
MAT324: Real Analysis – Fall 2016
Assignment 4 – Solutions

Problem 4: Let {fn} be a sequence of measurable functions defined on R. Show that the sets

E1 = {x ∈ R | lim
n→∞

fn(x) exists and is finite}

E2 = {x ∈ R | lim
n→∞

fn(x) =∞}

E3 = {x ∈ R | lim
n→∞

fn(x) = −∞}

are measurable.

Solution. Theorem 3.5 of the textbook says that if {fn} is a sequence of measurable functions,
then the functions g = lim infn fn and h = lim supn fn are measurable.

Notice that limn→∞ fn(x) =∞, if and only if lim infn fn(x) =∞. Hence,

E2 = {x|g(x) =∞} =
⋂
k∈N
{x|g(x) > k}

is measurable. Likewise,

E3 = {x|h(x) = −∞} =
⋂
k∈N
{x|h(x) < −k}

is measurable.
Further, notice that E1 = {x ∈ |g(x) = h(x)} \ (E2 ∪ E3), hence E1 is also measurable. �

Problem 2: Let C ⊂ [0, 1] be the Cantor middle-thirds set. Suppose that f : [0, 1]→ R is defined
by f(x) = 0 for x ∈ C and f(x) = k for all x in each interval of length 3−k which has been removed
from [0, 1] at the kth step of the construction of the Cantor set. Show that f is measurable and
calculate

∫
[0,1] fdm.

Solution. Denote by fn : [0, 1] → R the function constructed following way: If Ck denotes the
union of the intervals of lenght 3−k removed in the k-th step of the construction of the Cantor
middle-third set, let fn(x) = k for x ∈ Ck, and zero elsewhere. Then fn is a simple function (it only
takes (n+ 1) values). Furthermore, it is easy to see that fn → f pointwise, hence f is a measurable
function. In addition, the sequence fn is increasing to f , hence the Monotone Convergence Theorem
gives us∫

[0,1]
fdm = lim

n→∞

∫
[0,1]

fndm = lim
n→∞

(
n∑

k=1

k2k−13−k

)
=

1

3
lim
n→∞

[
n∑

k=1

k

(
2

3

)k−1
]

The answer up to this point is fine. With a little more effort, one can get the answer 3. This
uses the following relation:

∞∑
k=1

kxk−1 =
1

(1− x)2
if 0 < |x| < 1
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There are a number of ways one can use to prove this fact, including Riemman sums and Taylor‘s
formula. �

Problem 3: Let E be a measurable set. For a function f : E → R we define the positive part
f+ : E → R, f+(x) = max(f(x), 0), and the negative part f− : E → R, f−(x) = min(f(x), 0).
Prove that f is measurable if and only if both f+ and f− are measurable.

Proof. One could directly apply the definition of a measurable function or use Theorem 3.5 for
the maximum/minimum of two functions f(x) and g(x) = 0. �

Problem 4: Prove that if f is integrable on R and
∫
E f(x)dm ≥ 0 for every measurable set E,

then f(x) ≥ 0 a.e. x.

Solution. Since f is integrable, it is in particular measurable. Let E be the measurable set
E = {x|f(x) < 0}. By hypothesis, and using monotonicity of the integral

0 ≤
∫
E
f(x)dm ≤

∫
E

0dm = 0⇒
∫
E
f(x)dm = 0

Notice that −f is a positive function on E, and∫
E

(−f(x))dm = 0.

Now Theorem 4.4 implies that −f is zero almost everywhere. By the definition of E, this happens
if and only if E has zero measure. �

Problem 5: Let E be a measurable set. Suppose f ≥ 0 and let Ek = {x ∈ E | 2k < f(x) ≤ 2k+1}
for any integer k. If f is finite almost everywhere, then

∞⋃
k=−∞

Ek = {x ∈ E | f(x) > 0},

and the sets Ek are disjoint.

(a) Prove that f is integrable if and only if
∞∑

k=−∞
2km(Ek) <∞.

(b) Let a > 0 and consider the function

f(x) =

{
|x|−a if |x| ≤ 1

0 otherwise.

Use part a) to show that f is integrable on R if and only if a < 1.

Solution.

(a) Suppose f is integrable. Since f(x) > 2k on Ek, we have∫
Ek

fdm ≥
∫
Ek

2kdm = 2km(Ek)
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Therefore, by the comparison test,

∞∑
k=−∞

2km(Ek) ≤
∞∑

k=−∞

∫
Ek

fdm =

∫
R
fdm <∞

Next suppose
∞∑

k=−∞
2km(Ek) < ∞. Then 2

(
∞∑

k=−∞
2km(Ek)

)
=

∞∑
k=−∞

2k+1m(Ek) < ∞.

Since f(x) ≤ 2k+1 on Ek, we have∫
Ek

fdm ≤
∫
Ek

2k+1dm = 2k+1m(Ek).

Then ∫
R
fdm =

∞∑
k=−∞

∫
Ek

fdm ≤
∞∑

k=−∞
2k+1m(Ek) <∞,

and f is integrable.

(b) Following part a), we need to find the measure of the sets Ek. If K ≥ 0, then

2k < |x|−a ≤ 2k+1,

and
2−k > |x|a ≥ 2−k−1

2
−k
a > |x| ≥ 2

−k−1
a

Then m(Ek) = 2 · 2
−k−1

a (2
1
a − 1). If k < 0, then 2k < |x|−a ≤ 2k+1 implies |x| ≥ 1, hence

m(Ek) = 0, if k < 0. Thus,

∞∑
k=−∞

2km(Ek) =
∞∑

k=−0
2k+1 · 2

−k−1
a (2

1
a − 1)

∞∑
k=−∞

2km(Ek) = (2
1
a − 1)

∞∑
k=0

2
(k+1)(a−1)

a

∞∑
k=−∞

2km(Ek) = (2
1
a − 1)

∞∑
k=0

[
2

(a−1)
a

](k+1)

Notice that this geometric series converge if and only if 2
(a−1)

a < 1, and this happens if and
only if a < 1. �
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