MAT 303 - HW10 - Additional Problems
due Friday, December 2
All homework problems are mandatory!

Exercise 1. Consider the system of differential equations $x^{\prime}=A x$, where $A=\left(\begin{array}{ccc}\lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right)$ and λ is an arbitrary real number.
a) Compute A^{2} and A^{3}. Use an inductive argument to show that $A^{n}=\left(\begin{array}{ccc}\lambda^{n} & 0 & 0 \\ 0 & \lambda^{n} & n \lambda^{n-1} \\ 0 & 0 & \lambda^{n}\end{array}\right)$.
b) Determine the exponential $e^{\mathcal{A t}}$ using the computations in part a).
c) Find the exponential $e^{\mathcal{A t}}$ by first writing A as a sum of a diagonal matrix and a nilpotent matrix $A=\lambda I_{3}+C$, then computing $e^{\lambda t}$ as a product of two exponential matrices $e^{\lambda I_{3} t} e^{C t}$.
d) Find the general solution of the system $x^{\prime}=A x$ using the exponential $e^{A t}$.
e) Find the eigenvalues and eigenvectors of the matrix A.
f) Find the general solution of the system $x^{\prime}=A x$ using part e), then compare it to the answer you got for part d).

Exercise 2. Consider the system of differential equations $x^{\prime}=B x$, where $B=\left(\begin{array}{lll}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right)$ and λ is an arbitrary real number.
a) Compute B^{2}, B^{3}. Use an inductive argument to show that $B^{n}=\left(\begin{array}{ccc}\lambda^{n} & n \lambda^{n-1} & \frac{n(n-1)}{2} \lambda^{n-2} \\ 0 & \lambda^{n} & n \lambda^{n-1} \\ 0 & 0 & \lambda^{n}\end{array}\right)$.
b) Determine the exponential $e^{B t}$ using part a).
c) Find the exponential $e^{B t}$, using a different approach: write B as a sum of a scalar multiple of the identity matrix and a nilpotent matrix $B=\lambda I_{3}+C$. Then use the fact that $e^{B t}=e^{\lambda I_{3} t} e^{C t}$.
d) Find the general solution of the system $x^{\prime}=B x$ using the exponential matrix $e^{B t}$.
e) Find the eigenvalues and eigenvectors of the matrix B.
f) Find the general solution of the system $x^{\prime}=\mathrm{B} x$ using part e), then compare it to the answer you got for part d).

