum_{k=1}^{\infty} \frac{9^{n-1}}{10^{n}}=0
$$

Problem 3: Let A be a null set. Show that $m^{*}(A \cup B)=m^{*}(B)$ for any set B.
Solution. By monotonicity,

$$
m^{*}(B) \leq m^{*}(A \cup B)
$$

By subadditivity,

$$
m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B)=m^{*}(B)
$$

Problem 4: Let $E_{1}, E_{2}, \ldots, E_{n}$ be disjoint measurable sets. Show that for all $A \subseteq \mathbb{R}$, we have

$$
m^{*}\left(A \cap\left(\bigcup_{j=1}^{n} E_{j}\right)\right)=\sum_{j=1}^{n} m^{*}\left(A \cap E_{j}\right)
$$

Solution. Notice that since the E_{j} 's are measurable,

$$
m^{*}\left(A \cap\left(\bigcup_{j=1}^{n} E_{j}\right)\right)=m^{*}\left(\left[A \cap\left(\bigcup_{j=1}^{n} E_{j}\right)\right] \cap E_{n}\right)+m^{*}\left(\left[A \cap\left(\bigcup_{j=1}^{n} E_{j}\right)\right] \cap\left(E_{n}\right)^{c}\right)
$$

Now since the E_{j} are disjoint,

$$
m^{*}\left(A \cap\left(\bigcup_{j=1}^{n} E_{j}\right)\right)=m^{*}\left(A \cap E_{n}\right)+m^{*}\left(A \cap\left(\bigcup_{j=1}^{n-1} E_{j}\right)\right)
$$

Therefore the result can be proved by induction on n.

[^0]: ${ }^{1}$ Recall that in such an expansion, if $a_{k}=0$, for all $k>N$, for some $N \in \mathbb{N}$ and $a_{N} \neq 0$, we replace the a_{k} by $\bar{a}_{k}=2$, if $K>N$, and a_{N} by $\bar{a}_{N}=a_{N}-1$.

