Problem 1: Suppose $f \in L^2(\mathbb{R}) \cap L^4(\mathbb{R})$. Prove that f also belongs to $L^3(\mathbb{R})$.

SOLUTION. Notice that $f \in L^2(\mathbb{R}) \cap L^4(\mathbb{R})$ implies $|f| \in L^2(\mathbb{R})$, and $f^2 \in L^2(\mathbb{R})$. By Hölder's inequality,

$$\left| \int_{\mathbb{R}} |f| f^2 dx \right| \leq \left(\int_{\mathbb{R}} |f|^2 dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}} |f^2|^2 dx \right)^{\frac{1}{2}} < \infty$$

Hence $f \in L^3(\mathbb{R})$.

Problem 2: Determine if the following functions belong to $L^{\infty}(\mathbb{R})$.

a)
$$f(x) = \frac{1}{x^2}\chi_{(0,n]}$$
 for some $n > 0$.

b) $f(x) = \frac{1}{\sqrt{x}} \chi_{[n,n^2]}$ for some n > 0.

SOLUTION.

a) f is not essentially bounded. Given M > 0, for any $\epsilon > 0$, we have $x = \frac{1}{\sqrt{M+\epsilon}}$. Then $f(x) = M + \epsilon > M$, implying that

$$m(\{x \in \mathbb{R} | |f(x)| > M\} \ge m\left(\left(0, \frac{1}{M}\right)\right) = \frac{1}{M} > 0.$$

b) f is bounded by $\frac{1}{\sqrt{n}}$

Problem 3: Consider the function

$$f(x,y) = \begin{cases} \frac{1}{x^2} & \text{if } 0 < y < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

Consider the sets $E_k = \{(x, y) \in [0, 1] \times [0, 1] : f(x, y) \in [k, k+1)\}$. Consider non-negative simple functions $\varphi_n = \sum_{k=0}^n k \chi_{E_k}$ for $k \ge 1$, and let $\varphi = \sum_{k=0}^\infty k \chi_{E_k}$. Using the definition of the integral, compute $\int_{[0,1]\times[0,1]} \varphi_n \, dm_2$ and $\int_{[0,1]\times[0,1]} \varphi \, dm_2$. Deduce that $f \notin L^1([0,1]\times[0,1])$.

SOLUTION. See Example 6.15 and Exercise 6.1 in the textbook.

Consider the measure spaces (X, \mathcal{F}_1, μ) and (Y, \mathcal{F}_2, ν) where X = Y = [0, 1], Problem 4: $\mathcal{F}_1 = \mathcal{F}_2 = \mathcal{B}_{[0,1]}$ is the σ -algebra of Borel subsets of [0,1]. Let μ be the Lebesgue measure on \mathcal{F}_1

_			
	 -		

and ν be the counting measure on \mathcal{F}_2 , that is $\nu(E) =$ number of elements in E if E is finite and $\nu(E) = \infty$ otherwise. Let $D = \{(x, y) \mid x = y\}$ and consider

$$D_n = \bigcup_{k=1}^n \left(\left[\frac{k-1}{n}, \frac{k}{n} \right] \times \left[\frac{k-1}{n}, \frac{k}{n} \right] \right)$$

- a) Show that $D = \bigcap_{n=1}^{\infty} D_n$ and that $D \in \mathcal{F}_1 \times \mathcal{F}_2$.
- b) Compute $\int_0^1 \int_0^1 \chi_D(x,y) d\mu(x) d\nu(y)$ and $\int_0^1 \int_0^1 \chi_D(x,y) d\nu(y) d\mu(x)$ and show that they are not equal.

Recall that χ_D is the characteristic function of the set D and $\chi_D(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y. \end{cases}$

Note: This problem does not contradict Theorem 6.12 since ν is not σ -finite. Solution.

a) Notice that if $(x, y) \in D_n$, then $|x - y| \leq \frac{1}{n}$. In particular, if $(x, y) \in \bigcap_{n=1}^{\infty} D_n$, then $|x - y| \leq \frac{1}{n}$, $\forall n \in \mathbb{N}$, hence $x = y \Rightarrow (x, y) \in D$. The other inclusion is trivial. Since D can be expressed as countable intersection of countable unions of products, it belongs to the product σ -algebra.

b)

$$\int_0^1 \int_0^1 \chi_D(x, y) \, d\mu(x) d\nu(y) = \int_0^1 \left[\int_0^1 \chi_D(x, y) d\mu(x) \right] d\nu(y)$$
$$= \int_0^1 0 \, d\nu(y)$$
$$= 0$$

The second equality follows from the fact that for fixed y, $\chi_D(x, y)$ is 0 Lebesgue a.e. On the other hand,

$$\int_{0}^{1} \int_{0}^{1} \chi_{D}(x, y) d\nu(y) d\mu(x) = \int_{0}^{1} \left[\int_{0}^{1} \chi_{D}(x, y) d\nu(y) \right] d\mu(x)$$
$$= \int_{0}^{1} 1 \ d\mu(x)$$
$$= 1$$