MAT 351 Differential Equations: Dynamics \& Chaos Spring 2016

Assignment 5

Due Thursday, March 24, in class.
Problem 1: Show that $(0, \pi)$ is a nonlinear center for the system $\dot{x}=\sin (y), \dot{y}=\sin (x)$. Hint: Find an energy function $E(x, y)$ of the form $\alpha \sin (x)+\beta \cos (y), \alpha \cos (x)+\beta \sin (y)$, $\alpha \sin (x)+\beta \sin (y)$, or $\alpha \cos (x)+\beta \cos (y)$ and show that this has a local min or max at $(0, \pi)$.

Problem 2: For each of the following systems, decide whether it is a gradient system. If so, find $V(x, y)$ and sketch the phase portrait. On a separate graph, sketch the equipotentials $V(x, y)=$ constant. If the system is not a gradient system, explain why not and go on to the next question.
a) $\dot{x}=y+x^{2} y, \quad \dot{y}=-x+2 x y$
b) $\dot{x}=2 x, \quad \dot{y}=8 y$
c) $\dot{x}=-2 x e^{x^{2}+y^{2}}, \quad \dot{y}=-2 y e^{x^{2}+y^{2}}$

Problem 3: Consider the nonlinear system

$$
\begin{aligned}
& \dot{x}=-y+x\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) \\
& \dot{y}=x+y\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right)
\end{aligned}
$$

a) Use polar coordinates $x=r \cos (\theta)$ and $y=r \sin (\theta)$ and show that the system becomes

$$
\begin{aligned}
\dot{r} & =r^{3} \sin \left(\frac{1}{r}\right) \\
\dot{\theta} & =1
\end{aligned}
$$

b) Observe that if $\dot{r}=0$ then $r=0$ or $r=\frac{1}{n \pi}$ for $n=1,2,3, \ldots$. The latter corresponds to closed orbits of radius $r=\frac{1}{n \pi}$, which are limit cycles. In this exercise you have to show that these cycles are stable for even n and unstable for odd n.

Hint: Consider $h(t)=\frac{1}{r(t)}-n \pi$, where $|h(t)|$ is much smaller than $n \pi$. Substitute this into the equation for r and show that $\dot{h}=-\frac{1}{n \pi+h}(-1)^{n} \sin (h)$. Then show that $\dot{h}>0$ or $\dot{h}<0$ when n is even. What does this tell us about \dot{r} ? Use this information to show stability. Treat the case when n is odd similarly.
c) (Extra Credit - 2p) We demonstrated the existence of infinitely many nested limit cycles in part b). Make a sketch of the phase portrait and include at least three cycles.

Problem 4: Apply Bendixon's negative criterion or Dulac's criterion to show that there are no periodic solutions to:
a) $\dot{x}=-x+y^{2}, \quad \dot{y}=-y^{3}+x^{2}$
b) $\dot{x}=-2 x e^{x^{2}+y^{2}}, \quad \dot{y}=-2 y e^{x^{2}+y^{2}}$
c) $\dot{x}=y, \quad \dot{y}=a_{1} x+a_{2} y+a_{3} x^{2}+a_{4} y^{2}$, where $a_{1}, a_{2}, a_{3}, a_{4}$ are nonzero constants.

Problem 5: Consider the nonlinear system

$$
\begin{aligned}
\dot{x} & =x-y-x\left(x^{2}+5 y^{2}\right) \\
\dot{y} & =x+y-y\left(x^{2}+y^{2}\right)
\end{aligned}
$$

a) Classify the fixed point at the origin.
b) Rewrite the system in polar coordinates $(x=r \cos (\theta)$ and $y=r \sin (\theta))$.
c) Prove that the system has a limit cycle in the annular region $\frac{1}{\sqrt{2}}-\epsilon<r<1+\epsilon$. Here ϵ is a small enough positive number (e.g. $\epsilon=0.05$).
Hint: Apply the Poincaré-Bendixson Theorem.

