MAT 341: Applied Real Analysis - Spring 2017

HW9 - Comments

Sec. 4.1 - Problem 2: The sketch of the surfaces should look like the graphs below.

Figure 1: A sketch of the surface $z=x^{2}-y^{2}$.

Figure 2: A sketch of the surface $z=x y$.
Regarding the boundary conditions: you have to evaluate $u(x, y), \frac{\partial u}{\partial x}(x, y)$ and $\frac{\partial u}{\partial y}(x, y)$ at the given values. For example, if $u(x, y)=x y$ then $u(0, b)=0$ and $u_{x}(0, b)=b, u_{y}(0, b)=0$.

Sec. 4.2 - Problem 5: You are asked to solve the following PDE:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<1, \quad 0<y<b \\
& u(0, y)=0, \quad u(1, y)=0, \quad 0<y<b \\
& u(x, 0)=0, \quad u(x, b)=\sin (3 \pi x), \quad 0<x<1
\end{aligned}
$$

You may assume that b is any constant. However, once you reach a formula for $u(x, y)$ as in Equation 9 (page 266) there is no need to compute the coefficients, simply use the fact that you already have $\sin (3 \pi x)$ as a Fourier series and look for the coefficient of $n=3$ (the rest are all zeros). To sketch the level curves, one has to do as in Figure 2, page 268 (see next page).

Figure 3: Level curves $u(x, y)=$ const. drawn in Mathematica.

Figure 4: The surface $z=u(x, y)$. The level curves are obtained by cutting the level surface by a plane transversely.

Sec. 4.2 - Problem 6: You are asked to solve the following PDE:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<a, \quad 0<y<b \\
& u(0, y)=0, \quad u(a, y)=1, \quad 0<y<b \\
& u(x, 0)=0, \quad u(x, b)=0, \quad 0<x<a
\end{aligned}
$$

