MAT324: Real Analysis - Fall 2016

Assignment 7 - Solutions

Problem 1: Which of the following statements are true and which are false? Explain.
a) $L^{1}(\mathbb{R}) \subset L^{2}(\mathbb{R})$
b) $L^{2}(\mathbb{R}) \subset L^{1}(\mathbb{R})$
c) $L^{1}[3,5] \subset L^{2}[3,5]$
d) $L^{2}[3,5] \subset L^{1}[3,5]$

Solution.
a) The statement is false. The function

$$
f(x)=\sum_{n=2}^{\infty} n \chi_{\left[n+\frac{1}{n^{3}}, n+\frac{2}{n^{3}}\right]}
$$

belongs to $L^{1}(\mathbb{R}) \backslash L^{2}(\mathbb{R})$
b) The statement is false. Indeed, the function

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{n} \chi_{[n, n+1)}
$$

belongs to $L^{2}(\mathbb{R}) \backslash L^{1}(\mathbb{R})$.
c) The statement is false. To prove it, modify the function on part (a) in the following way.

Let $C=\sum_{n=1}^{\infty} n^{-3}$. Define $s_{0}=3, s_{n}=s_{n-1}+\frac{1}{C n^{3}}$, and $E_{n}=\left[s_{n-1}, s_{n}\right]$, for $n \in \mathbb{N}$ (notice that the E_{n} intersect only at the endpoints). Then

$$
g(x)=\sum_{k=1}^{\infty} k \chi_{E_{k}} \in L^{1}[3,5] \backslash L^{2}[3,5]
$$

d) It is true. Check proposition 5.3 on textbook.

Problem 2: Let f be a positive measurable function defined on a measurable set $E \subset \mathbb{R}$ with $m(E)<\infty$. Prove that

$$
\left(\int_{E} f d m\right)\left(\int_{E} \frac{1}{f} d m\right) \geq m(E)^{2} .
$$

Hint: Apply Cauchy-Schwarz inequality.
Solution. Follow the hint, if $f>0$ then:

$$
\left(\int_{E}(\sqrt{f})^{2} d m\right)^{\frac{1}{2}}\left(\int_{E} \frac{1}{(\sqrt{f})^{2}} d m\right)^{\frac{1}{2}} \geq\left(\int_{E} 1 d m\right)=m(E) .
$$

Problem 3: Let $f_{n} \in L^{1}(0,1) \cap L^{2}(0,1)$ for all $n \geq 1$. Prove or disprove the following:
a) If $\left\|f_{n}\right\|_{1} \rightarrow 0$ then $\left\|f_{n}\right\|_{2} \rightarrow 0$.
b) If $\left\|f_{n}\right\|_{2} \rightarrow 0$ then $\left\|f_{n}\right\|_{1} \rightarrow 0$.

Solution.

a) Consider the sequence of functions $f_{n}(x)=n^{2} \chi_{\left[0, \frac{1}{n^{3}}\right]}$. Then $\left\|f_{n}\right\|_{1}=n^{-1}$, so $\left\|f_{n}\right\|_{1} \rightarrow 0$. On the other hand, $\left\|f_{n}\right\|_{2}=\sqrt{n} \rightarrow \infty$.
b) Cauchy-Schwarz inequality gives $\left\|f_{n}\right\|_{1} \leq \sqrt{\left\|f_{n}\right\|_{2}}$. This proves the statement.

Problem 4: Show that it is impossible to define an inner product on the space $\mathcal{C}([0,1])$ of continuous function $f:[0,1] \rightarrow \mathbb{R}$ which will induce the sup norm $\|f\|_{\sup }=\sup \{\mid f(x): x \in[0,1]\}$.

Solution. Recall that if a norm $\|\cdot\|$ on a space E is induced by an inner product, then it satisfies the parallelogram law:

$$
\|x-y\|^{2}+\|x+y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right), \quad \forall x, y \in E
$$

Consider the functions $f, g, \in \mathcal{C}([0,1])$, defined by

$$
f(x)=\left\{\begin{array}{cll}
1-2 x & \text { if } & x \in\left[0, \frac{1}{2}\right] \\
0 & \text { if } & x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

and

$$
g(x)=\left\{\begin{array}{cll}
0 & \text { if } & x \in\left[0, \frac{1}{2}\right] \\
2 x-1 & \text { if } & x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Check that the parallelogram law is not satisfied.
Problem 5: Decide whether each of the following is Cauchy as a sequence in $L^{2}(0, \infty)$.
a) $f_{n}=\frac{1}{n^{2}} \chi_{\left[0, \frac{1}{n^{3}}\right]}$
b) $f_{n}=\frac{1}{x^{2}} \chi_{(n, \infty)}$.

Solution. See Exercise 5.3 from the textbook.

