MAT 341: Applied Real Analysis - Spring 2017

Extra practice problems for Midterm 2

The following problems are meant for extra practice only.
Problem 1: Solve the problem:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{k} \frac{\partial u}{\partial t}, \quad 0<x<a, \quad t>0 \\
& \frac{\partial u}{\partial x}(0, t)=0, \quad u(a, t)=T_{0}, \quad t>0 \\
& u(x, 0)=T_{0}+T_{1} \cos \left(\frac{\pi x}{2 a}\right), \quad 0<x<a
\end{aligned}
$$

Solution: After you find the steady-state solution, this is Exercise 9 from Ch 2.5; solution at the end of the book.

Problem 2: Find the steady-state solution, the associated eigenvalue problem, and the complete solution of the following problem:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}-\gamma^{2} u=\frac{1}{k} \frac{\partial u}{\partial t}, \quad 0<x<a, \quad t>0 \\
& \frac{\partial u}{\partial x}(0, t)=0, \quad \frac{\partial u}{\partial x}(a, t)=0, \quad t>0 \\
& u(x, 0)=\frac{T_{1} x}{a}, \quad 0<x<a
\end{aligned}
$$

Solution: This is Exercise 5 from Ch 2: Miscellaneous Exercises (page 206); solution at the end of the book.

Problem 3: Find the steady-state solution, the associated eigenvalue problem, and the complete solution of the following problem:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{k} \frac{\partial u}{\partial t}, \quad 0<x<\infty, \quad t>0 \\
& u(0, t)=T_{0}, \quad t>0 \\
& u(x, t) \text { bounded as } x \rightarrow \infty \\
& u(x, 0)=T_{0}\left(1-e^{-2 x}\right), \quad 0<x
\end{aligned}
$$

Solution: This is Exercise 11 from Ch 2: Miscellaneous Exercises (page 207) with $\alpha=2$; solution at the end of the book.

Problem 4: Find the eigenvalues and eigenfunctions of the problem

$$
\begin{aligned}
& \phi^{\prime \prime}+\lambda^{2} \phi=0, \quad 0<x<2 \\
& \phi(0)-\phi^{\prime}(0)=0 \\
& \phi(2)+\phi^{\prime}(2)=0
\end{aligned}
$$

Solution: This is Exercise 3(e) from Ch 2.7 with $a=2$; solution at the end of the book.
Problem 5: Verify that the eigenvalues and eigenfunctions of the problem

$$
\begin{aligned}
& \left(e^{x} \phi^{\prime}\right)^{\prime}+e^{x} \gamma^{2} \phi=0, \quad 0<x<a \\
& \phi(0)=0 \quad \phi(a)=0
\end{aligned}
$$

are

$$
\gamma_{n}^{2}=\left(\frac{n \pi}{a}\right)^{2}+\frac{1}{4}, \quad \phi_{n}(x)=e^{-\frac{x}{2}} \sin \left(\frac{n \pi x}{a}\right) .
$$

Is this a regular Sturm-Liouville problem? Find the coefficients for the expansion of the function $f(x)=1,0<x<a$, in terms of the ϕ_{n}. To what values does the series converge at $x=0$ and $x=a$?
Solution: This is Exercise 3 from Ch 2.8; solution at the end of the book.
Problem 6: Solve the problem:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<a, \quad t>0 ; \\
& u(0, t)=0, \quad u(a, t)=0, \quad t>0 ; \\
& u(x, 0)=0, \quad 0<x<a ; \\
& u_{t}(x, 0)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \left(\frac{n \pi x}{a}\right), \quad 0<x<a .
\end{aligned}
$$

Solution: This is similar to homework Exercise 5 from Ch 3.2; solution at the end of the book. Instead of $g(x)=1$ we use $g(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \left(\frac{n \pi x}{a}\right)$, which is just a Fourier series that converges uniformly to some function $g(x)$.

