MAT324: Real Analysis – Fall 2016 ASSIGNMENT 6 – SOLUTIONS

Problem 1: Let $f : E \to [0, \infty)$ be a Lebesgue integrable function and suppose $\int_E f \, dm = C$ and $0 < C < \infty$. Prove that

$$\lim_{n \to \infty} \int_E n \ln\left(1 + \left(\frac{f(x)}{n}\right)^{\alpha}\right) dm = \begin{cases} \infty, & \text{for } \alpha \in (0,1)\\ C, & \text{for } \alpha = 1\\ 0, & \text{for } 1 < \alpha < \infty \end{cases}$$

Hint: For $\alpha = 1$, use the inequality $e^x \ge x + 1$, for all $x \ge 0$. For $\alpha > 1$, use $(1 + x)^{\alpha} \ge 1 + x^{\alpha}$. DCT and the Fatou Lemma might prove useful.

SOLUTION. There are three cases to consider. First, suppose that $0 < \alpha < 1$. Then, by Fatou's Lemma, we get

$$\lim_{n \to \infty} \int_E n \ln\left(1 + \left(\frac{f(x)}{n}\right)^{\alpha}\right) dm \ge \int_E \lim_{n \to \infty} n \ln\left(1 + \left(\frac{f(x)}{n}\right)^{\alpha}\right) dm = \infty,$$

because

$$\lim_{n \to \infty} n \ln \left(1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right) = \lim_{n \to \infty} n^{1-\alpha} f(x)^{\alpha} = \infty.$$

Suppose $\alpha = 1$. Then $n \ln \left(1 + \frac{f(x)}{n}\right) \le n \frac{f(x)}{n} = f(x)$, which is integrable. We can apply DCT and get

$$\lim_{n \to \infty} \int_E n \ln\left(1 + \frac{f(x)}{n}\right) dm = \int_E \lim_{n \to \infty} n \ln\left(1 + \frac{f(x)}{n}\right) dm = \int_E f(x) dx = C.$$

Finally, suppose $\alpha > 1$. Then, using the inequality $(1 + x)^{\alpha} \ge 1 + x^{\alpha}$, we get

$$n\ln\left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right) \le \alpha n\ln\left(1+\frac{f(x)}{n}\right) \le \alpha f(x),$$

which is integrable. The last inequality follows from the fact that the sequence $\left(1 + \frac{f(x)}{n}\right)^n$ is increasing to $e^{f(x)}$ so $\ln\left(1 + \frac{f(x)}{n}\right) \leq f(x)$. We can therefore apply DCT and interchange the integral and the limit. We get that the limit is 0 because

$$\lim_{n \to \infty} n \ln \left(1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right) = \lim_{n \to \infty} n^{-(\alpha - 1)} f(x)^{\alpha} = 0.$$

Problem 2: Consider the sequence of functions

$$f_n(x) = \frac{1}{\sqrt{x}}\chi_{(0,\frac{1}{n}]}(x), \quad n \ge 1.$$

a) Is f_n in $L^1(0,1]$?

- b) Is the sequence Cauchy in $L^1(0, 1]$?
- c) Is f_n in $L^p(0,1]$ for $p \ge 4$?

SOLUTION.

- a) Yes, it is. Notice that $||f_n||_1 = \frac{1}{2\sqrt{n}}$.
- b) Yes, it is. In fact, it converges to the zero function.
- c) No. If $p \ge 4$, then

$$\int_{(0,1)} |f_n(x)|^p dx = \int_{(0,\frac{1}{n}]} x^{-\frac{p}{2}} dx \ge \int_{(0,\frac{1}{n}]} x^{-2} dx = +\infty$$

Problem 3: Consider the sequence $f_n = n\chi_{[n+\frac{1}{n^3}, n+\frac{2}{n^3}]}$, $n \ge 1$. Determine whether the following are true or false and explain your answers.

- a) $(f_n)_{n\geq 1}$ is Cauchy as a sequence of $L^1(0,\infty)$.
- b) $f(x) = \sum_{n=2}^{\infty} f_n(x)$ belongs to $L^1(\mathbb{R})$.
- c) $f(x) = \sum_{n=2}^{\infty} f_n(x)$ belongs to $L^2(\mathbb{R})$.
- d) $f_n \in L^2(\mathbb{R})$ for each $n \ge 1$.

Solution.

- a) Yes, the sequence is Cauchy. Note that $||f_n||_1 = \frac{1}{n^2}$.
- b) Yes, $f \in L^1(\mathbb{R})$. Note that $||f||_1$ behaves as $\sum \frac{1}{n^2}$, which converges.
- c) No, $f \notin L^2(\mathbb{R})$. Note that $||f||_2$ behaves as $\sum \frac{1}{n}$, which diverges.
- d) Yes, each f_n belongs to $L^2(\mathbb{R})$.

Problem 4: Let $(X, \|\cdot\|)$ be a normed vector space. Show that X is complete if and only if whenever $\sum_{j=1}^{\infty} \|x_j\| < \infty$, then $\sum_{j=1}^{\infty} x_j$ converges to an element $x^* \in X$. *Hint:* Rework the proof of the completeness theorem for L^1 . SOLUTION. Suppose that X is complete and $\sum_{j=1}^{\infty} \|x_j\| < \infty$. Let $y_n = \sum_{j=1}^n x_j$. Then $(y_n)_{n\geq 1}$ is Cauchy because the tail $\sum_{j=n}^{\infty} \|x_j\|$ can be made arbitrarily small. Since X is complete, we get that

 y_n converges to, say, x^* and x^* belongs to X, which proves the claim. The converse implication is the same as the proof of Theorem 5.5 from the textbook.