MAT 341: Applied Real Analysis - Spring 2017

HW8 - Comments

Sec. 3.3 - Problem 1: The problem is asking you to find some values of $u(x, t)$ such that

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<a, \quad t>0 \\
& u(0, t)=0, \quad u(a, t)=0, \quad t>0 \\
& u(x, 0)=f(x), \quad t>0 \\
& \frac{\partial u}{\partial x}(x, 0)=0, \quad 0<x<a .
\end{aligned}
$$

where $f(x)$ has the following equation:

$$
f(x)=\left\{\begin{array}{lll}
\frac{2 h}{a} x & \text { if } & 0 \leq x \leq \frac{a}{2} \\
-\frac{2 h}{a} x+2 h & \text { if } & \frac{a}{2}<x \leq a
\end{array}\right.
$$

You then need to write a table with the values $u(x, t)$ at the required times, such as $u(0.25 a, 0.2 a / c)$. The solution $u(x, t)$ is written in Equation 13, but without the function G_{e}. Note: In the textbook, \bar{f}_{o} means an odd periodic extension of f, while \bar{G}_{e} means an even periodic extension of G.

Sec. 3.3 - Problem 2: You fix time $t=0,0.2 a / c, 0.4 a / c, 0.8 a / c, 1.4 a / c$ and you sketch 5 graphs of $u(x, t)$. For example, you need to sketch the graph of $u(x, 0.4 a / c)$ as a function of x. You may assume $a=1$ if it helps. The graphs should look like Figure 3 from Section 3.2.

Sec. 3.3 - Problem 5: The solution $u(x, t)$ verifies the PDE:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<a, \quad t>0 ; \\
& u(0, t)=0, \quad u(a, t)=0, \quad t>0 ; \\
& u(x, 0)=0, \quad 0<x<a ; \\
& \frac{\partial u}{\partial t}(x, 0)=\alpha c, \quad 0<x<a .
\end{aligned}
$$

where α is just a constant, unrelated to a.

