MAT324: Real Analysis – Fall 2016 ASSIGNMENT 8

Due Tuesday, November 22, in class.

Problem 1: Suppose $f \in L^2(\mathbb{R}) \cap L^4(\mathbb{R})$. Prove that f also belongs to $L^3(\mathbb{R})$.

Problem 2: Determine if the following functions belong to $L^{\infty}(\mathbb{R})$.

- a) $f(x) = \frac{1}{x^2} \chi_{(0,n]}$ for some n > 0.
- b) $f(x) = \frac{1}{\sqrt{x}} \chi_{[n,n^2]}$ for some n > 0.

Problem 3: Consider the function

$$f(x,y) = \begin{cases} \frac{1}{x^2} & \text{if } 0 < y < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

Consider the sets $E_k = \{(x, y) \in [0, 1] \times [0, 1] : f(x, y) \in [k, k+1)\}$. Consider non-negative simple functions $\varphi_n = \sum_{k=0}^n k \chi_{E_k}$ for $k \ge 1$, and let $\varphi = \sum_{k=0}^\infty k \chi_{E_k}$. Using the definition of the integral, compute $\int_{[0,1]\times[0,1]} \varphi_n \ dm_2$ and $\int_{[0,1]\times[0,1]} \varphi \ dm_2$. Deduce that $f \notin L^1([0,1]\times[0,1])$.

Problem 4: Consider the measure spaces (X, \mathcal{F}_1, μ) and (Y, \mathcal{F}_2, ν) where X = Y = [0, 1], $\mathcal{F}_1 = \mathcal{F}_2 = \mathcal{B}_{[0,1]}$ is the σ -algebra of Borel subsets of [0, 1]. Let μ be the Lebesgue measure on \mathcal{F}_1 and ν be the counting measure on \mathcal{F}_2 , that is $\nu(E)$ = number of elements in E if E is finite and $\nu(E) = \infty$ otherwise. Let $D = \{(x, y) \mid x = y\}$ and consider

$$D_n = \bigcup_{k=1}^n \left(\left[\frac{k-1}{n}, \frac{k}{n} \right] \times \left[\frac{k-1}{n}, \frac{k}{n} \right] \right)$$

a) Show that $D = \bigcap_{n=1}^{\infty} D_n$ and that $D \in \mathcal{F}_1 \times \mathcal{F}_2$.

b) Compute $\int_0^1 \int_0^1 \chi_D(x,y) d\mu(x) d\nu(y)$ and $\int_0^1 \int_0^1 \chi_D(x,y) d\nu(y) d\mu(x)$ and show that they are not equal.

Recall that χ_D is the characteristic function of the set D and $\chi_D(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y. \end{cases}$

Remark: This problem does not contradict Theorem 6.12 since ν is not σ -finite.