MAT324: Real Analysis - Fall 2016
 Assignment 4 - Solutions

Problem 4: Let $\left\{f_{n}\right\}$ be a sequence of measurable functions defined on \mathbb{R}. Show that the sets

$$
\begin{aligned}
& E_{1}=\left\{x \in \mathbb{R} \mid \lim _{n \rightarrow \infty} f_{n}(x) \text { exists and is finite }\right\} \\
& E_{2}=\left\{x \in \mathbb{R} \mid \lim _{n \rightarrow \infty} f_{n}(x)=\infty\right\} \\
& E_{3}=\left\{x \in \mathbb{R} \mid \lim _{n \rightarrow \infty} f_{n}(x)=-\infty\right\}
\end{aligned}
$$

are measurable.
Solution. Theorem 3.5 of the textbook says that if $\left\{f_{n}\right\}$ is a sequence of measurable functions, then the functions $g=\liminf _{n} f_{n}$ and $h=\lim \sup _{n} f_{n}$ are measurable.

Notice that $\lim _{n \rightarrow \infty} f_{n}(x)=\infty$, if and only if $\liminf _{n} f_{n}(x)=\infty$. Hence,

$$
E_{2}=\{x \mid g(x)=\infty\}=\bigcap_{k \in \mathbb{N}}\{x \mid g(x)>k\}
$$

is measurable. Likewise,

$$
E_{3}=\{x \mid h(x)=-\infty\}=\bigcap_{k \in \mathbb{N}}\{x \mid h(x)<-k\}
$$

is measurable.
Further, notice that $E_{1}=\{x \in \mid g(x)=h(x)\} \backslash\left(E_{2} \cup E_{3}\right)$, hence E_{1} is also measurable.
Problem 2: Let $\mathcal{C} \subset[0,1]$ be the Cantor middle-thirds set. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is defined by $f(x)=0$ for $x \in \mathcal{C}$ and $f(x)=k$ for all x in each interval of length 3^{-k} which has been removed from $[0,1]$ at the $k^{t h}$ step of the construction of the Cantor set. Show that f is measurable and calculate $\int_{[0,1]} f d m$.
Solution. Denote by $f_{n}:[0,1] \rightarrow \mathbb{R}$ the function constructed following way: If \mathcal{C}_{k} denotes the union of the intervals of lenght 3^{-k} removed in the k-th step of the construction of the Cantor middle-third set, let $f_{n}(x)=k$ for $x \in \mathcal{C}_{k}$, and zero elsewhere. Then f_{n} is a simple function (it only takes $(n+1)$ values). Furthermore, it is easy to see that $f_{n} \rightarrow f$ pointwise, hence f is a measurable function. In addition, the sequence f_{n} is increasing to f, hence the Monotone Convergence Theorem gives us

$$
\int_{[0,1]} f d m=\lim _{n \rightarrow \infty} \int_{[0,1]} f_{n} d m=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} k 2^{k-1} 3^{-k}\right)=\frac{1}{3} \lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n} k\left(\frac{2}{3}\right)^{k-1}\right]
$$

The answer up to this point is fine. With a little more effort, one can get the answer 3. This uses the following relation:

$$
\sum_{k=1}^{\infty} k x^{k-1}=\frac{1}{(1-x)^{2}} \quad \text { if } 0<|x|<1
$$

There are a number of ways one can use to prove this fact, including Riemman sums and Taylor's formula.

Problem 3: Let E be a measurable set. For a function $f: E \rightarrow \mathbb{R}$ we define the positive part $f^{+}: E \rightarrow \mathbb{R}, f^{+}(x)=\max (f(x), 0)$, and the negative part $f^{-}: E \rightarrow \mathbb{R}, f^{-}(x)=\min (f(x), 0)$. Prove that f is measurable if and only if both f^{+}and f^{-}are measurable.

Proof. One could directly apply the definition of a measurable function or use Theorem 3.5 for the maximum/minimum of two functions $f(x)$ and $g(x)=0$.

Problem 4: Prove that if f is integrable on \mathbb{R} and $\int_{E} f(x) d m \geq 0$ for every measurable set E, then $f(x) \geq 0$ a.e. x.
Solution. Since f is integrable, it is in particular measurable. Let E be the measurable set $E=\{x \mid f(x)<0\}$. By hypothesis, and using monotonicity of the integral

$$
0 \leq \int_{E} f(x) d m \leq \int_{E} 0 d m=0 \Rightarrow \int_{E} f(x) d m=0
$$

Notice that $-f$ is a positive function on E, and

$$
\int_{E}(-f(x)) d m=0
$$

Now Theorem 4.4 implies that $-f$ is zero almost everywhere. By the definition of E, this happens if and only if E has zero measure.

Problem 5: Let E be a measurable set. Suppose $f \geq 0$ and let $E_{k}=\left\{x \in E \mid 2^{k}<f(x) \leq 2^{k+1}\right\}$ for any integer k. If f is finite almost everywhere, then

$$
\bigcup_{k=-\infty}^{\infty} E_{k}=\{x \in E \mid f(x)>0\}
$$

and the sets E_{k} are disjoint.
(a) Prove that f is integrable if and only if $\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{k}\right)<\infty$.
(b) Let $a>0$ and consider the function

$$
f(x)= \begin{cases}|x|^{-a} & \text { if }|x| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Use part a) to show that f is integrable on \mathbb{R} if and only if $a<1$.

Solution.
(a) Suppose f is integrable. Since $f(x)>2^{k}$ on E_{k}, we have

$$
\int_{E_{k}} f d m \geq \int_{E_{k}} 2^{k} d m=2^{k} m\left(E_{k}\right)
$$

Therefore, by the comparison test,

$$
\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{k}\right) \leq \sum_{k=-\infty}^{\infty} \int_{E_{k}} f d m=\int_{\mathbb{R}} f d m<\infty
$$

Next suppose $\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{k}\right)<\infty$. Then $2\left(\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{k}\right)\right)=\sum_{k=-\infty}^{\infty} 2^{k+1} m\left(E_{k}\right)<\infty$. Since $f(x) \leq 2^{k+1}$ on E_{k}, we have

$$
\int_{E_{k}} f d m \leq \int_{E_{k}} 2^{k+1} d m=2^{k+1} m\left(E_{k}\right)
$$

Then

$$
\int_{\mathbb{R}} f d m=\sum_{k=-\infty}^{\infty} \int_{E_{k}} f d m \leq \sum_{k=-\infty}^{\infty} 2^{k+1} m\left(E_{k}\right)<\infty
$$

and f is integrable.
(b) Following part a), we need to find the measure of the sets E_{k}. If $K \geq 0$, then

$$
2^{k}<|x|^{-a} \leq 2^{k+1}
$$

and

$$
\begin{aligned}
& 2^{-k}>|x|^{a} \geq 2^{-k-1} \\
& 2^{\frac{-k}{a}}>|x| \geq 2^{\frac{-k-1}{a}}
\end{aligned}
$$

Then $m\left(E_{k}\right)=2 \cdot 2^{\frac{-k-1}{a}}\left(2^{\frac{1}{a}}-1\right)$. If $k<0$, then $2^{k}<|x|^{-a} \leq 2^{k+1}$ implies $|x| \geq 1$, hence $m\left(E_{k}\right)=0$, if $k<0$. Thus,

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{k}\right) & =\sum_{k=-0}^{\infty} 2^{k+1} \cdot 2^{\frac{-k-1}{a}}\left(2^{\frac{1}{a}}-1\right) \\
\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{k}\right) & =\left(2^{\frac{1}{a}}-1\right) \sum_{k=0}^{\infty} 2^{\frac{(k+1)(a-1)}{a}} \\
\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{k}\right) & =\left(2^{\frac{1}{a}}-1\right) \sum_{k=0}^{\infty}\left[2^{\frac{(a-1)}{a}}\right]^{(k+1)}
\end{aligned}
$$

Notice that this geometric series converge if and only if $2^{\frac{(a-1)}{a}}<1$, and this happens if and only if $a<1$.

