MAT324: Real Analysis - Fall 2016
 Assignment 6

Due Thursday, November 3, in class.
Problem 1: Let $f: E \rightarrow[0, \infty)$ be a Lebesgue integrable function and suppose $\int_{E} f d m=C$ and $0<C<\infty$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{E} n \ln \left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right) d m= \begin{cases}\infty, & \text { for } \alpha \in(0,1) \\ C, & \text { for } \alpha=1 \\ 0, & \text { for } 1<\alpha<\infty\end{cases}
$$

Hint: For $\alpha=1$, use the inequality $e^{x} \geq x+1$, for all $x \geq 0$. For $\alpha>1$, use $(1+x)^{\alpha} \geq 1+x^{\alpha}$. DCT and the Fatou Lemma might prove useful.

Problem 2: Consider the sequence of functions

$$
f_{n}(x)=\frac{1}{\sqrt{x}} \chi_{\left(0, \frac{1}{n}\right]}(x), \quad n \geq 1 .
$$

a) Is f_{n} in $L^{1}(0,1]$?
b) Is the sequence Cauchy in $L^{1}(0,1]$?
c) Is f_{n} in $L^{p}(0,1]$ for $p \geq 4$?

Problem 3: Consider the sequence $f_{n}=n \chi_{\left[n+\frac{1}{n^{3}}, n+\frac{2}{\left.n^{3}\right]}\right.}, n \geq 1$. Determine whether the following are true or false and explain your answers.
a) $\left(f_{n}\right)_{n \geq 1}$ is Cauchy as a sequence of $L^{1}(0, \infty)$.
b) $f(x)=\sum_{n=2}^{\infty} f_{n}(x)$ belongs to $L^{1}(\mathbb{R})$.
b) $f(x)=\sum_{n=2}^{\infty} f_{n}(x)$ belongs to $L^{2}(\mathbb{R})$.
c) $f_{n} \in L^{2}(\mathbb{R})$ for each $n \geq 1$.

Problem 4: Let $(X,\|\cdot\|)$ be a normed vector space. Show that X is complete if and only if whenever $\sum_{j=1}^{\infty}\left\|x_{j}\right\|<\infty$, then $\sum_{j=1}^{\infty} x_{j}$ converges to an element $x^{*} \in X$.
Hint: Rework the proof of the completeness theorem for L^{1}.

