MAT 351 Differential Equations: Dynamics \& Chaos Spring 2016

Assignment 3

Due Thursday, February 25, in class.
Problem 1: Sketch the vector field and some typical trajectories for the following linear systems. Determine whether the equilibrium is stable, asymptotically stable, or unstable.
a) $\dot{x}=x, \dot{y}=x+y$.
b) $\dot{x}=-x+y, \dot{y}=-5 x+y$.

Problem 2: Sketch the phase portrait and classify the fixed point $x^{*}=0$ of the following linear systems. Specify if the system is hyperbolic or not.
a) $\dot{x}=-3 x+2 y, \dot{y}=x-2 y$.
b) $\dot{x}=y, \dot{y}=-x-a y$, where $-2<a<2$.

Problem 3: The motion of a damped harmonic oscillator is described by $m \ddot{x}+b \dot{x}+k x=0$, where $b>0$ is the damping coefficient. The constants $m, k>0$.
a) Rewrite the equation as a two-dimensional linear system.
b) Classify the fixed point at the origin and sketch the phase portrait in the case when the system is: underdamped $\left(b^{2}<4 m k\right)$, critically damped $\left(b^{2}=4 m k\right)$, or overdamped ($\left.b^{2}>4 m k\right)$.

Problem 4: Consider the system

$$
\dot{x}=g(x), x \in \mathbb{R}^{2}, \quad \text { where } \quad g\binom{x_{1}}{x_{2}}=\binom{3 x_{1}^{2}+7 x_{1} x_{2}+x_{1}+2 x_{2}^{2}-x_{2}}{-12 x_{1}^{2}-16 x_{1} x_{2}-3 x_{1}-x_{2}} .
$$

a) Compute the Jacobian matrix at $x^{*}=(0,0)$ and find its eigenvalues. Use this information to classify this fixed point and determine its stability.
b) Sketch the phase portrait in a neighborhood of x^{*}.
c) (Extra Credit - 3p) Sketch a plausible phase portrait for the whole system.

