# MAT 351 Differential Equations: Dynamics \& Chaos Spring 2016 

## Practice problems

Problem 1: Determine the equilibrium points of the following one-dimensional differential equations and discuss their stability:

1. $\dot{x}=e^{-x} \sin (x)$
2. $\dot{x}=x^{2}(6-x)$
3. $\dot{x}=-\sinh (x)$

Problem 2: Find the critical value of $\lambda$ in which bifurcations occur in the following systems. Sketch the phase portrait for various values of $\lambda$ and the bifurcation diagram. Classify the bifurcation.

1. $\dot{x}=x^{3}-5 x^{2}-(\lambda-8) x+\lambda-4$.
2. $\dot{x}=1+\lambda x+x^{2}$
3. $\dot{x}=5-\lambda e^{-x^{2}}$

Problem 3: Describe the local stability behavior near equilibrium points of the following nonlinear systems. Also, draw the phase portrait near the equilibrium point.

1. $\dot{x}=y^{2}-x+2, \dot{y}=x^{2}-y^{2}$
2. $\dot{x}=y+x^{3}, \dot{y}=x-y^{3}$ (also find a Lyapunov function)
3. $\ddot{x}+x+4 x^{3}=0$

Problem 4: Consider the system

$$
\begin{aligned}
\dot{x} & =-y+x\left(1-2 x^{2}-3 y^{2}\right) \\
\dot{y} & =x+y\left(1-2 x^{2}-3 y^{2}\right)
\end{aligned}
$$

1. Find all fixed points of the system and define their stability.
2. Transfer the system into polar coordinates $(r, \theta)$.
3. Find a trapping region of the form $R=\{(r, \theta): a \leq r \leq b\}$ and then use PoincaréBendixson theorem to prove that the system has a limit cycle in the region $R$.

Problem 5: Discuss the local and global behavior of solutions of

$$
\begin{aligned}
\dot{r} & =r\left(a-r^{2}\right) \\
\dot{\theta} & =-1
\end{aligned}
$$

as the parameter $a$ passes through 0 . Does the system have a limit cycle for some value of $a$ ? What type of bifurcation does this system undergo?

