
MAT324: Real Analysis – Fall 2016
Assignment 1 – Solutions

Problem 1: Let C be the Cantor middle-thirds set constructed in the textbook. Show that C is
compact, uncountable, and a null set.

Solution. The textbook proves that C is a null set (page 19). To check that C is compact, notice
that it is bounded, C ⊂ [0, 1], and each Cn constructed in the definition of C is closed, so that

C =
∞⋂
n=1

Cn

is a closed set. Hence, by the Heine-Borel Theorem, C is closed. To prove that C is uncountable,
consider for each x ∈ C its infinite ternary expansion1

x =
∞∑
k=1

ak
3k

.

As shown in the textbook, since x ∈ C, ak = 0 or 2, for each k ∈ N. Suppose there is an enumeration
of the Cantor set, C = {x1, x2, · · · , }, where

x1 =

∞∑
k=1

a1k
3k

x2 =

∞∑
k=1

a2k
3k

...

Then x =
∑∞

k=1
ak
3k

where, ak = |2− akk| is not on the list, and belongs to the Cantor middle-
third set, hence C is uncountable (check that the ak’s are not eventually zero!). �

Problem 2: Let A be the subset of [0, 1] which consists of all numbers which do not have the
digit 4 appearing in their decimal expansion. Find m(A).

Solution. Let x =
∑∞

k=1
xk

10k
be the infinite decimal representation of x. By a similar argument

given in the construction of the Cantor middle-third set, one can construct A by the following
procedure:

1. Let A0 = [0, 1].

2. Define A1 by removing from A0 the set ( 4
10 ,

5
10), i.e., all the numbers x whose infinite decimal

representation is such that x1 = 4.

1Recall that in such an expansion, if ak = 0, for all k > N , for some N ∈ N and aN 6= 0, we replace the ak by
ak = 2, if K > N , and aN by aN = aN − 1.
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3. Define A2 by removing from A1 the sets (4+10k
100 , 5+10k

100 ), where 0 ≤ k ≤ 9 thus removing all
the numbers left in A1 such that x2 = 4.

4. Assume An has been defined. Define An+1 removing from An all the intervals of the form(
4 + 10nk

10n+1
,
5 + 10nk

10n+1

)
,

for 0 ≤ k ≤ 10k − 1, thus removing from An all the numbers left in A1 such that xn+1 = 4.

Now this description is not optimal, since some of the intervals have already been removed in
the previous steps. In fact, in the n-th step we remove 9n−1 disjoint intervals, each of them with
lenght 10−n. In addition, A = ∩n∈NAn and

m(An) = 1−
n∑

k=1

9n−1

10n

Since the An form a descreasing sequence (i.e., An ⊃ An−1),

m(A) = m(∩An) = lim
n→∞

m(An) = 1−
∞∑
k=1

9n−1

10n
= 0

�

Problem 3: Let A be a null set. Show that m∗(A ∪B) = m∗(B) for any set B.

Solution. By monotonicity,
m∗(B) ≤ m∗(A ∪B).

By subadditivity,
m∗(A ∪B) ≤ m∗(A) + m∗(B) = m∗(B).

�

Problem 4: Let E1, E2, . . . , En be disjoint measurable sets. Show that for all A ⊆ R, we have

m∗

A ∩

 n⋃
j=1

Ej

 =
n∑

j=1

m∗ (A ∩ Ej) .

Solution. Notice that since the Ej ’s are measurable,

m∗

A ∩

 n⋃
j=1

Ej

 = m∗

A ∩
 n⋃

j=1

Ej

 ∩ En

+ m∗

A ∩
 n⋃

j=1

Ej

 ∩ (En)c


Now since the Ej are disjoint,

m∗

A ∩

 n⋃
j=1

Ej

 = m∗ (A ∩ En) + m∗

A ∩

n−1⋃
j=1

Ej


Therefore the result can be proved by induction on n. �
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