MAT324: Real Analysis - Fall 2016

Assignment 6 - Solutions

Problem 1: Let $f: E \rightarrow[0, \infty)$ be a Lebesgue integrable function and suppose $\int_{E} f d m=C$ and $0<C<\infty$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{E} n \ln \left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right) d m= \begin{cases}\infty, & \text { for } \alpha \in(0,1) \\ C, & \text { for } \alpha=1 \\ 0, & \text { for } 1<\alpha<\infty\end{cases}
$$

Hint: For $\alpha=1$, use the inequality $e^{x} \geq x+1$, for all $x \geq 0$. For $\alpha>1$, use $(1+x)^{\alpha} \geq 1+x^{\alpha}$. DCT and the Fatou Lemma might prove useful.

Solution. There are three cases to consider. First, suppose that $0<\alpha<1$. Then, by Fatou's Lemma, we get

$$
\lim _{n \rightarrow \infty} \int_{E} n \ln \left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right) d m \geq \int_{E} \lim _{n \rightarrow \infty} n \ln \left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right) d m=\infty
$$

because

$$
\lim _{n \rightarrow \infty} n \ln \left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right)=\lim _{n \rightarrow \infty} n^{1-\alpha} f(x)^{\alpha}=\infty
$$

Suppose $\alpha=1$. Then $n \ln \left(1+\frac{f(x)}{n}\right) \leq n \frac{f(x)}{n}=f(x)$, which is integrable. We can apply DCT and get

$$
\lim _{n \rightarrow \infty} \int_{E} n \ln \left(1+\frac{f(x)}{n}\right) d m=\int_{E} \lim _{n \rightarrow \infty} n \ln \left(1+\frac{f(x)}{n}\right) d m=\int_{E} f(x) d x=C .
$$

Finally, suppose $\alpha>1$. Then, using the inequality $(1+x)^{\alpha} \geq 1+x^{\alpha}$, we get

$$
n \ln \left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right) \leq \alpha n \ln \left(1+\frac{f(x)}{n}\right) \leq \alpha f(x),
$$

which is integrable. The last inequality follows from the fact that the sequence $\left(1+\frac{f(x)}{n}\right)^{n}$ is increasing to $e^{f(x)}$ so $\ln \left(1+\frac{f(x)}{n}\right) \leq f(x)$. We can therefore apply DCT and interchange the integral and the limit. We get that the limit is 0 because

$$
\lim _{n \rightarrow \infty} n \ln \left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right)=\lim _{n \rightarrow \infty} n^{-(\alpha-1)} f(x)^{\alpha}=0 .
$$

Problem 2: Consider the sequence of functions

$$
f_{n}(x)=\frac{1}{\sqrt{x}} \chi_{\left(0, \frac{1}{n}\right]}(x), \quad n \geq 1 .
$$

a) Is f_{n} in $L^{1}(0,1]$?
b) Is the sequence Cauchy in $L^{1}(0,1]$?
c) Is f_{n} in $L^{p}(0,1]$ for $p \geq 4$?

Solution.
a) Yes, it is. Notice that $\left\|f_{n}\right\|_{1}=\frac{1}{2 \sqrt{n}}$.
b) Yes, it is. In fact, it converges to the zero function.
c) No. If $p \geq 4$, then

$$
\int_{(0,1)}\left|f_{n}(x)\right|^{p} d x=\int_{\left(0, \frac{1}{n}\right]} x^{-\frac{p}{2}} d x \geq \int_{\left(0, \frac{1}{n}\right]} x^{-2} d x=+\infty
$$

Problem 3: Consider the sequence $f_{n}=n \chi_{\left[n+\frac{1}{n^{3}}, n+\frac{2}{\left.n^{3}\right]}\right.}, n \geq 1$. Determine whether the following are true or false and explain your answers.
a) $\left(f_{n}\right)_{n \geq 1}$ is Cauchy as a sequence of $L^{1}(0, \infty)$.
b) $f(x)=\sum_{n=2}^{\infty} f_{n}(x)$ belongs to $L^{1}(\mathbb{R})$.
c) $f(x)=\sum_{n=2}^{\infty} f_{n}(x)$ belongs to $L^{2}(\mathbb{R})$.
d) $f_{n} \in L^{2}(\mathbb{R})$ for each $n \geq 1$.

Solution.

a) Yes, the sequence is Cauchy. Note that $\left\|f_{n}\right\|_{1}=\frac{1}{n^{2}}$.
b) Yes, $f \in L^{1}(\mathbb{R})$. Note that $\|f\|_{1}$ behaves as $\sum \frac{1}{n^{2}}$, which converges.
c) No, $f \notin L^{2}(\mathbb{R})$. Note that $\|f\|_{2}$ behaves as $\sum \frac{1}{n}$, which diverges.
d) Yes, each f_{n} belongs to $L^{2}(\mathbb{R})$.

Problem 4: Let $(X,\|\cdot\|)$ be a normed vector space. Show that X is complete if and only if whenever $\sum_{j=1}^{\infty}\left\|x_{j}\right\|<\infty$, then $\sum_{j=1}^{\infty} x_{j}$ converges to an element $x^{*} \in X$.
Hint: Rework the proof of the completeness theorem for L^{1}.
Solution. Suppose that X is complete and $\sum_{j=1}^{\infty}\left\|x_{j}\right\|<\infty$. Let $y_{n}=\sum_{j=1}^{n} x_{j}$. Then $\left(y_{n}\right)_{n \geq 1}$ is Cauchy because the tail $\sum_{j=n}^{\infty}\left\|x_{j}\right\|$ can be made arbitrarily small. Since X is complete, we get that y_{n} converges to, say, x^{*} and x^{*} belongs to X, which proves the claim. The converse implication is the same as the proof of Theorem 5.5 from the textbook.

