MAT324: Real Analysis – Fall 2016 ASSIGNMENT 7 – SOLUTIONS

Problem 1: Which of the following statements are true and which are false? Explain.

- a) $L^1(\mathbb{R}) \subset L^2(\mathbb{R})$
- b) $L^2(\mathbb{R}) \subset L^1(\mathbb{R})$
- c) $L^1[3,5] \subset L^2[3,5]$
- d) $L^2[3,5] \subset L^1[3,5]$

SOLUTION.

a) The statement is false. The function

$$f(x) = \sum_{n=2}^{\infty} n\chi_{[n+\frac{1}{n^3}, n+\frac{2}{n^3}]}$$

belongs to $L^1(\mathbb{R}) \setminus L^2(\mathbb{R})$

b) The statement is false. Indeed, the function

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n} \chi_{[n,n+1)}$$

belongs to $L^2(\mathbb{R}) \setminus L^1(\mathbb{R})$.

c) The statement is false. To prove it, modify the function on part (a) in the following way. Let $C = \sum_{n=1}^{\infty} n^{-3}$. Define $s_0 = 3$, $s_n = s_{n-1} + \frac{1}{Cn^3}$, and $E_n = [s_{n-1}, s_n]$, for $n \in \mathbb{N}$ (notice that the E_n intersect only at the endpoints). Then

$$g(x) = \sum_{k=1}^{\infty} k \chi_{E_k} \in L^1[3,5] \setminus L^2[3,5]$$

d) It is true. Check proposition 5.3 on textbook.

Problem 2: Let f be a positive measurable function defined on a measurable set $E \subset \mathbb{R}$ with $m(E) < \infty$. Prove that

$$\left(\int_E f \, dm\right) \left(\int_E \frac{1}{f} \, dm\right) \ge m(E)^2.$$

Hint: Apply Cauchy-Schwarz inequality.

SOLUTION. Follow the hint, if f > 0 then:

$$\left(\int_E (\sqrt{f})^2 \, dm\right)^{\frac{1}{2}} \left(\int_E \frac{1}{(\sqrt{f})^2} \, dm\right)^{\frac{1}{2}} \ge \left(\int_E 1 \, dm\right) = m(E).$$

Problem 3: Let $f_n \in L^1(0,1) \cap L^2(0,1)$ for all $n \ge 1$. Prove or disprove the following:

- a) If $||f_n||_1 \to 0$ then $||f_n||_2 \to 0$.
- b) If $||f_n||_2 \to 0$ then $||f_n||_1 \to 0$.

SOLUTION.

- a) Consider the sequence of functions $f_n(x) = n^2 \chi_{[0,\frac{1}{n^3}]}$. Then $||f_n||_1 = n^{-1}$, so $||f_n||_1 \to 0$. On the other hand, $||f_n||_2 = \sqrt{n} \to \infty$.
- b) Cauchy-Schwarz inequality gives $||f_n||_1 \leq \sqrt{||f_n||_2}$. This proves the statement.

Problem 4: Show that it is impossible to define an inner product on the space C([0,1]) of continuous function $f:[0,1] \to \mathbb{R}$ which will induce the sup norm $||f||_{\sup} = \sup\{|f(x): x \in [0,1]\}$.

SOLUTION. Recall that if a norm $\|\cdot\|$ on a space *E* is induced by an inner product, then it satisfies the parallelogram law:

$$||x - y||^{2} + ||x + y||^{2} = 2(||x||^{2} + ||y||^{2}), \quad \forall \ x, y \in E$$

Consider the functions $f, g, \in \mathcal{C}([0, 1])$, defined by

$$f(x) = \begin{cases} 1 - 2x & \text{if } x \in [0, \frac{1}{2}] \\ 0 & \text{if } x \in [\frac{1}{2}, 1] \end{cases}$$

and

$$g(x) = \begin{cases} 0 & \text{if } x \in [0, \frac{1}{2}] \\ 2x - 1 & \text{if } x \in [\frac{1}{2}, 1] \end{cases}$$

Check that the parallelogram law is not satisfied.

Problem 5: Decide whether each of the following is Cauchy as a sequence in $L^2(0,\infty)$.

a)
$$f_n = \frac{1}{n^2} \chi_{[0, \frac{1}{n^3}]}$$

b) $f_n = \frac{1}{x^2} \chi_{(n, \infty)}.$

SOLUTION. See Exercise 5.3 from the textbook.