MAT 351 Differential Equations: Dynamics \& Chaos Spring 2016

Assignment 2

Due Thursday, February 18, in class.

Problem 1: Show that the following system

$$
\dot{x}=\lambda+\frac{1}{2} x-\frac{x}{x+1}
$$

undergoes a saddle-node bifurcation at a critical value of λ, to be determined. Sketch all the qualitatively different vector fields that occur as λ is varied. Sketch the bifurcation diagram of fixed points x^{*} versus λ.

Problem 2: Show that the system $\dot{x}=x\left(1-x^{2}\right)-3\left(1-e^{-\lambda x}\right)$ undergoes a transcritical bifurcation at $x=0$. Find the critical value of λ for which this occurs. Find an approximate formula for the fixed point that bifurcates from $x=0$.

Problem 3: For the following equations, find the value of λ at which bifurcations occur, and classify those as saddle-node, transcritical, pitchfork (supercritical or subcritical). Sketch the bifurcation diagram of x^{*} vs. λ.
a) $\dot{x}=\frac{\lambda-x^{2}}{1+x^{2}} x$
b) $\dot{x}=x+\tanh (\lambda x)$

Problem 4: Consider the system $\dot{x}=\lambda x-\sin (x)$, for $-4 \pi \leq x \leq 4 \pi$.
a) Show that for $\lambda>1$ there is only one fixed point. Describe its stability.
b) Draw a phase portrait and a bifurcation diagram for $\frac{1}{2} \leq \lambda<\infty$. Indicate the stability of the various branches of fixed points.
c) What happens in the interval $0<\lambda<\frac{1}{2}$? Classify all the bifurcations that occur. (You are not asked to find the exact value of λ at which bifurcations occur.)

