MAT324: Real Analysis - Fall 2016

Assignment 2 - Solutions

Problem 1: Suppose $E_{1}, E_{2} \subseteq \mathbb{R}$ are measurable sets. Show that

$$
m\left(E_{1} \cup E_{2}\right)+m\left(E_{1} \cap E_{2}\right)=m\left(E_{1}\right)+m\left(E_{2}\right)
$$

Solution. Notice that $E_{1} \cup E_{2}$ can be expressed as a union of disjoint measurable sets

$$
E_{1} \cup E_{2}=\left(E_{1} \backslash E_{2}\right) \cup\left(E_{1} \cap E_{2}\right) \cup\left(E_{2} \backslash E_{1}\right)
$$

Additivity implies that

$$
\begin{aligned}
m\left(E_{1} \cup E_{2}\right) & =m\left(E_{1} \backslash E_{2}\right)+m\left(E_{1} \cap E_{2}\right)+m\left(E_{2} \backslash E_{1}\right) \\
& =m\left(E_{1} \cap E_{2}\right)+m\left(E_{1} \cap\left(E_{2}\right)^{c}\right)+m\left(E_{2} \cap\left(E_{1}\right)^{c}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
m\left(E_{1} \cup E_{2}\right)+m\left(E_{1} \cap E_{2}\right) & =\left[m\left(E_{1} \cap E_{2}\right)+m\left(E_{1} \cap\left(E_{2}\right)^{c}\right)\right]+\left[m\left(E_{2} \cap\left(E_{1}\right)^{c}\right)+m\left(E_{1} \cap E_{2}\right)\right] \\
& =m\left(E_{1}\right)+m\left(E_{2}\right)
\end{aligned}
$$

Problem 2: Construct a Cantor-like closed set $\mathcal{C} \subset[0,1]$ so that at the $k^{t h}$ stage of the construction one removes 2^{k-1} centrally situated open intervals each of length ℓ_{k}, with

$$
\ell_{1}+2 \ell_{2}+\ldots+2^{k-1} \ell_{k}<1
$$

Suppose ℓ_{k} are chosen small enough so that $\sum_{k=1}^{\infty} 2^{k-1} \ell_{k}<1$.
a) Show that $m(\mathcal{C})=1-\sum_{k=1}^{\infty} 2^{k-1} \ell_{k}$ and conclude that $m(\mathcal{C})>0$.
b) Give an example of a sequence $\left(\ell_{k}\right)_{k \geq 1}$ that verifies the hypothesis.

Solution.

a) The intervals removed are disjoint. If C_{n} denotes what is left in $[0,1]$ after the n-th process, then $m\left(C_{n}\right)=1-\sum_{k=1}^{n} 2^{k-1} l_{k}$. Furthermore, by construction we have $C_{n+1} \subset C_{n}$. Apply Theorem 2.19.
b) Let $l_{k}=4^{-k}=2^{-2 k}$. Then

$$
\sum_{k=1}^{\infty} 2^{k-1} 2^{-2 k}=\sum_{k=1}^{\infty} 2^{-1-k}=\frac{1}{2}
$$

Problem 3: Let $E_{1}, E_{2}, \ldots, E_{2014} \subset[0,1]$ be measurable sets such that $\sum_{k=1}^{2014} m\left(E_{k}\right)>2013$. Show that $m\left(\bigcap_{k=1}^{2014} E_{k}\right)>0$.
Solution. Let $F_{n}=[0,1] \backslash E_{n}$, for each $1 \leq n \leq 2014$. Notice that

$$
m\left(\bigcup_{n=1}^{2014} F_{n}\right)=1-m\left(\bigcap_{n=1}^{2014} E_{n}\right) .
$$

Use subadditivity and the inequality provided to show that $m\left(\bigcup_{n=1}^{2014} E_{n}\right)<1$. Combined with the result in the previous paragraph, $m\left(\bigcup_{n=1}^{2014} E_{n}\right)>0$.

Problem 4: Suppose $A \in \mathcal{M}$ and $m(A \Delta B)=0$. Show that $B \in \mathcal{M}$ and $m(A)=m(B)$.
Solution. See page 36 in the textbook.
Problem 5: Suppose $A \subset E \subset B$ where A and B are measurable sets of finite measure. Show that if $m(A)=m(B)$, then E is measurable.
Solution. Notice that

$$
m(B)=m(A)+m(B \backslash A)
$$

Since $m(A)=m(B)<\infty$, we can subtract this on both sides to get $m(B \backslash A)=0$. Since $E \backslash A \subset B \backslash A$, completeness of the Lebesgue measure shows that $E \backslash A$ is measurable, but then so is $E=A \cup(E \backslash A)$.

Problem 6: Suppose $E \in \mathcal{M}$ and $m(E)>0$. Prove that there exists an open interval I such that

$$
m(E \cap I)>0.99 \cdot m(I) .
$$

Hint: Argue by contradiction, using the regularity of Lebesgue measure. See Theorems 2.17, 2.29.

Solution. We'll show that in fact a more general result holds.
Claim 1 If $E \in \mathcal{M}$ and $m(E)>0$, then for any $0<\alpha<1$, there exists an interval I such that

$$
m(E \cap I)>\alpha \cdot m(I) .
$$

Proof of Claim 1. We'll use a slight modification of Theorem 2.29, which the reader can prove as an exercise. This is the

Lemma 1 If $E \in \mathcal{M}$, then

$$
m(E)=\sup \{m(K) \mid K \subset E, K \text { is compact }\}
$$

With this the reader can easily prove that if E has finite measure, we can find a finite union of disjoint open intervals $A=\bigcup_{n=1}^{N} I_{n}$ such that $m(E \Delta A)<\epsilon$ (consider a suitable open cover of K by open intervals, and extract a finite subcover).

Let $\epsilon=(1-\alpha) m(E)$, and ket A be the set given by the lemma. Since A is a measurable set,

$$
\begin{aligned}
m(E) & =m(E \cap A)+m\left(E \cap A^{c}\right) \\
m(E) & \leq m(E \cap A)+m\left(E \Delta A^{c}\right) \\
m(E) & <m(E \cap A)+(1-\alpha) m(E) \\
\alpha m(E) & <m(E \cap A)
\end{aligned}
$$

Since E is a measurable set,

$$
\begin{aligned}
& m(A)=m(A \cap E)+m\left(A \cap E^{c}\right) \\
& m(A) \leq m(A \cap E)+(1-\alpha) m(E) \\
& m(A)<m(A \cap E)+\frac{1-\alpha}{\alpha} m(E \cap A) \\
& m(A)<\frac{1}{\alpha} m(E \cap A)
\end{aligned}
$$

Now we notice that

$$
\begin{aligned}
m(A) & =\sum_{n=1}^{N} m\left(I_{n}\right) \\
m(A \cap E) & =\sum_{n=1}^{N} m\left(E \cap I_{n}\right)
\end{aligned}
$$

This yields,

$$
\sum_{n=1}^{N} m\left(I_{n}\right)<\frac{1}{\alpha}\left(\sum_{n=1}^{N} m\left(E \cap I_{n}\right)\right)
$$

And this proves the claim if $m(E)<\infty$ (argue by contradiction). Now if $m(E)=+\infty$, take $E^{\prime} \subset E$ with $m\left(E^{\prime}\right)<\infty$ and proceed in the same way to get the result for E^{\prime}. Apply monotonicity to get the claim in its general form.

