MAT324: Real Analysis - Fall 2016
 Assignment 8

Due Tuesday, November 22, in class.
Problem 1: Suppose $f \in L^{2}(\mathbb{R}) \cap L^{4}(\mathbb{R})$. Prove that f also belongs to $L^{3}(\mathbb{R})$.

Problem 2: Determine if the following functions belong to $L^{\infty}(\mathbb{R})$.
a) $f(x)=\frac{1}{x^{2}} \chi_{(0, n]}$ for some $n>0$.
b) $f(x)=\frac{1}{\sqrt{x}} \chi_{\left[n, n^{2}\right]}$ for some $n>0$.

Problem 3: Consider the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{x^{2}} & \text { if } 0<y<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Consider the sets $E_{k}=\{(x, y) \in[0,1] \times[0,1]: f(x, y) \in[k, k+1)\}$. Consider non-negative simple functions $\varphi_{n}=\sum_{k=0}^{n} k \chi_{E_{k}}$ for $k \geq 1$, and let $\varphi=\sum_{k=0}^{\infty} k \chi_{E_{k}}$. Using the definition of the integral, compute $\int_{[0,1] \times[0,1]} \varphi_{n} d m_{2}$ and $\int_{[0,1] \times[0,1]} \varphi d m_{2}$. Deduce that $f \notin L^{1}([0,1] \times[0,1])$.

Problem 4: Consider the measure spaces $\left(X, \mathcal{F}_{1}, \mu\right)$ and $\left(Y, \mathcal{F}_{2}, \nu\right)$ where $X=Y=[0,1]$, $\mathcal{F}_{1}=\mathcal{F}_{2}=\mathcal{B}_{[0,1]}$ is the σ-algebra of Borel subsets of $[0,1]$. Let μ be the Lebesgue measure on \mathcal{F}_{1} and ν be the counting measure on \mathcal{F}_{2}, that is $\nu(E)=$ number of elements in E if E is finite and $\nu(E)=\infty$ otherwise. Let $D=\{(x, y) \mid x=y\}$ and consider

$$
D_{n}=\bigcup_{k=1}^{n}\left(\left[\frac{k-1}{n}, \frac{k}{n}\right] \times\left[\frac{k-1}{n}, \frac{k}{n}\right]\right)
$$

a) Show that $D=\bigcap_{n=1}^{\infty} D_{n}$ and that $D \in \mathcal{F}_{1} \times \mathcal{F}_{2}$.
b) Compute $\int_{0}^{1} \int_{0}^{1} \chi_{D}(x, y) d \mu(x) d \nu(y)$ and $\int_{0}^{1} \int_{0}^{1} \chi_{D}(x, y) d \nu(y) d \mu(x)$ and show that they are not equal.
Recall that χ_{D} is the characteristic function of the set D and $\chi_{D}(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}$
Remark: This problem does not contradict Theorem 6.12 since ν is not σ-finite.

