MAT324: Real Analysis - Fall 2016
 Assignment 2

Due Tuesday, September 20, in class.
Problem 1: Suppose $E_{1}, E_{2} \subseteq \mathbb{R}$ are measurable sets. Show that

$$
m\left(E_{1} \cup E_{2}\right)+m\left(E_{1} \cap E_{2}\right)=m\left(E_{1}\right)+m\left(E_{2}\right) .
$$

Problem 2: Construct a Cantor-like closed set $\mathcal{C} \subset[0,1]$ so that at the $k^{\text {th }}$ stage of the construction one removes 2^{k-1} centrally situated open intervals each of length ℓ_{k}, with

$$
\ell_{1}+2 \ell_{2}+\ldots+2^{k-1} \ell_{k}<1 .
$$

Suppose ℓ_{k} are chosen small enough so that $\sum_{k=1}^{\infty} 2^{k-1} \ell_{k}<1$.
a) Show that $m(\mathcal{C})=1-\sum_{k=1}^{\infty} 2^{k-1} \ell_{k}$ and conclude that $m(\mathcal{C})>0$.
b) Give an example of a sequence $\left(\ell_{k}\right)_{k \geq 1}$ that verifies the hypothesis.

Problem 3: Let $E_{1}, E_{2}, \ldots, E_{2016} \subset[0,1]$ be measurable sets such that $\sum_{k=1}^{2016} m\left(E_{k}\right)>2015$. Show that $m\left(\bigcap_{k=1}^{2016} E_{k}\right)>0$.

Problem 4: Suppose $A \in \mathcal{M}$ and $m(A \Delta B)=0$. Show that $B \in \mathcal{M}$ and $m(A)=m(B)$.
Problem 5: Suppose $A \subset E \subset B$ where A and B are measurable sets of finite measure. Show that if $m(A)=m(B)$, then E is measurable.

Problem 6: Suppose $E \in \mathcal{M}$ and $m(E)>0$. Prove that there exists an open interval I such that

$$
m(E \cap I)>0.99 \cdot m(I) .
$$

Hint: Argue by contradiction, using the regularity of Lebesgue measure. See Theorems 2.17, 2.29.

