MAT 351 Differential Equations: Dynamics & Chaos Spring 2016

Assignment 5

Due Thursday, March 24, in class.

Problem 1: Show that $(0, \pi)$ is a nonlinear center for the system $\dot{x} = \sin(y)$, $\dot{y} = \sin(x)$. *Hint:* Find an energy function E(x, y) of the form $\alpha \sin(x) + \beta \cos(y)$, $\alpha \cos(x) + \beta \sin(y)$, $\alpha \sin(x) + \beta \sin(y)$, or $\alpha \cos(x) + \beta \cos(y)$ and show that this has a local min or max at $(0, \pi)$.

Problem 2: For each of the following systems, decide whether it is a gradient system. If so, find V(x, y) and sketch the phase portrait. On a separate graph, sketch the equipotentials V(x, y) = constant. If the system is not a gradient system, explain why not and go on to the next question.

- a) $\dot{x} = y + x^2 y$, $\dot{y} = -x + 2xy$
- b) $\dot{x} = 2x$, $\dot{y} = 8y$
- c) $\dot{x} = -2xe^{x^2+y^2}$, $\dot{y} = -2ye^{x^2+y^2}$

Problem 3: Consider the nonlinear system

$$\dot{x} = -y + x(x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) \\ \dot{y} = x + y(x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$

a) Use polar coordinates $x = r \cos(\theta)$ and $y = r \sin(\theta)$ and show that the system becomes

$$\dot{r} = r^3 \sin\left(\frac{1}{r}\right)$$

 $\dot{\theta} = 1$

b) Observe that if $\dot{r} = 0$ then r = 0 or $r = \frac{1}{n\pi}$ for n = 1, 2, 3, ... The latter corresponds to closed orbits of radius $r = \frac{1}{n\pi}$, which are limit cycles. In this exercise you have to show that these cycles are stable for even n and unstable for odd n.

Hint: Consider $h(t) = \frac{1}{r(t)} - n\pi$, where |h(t)| is much smaller than $n\pi$. Substitute this into the equation for r and show that $\dot{h} = -\frac{1}{n\pi + h}(-1)^n \sin(h)$. Then show that $\dot{h} > 0$ or $\dot{h} < 0$ when n is even. What does this tell us about \dot{r} ? Use this information to show stability. Treat the case when n is odd similarly.

c) (EXTRA CREDIT - 2P) We demonstrated the existence of infinitely many nested limit cycles in part b). Make a sketch of the phase portrait and include at least three cycles.

Problem 4: Apply Bendixon's negative criterion or Dulac's criterion to show that there are no periodic solutions to:

a)
$$\dot{x} = -x + y^2$$
, $\dot{y} = -y^3 + x^2$

b)
$$\dot{x} = -2xe^{x^2+y^2}$$
, $\dot{y} = -2ye^{x^2+y^2}$

c) $\dot{x} = y$, $\dot{y} = a_1 x + a_2 y + a_3 x^2 + a_4 y^2$, where a_1, a_2, a_3, a_4 are nonzero constants.

Problem 5: Consider the nonlinear system

$$\dot{x} = x - y - x(x^2 + 5y^2)$$

 $\dot{y} = x + y - y(x^2 + y^2)$

- a) Classify the fixed point at the origin.
- b) Rewrite the system in polar coordinates $(x = r\cos(\theta) \text{ and } y = r\sin(\theta))$.
- c) Prove that the system has a limit cycle in the annular region $\frac{1}{\sqrt{2}} \epsilon < r < 1 + \epsilon$. Here ϵ is a small enough positive number (e.g. $\epsilon = 0.05$). *Hint:* Apply the Poincaré-Bendixson Theorem.

2