Exercise 1. [Reduction of Order] Show that if y_{1} is a solution of the differential equation

$$
y^{\prime \prime \prime}+p_{1}(t) y^{\prime \prime}+p_{2}(t) y^{\prime}+p_{3}(t) y=0
$$

then $y_{2}=y_{1} v$ is a new solution of the differential equation above, provided that v satisfies the following second order equation in v^{\prime} :

$$
y_{1} v^{\prime \prime \prime}+\left(3 y_{1}^{\prime}+p_{1} y_{1}\right) v^{\prime \prime}+\left(3 y_{1}^{\prime \prime}+2 p_{1} y_{1}^{\prime}+p_{2} y_{1}\right) v^{\prime}=0
$$

Exercise 2. Consider the differential equation

$$
\mathrm{t}^{2}(\mathrm{t}+3) \mathrm{y}^{\prime \prime \prime}-3 \mathrm{t}(\mathrm{t}+2) \mathrm{y}^{\prime \prime}+6(1+\mathrm{t}) \mathrm{y}^{\prime}-6 \mathrm{y}=0, \quad \mathrm{t}>0
$$

Assume that a solution of this equation is already known, $y_{1}(t)=t^{2}$.
a) Use the method of reduction of order to find a fundamental set of solutions for the differential equations (that is, three linearly independent solutions).
b) Check that the solutions obtained at part a) are linearly independent in two ways: by using the definition of linear independence, and by using the Wronskian test.
c) Find the general solution of the differential equation.

Exercise 3. Consider the differential equation

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

which has characteristic polynomial $p(r)=(r-1)^{3}$. By the general theory of equations with constant coefficients, we know that $y_{1}(t)=e^{t}$ is a solution of this differential equation. Use the method of reduction of order to find a fundamental set of solutions for this differential equation.

If you need help with 3×3 determinants, you can browse through the following lecture notes:

