(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 10.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 37368, 874] NotebookOptionsPosition[ 35650, 816] NotebookOutlinePosition[ 36010, 832] CellTagsIndexPosition[ 35967, 829] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[TextData[{ StyleBox["MAT 331:", FontSize->24], " ", StyleBox["Project 2", FontSize->24] }], "Section", CellChangeTimes->{{3.618884780257655*^9, 3.618884795191327*^9}, { 3.619013741815179*^9, 3.619013742915434*^9}, {3.6190639773624067`*^9, 3.6190639931423893`*^9}, 3.6190640316767807`*^9, {3.620115017220894*^9, 3.620115018260913*^9}, {3.620271183359037*^9, 3.620271185480665*^9}, { 3.623891650107442*^9, 3.6238916502571707`*^9}}], Cell[CellGroupData[{ Cell[TextData[StyleBox["Project description", "Subsection"]], "Section", CellChangeTimes->{{3.61895751446417*^9, 3.61895752344552*^9}, { 3.620185321017673*^9, 3.620185321160325*^9}, {3.620275496470414*^9, 3.620275501630445*^9}, {3.620279164310918*^9, 3.620279164805422*^9}, 3.624078591496394*^9}], Cell[TextData[{ "In this project we will use ", StyleBox["Mathematica", FontSlant->"Italic"], " to solve several problems involving differential equations. Differential \ equations are currently used to model a wide range of phenomena from biology, \ physics, chemistry, computer science, economic analysis, etc. The theory of \ differential equations has become an essential tool in all areas of science, \ particularly since computers became commonly available." }], "Text", CellChangeTimes->{{3.618958035675892*^9, 3.61895825489732*^9}, { 3.61895828758503*^9, 3.618958309439242*^9}, {3.6190090575312862`*^9, 3.619009060737265*^9}, {3.619009133231318*^9, 3.6190091577092857`*^9}, { 3.619009297082733*^9, 3.619009305010374*^9}, {3.6190531597810783`*^9, 3.619053163786626*^9}, {3.619057974295499*^9, 3.619058008308049*^9}, { 3.619063099075738*^9, 3.619063221510716*^9}, {3.620104581154149*^9, 3.620104624460071*^9}, 3.620104952514773*^9, {3.620105306189464*^9, 3.62010549225408*^9}, {3.620106757254405*^9, 3.620106783973249*^9}, { 3.62010690214373*^9, 3.6201069404389887`*^9}, {3.620107003675831*^9, 3.620107046135168*^9}, {3.6201072140945473`*^9, 3.6201072521827602`*^9}, { 3.620107296382296*^9, 3.620107686022007*^9}, {3.6201087715394707`*^9, 3.620108772193202*^9}, {3.620108906139463*^9, 3.620108911090001*^9}, { 3.620108943078869*^9, 3.620108945423254*^9}, 3.620113287306345*^9, { 3.620113350538128*^9, 3.620113413916574*^9}, {3.620113448356659*^9, 3.620113599560532*^9}, {3.620114665213971*^9, 3.620114736951397*^9}, { 3.6201148474850683`*^9, 3.6201148752584467`*^9}, {3.620114909764741*^9, 3.620114911396558*^9}, {3.6201149523365803`*^9, 3.62011500488629*^9}, { 3.620189964186058*^9, 3.620189986023975*^9}, {3.620190318682701*^9, 3.6201903257366133`*^9}, {3.620190423660921*^9, 3.620190427915267*^9}, { 3.620197347691531*^9, 3.620197365990987*^9}, {3.6201974043855877`*^9, 3.620197406994176*^9}, {3.6202719954290123`*^9, 3.620271996680101*^9}, { 3.620272255839624*^9, 3.620272304959227*^9}, {3.620272367183546*^9, 3.620272377230268*^9}, {3.620272431118443*^9, 3.620272434436957*^9}, { 3.620272515590114*^9, 3.6202725196350317`*^9}, {3.620272624593026*^9, 3.620272640079751*^9}, {3.620272766275238*^9, 3.620272767296754*^9}, { 3.620272813281234*^9, 3.620272834730152*^9}, {3.620272921996311*^9, 3.6202729625233593`*^9}, {3.620273088967372*^9, 3.6202731231558027`*^9}, { 3.620273153176917*^9, 3.620273157862782*^9}, {3.620273193719795*^9, 3.6202732512557907`*^9}, {3.620273416186001*^9, 3.620273418256668*^9}, { 3.620274180406227*^9, 3.620274227030546*^9}, {3.62027443218283*^9, 3.620274467439011*^9}, {3.620275453349742*^9, 3.620275483006337*^9}, { 3.6209528460864153`*^9, 3.620952865759512*^9}, {3.6238916646651793`*^9, 3.6238916908812923`*^9}, {3.623966761318811*^9, 3.6239667672052927`*^9}, { 3.624077511022278*^9, 3.624077513413136*^9}, {3.624077559243882*^9, 3.624077561441802*^9}, {3.6556983431362333`*^9, 3.6556985139583273`*^9}, { 3.655698924629887*^9, 3.6556989547758007`*^9}, {3.6556989887336597`*^9, 3.655699019962285*^9}}, TextJustification->1.] }, Open ]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Problem 1", "Subsection"]], "Section", CellChangeTimes->{{3.6188834470493517`*^9, 3.618883458254191*^9}, { 3.6188841737965927`*^9, 3.618884177712782*^9}, {3.6188846295181627`*^9, 3.6188846297983932`*^9}, {3.619056965231044*^9, 3.619056965742797*^9}, { 3.620185345872222*^9, 3.620185347792323*^9}, {3.620275634697048*^9, 3.620275638063816*^9}, {3.623891882438067*^9, 3.6238919138920107`*^9}, { 3.6240785855456448`*^9, 3.624078585920389*^9}}], Cell["\<\ The fish and game department in a certain state is planning to issue hunting \ permits to control the deer population (one deer per permit). It is known \ that if the deer population falls below a certain level m, the deer will \ become extinct. It is also known that if the deer population rises above the \ carrying capacity M, the population will decrease back to M through disease \ and malnutrition. Consider the following model for the growth rate of the \ deer population P as a function of time t: \ \>", "Text", CellChangeTimes->{{3.623891925367035*^9, 3.623891978245778*^9}, { 3.624074628875555*^9, 3.624074638688184*^9}}], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ FormBox[ RowBox[{ StyleBox[ FractionBox["dP", "dt"], FontSize->24], "=", RowBox[{"r", " ", RowBox[{"P", "(", RowBox[{"M", "-", "P"}], ")"}], RowBox[{"(", RowBox[{"P", "-", "m"}], ")"}]}]}], TraditionalForm]]]], "Subsubsection",\ CellChangeTimes->{{3.62389206386168*^9, 3.6238921195515327`*^9}}], Cell["\<\ where P is the deer population and r=0.00003 is a constant of \ proportionality. The values of the other parameters are M=100 and m=55.\ \>", "Text", CellChangeTimes->{{3.623892021271768*^9, 3.623892032113901*^9}, 3.623966785332377*^9, {3.6240744213997297`*^9, 3.624074429551876*^9}, { 3.624074585404747*^9, 3.624074607971974*^9}, {3.624074669176683*^9, 3.6240746696805277`*^9}}], Cell[CellGroupData[{ Cell["\<\ Plot the vector field of the differential equation using VectorPlot[..]. Then \ plot the vector field using StreamPlot[..]; identify all the constant \ solutions and color them in red using StreamPlot[..]. Try a window size of \ 100x130 (in the txP plane). What happens to the solutions as time t \ increases, t\[RightArrow]\[Infinity]? Color a couple of trajectories to \ illustrate the possible behaviors, then explain.\ \>", "ItemNumbered", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGAQA2IQrVLDv0T+5ytHH7lSMN0Sdf4IiE6b7/YKRL/XZnsP ouc5Q+iACOUJCkB6mtLHKSD6vNeMqyB6zafNj0B05Ja9z0B0UMnelyB6cWbz LEUgfehtzFwQHWF3RkMJSK83TtIE0UqrpturA+k7qckOIFr86vOZbAyvHSM+ zTkDordcr5TTBtJfm7rBNM/UZA5XIM1vYcoJop9sUjID0X7tV81BdJG9jxuI zu/T8QHRSbdzA+JB6sR3hoPokKUXY0H0oq0Qule9ZgaI3jftHZhuNVJcDqJV jj1eAaLV/ON5E4C0gPJaMP2u+37GGpvXjquCHDNBtM+sw70guuPJRTDNFXNX 1HjSa0fFiIsSIBoASOepvQ== "], TextJustification->1., FontSize->14], Cell[TextData[{ "Solve the system of differential equations for the initial condition \ P(20)=110. If DSolve[...] does not work (and most likely it won\ \[CloseCurlyQuote]t), then a numeric approximation may be the next best thing \ to hope for, so use ", StyleBox["Mathematica\[CloseCurlyQuote]", FontSlant->"Italic"], "s NDSolve[..] function to find a numerical approximation of the true \ solution, then plot it." }], "ItemNumbered", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGAQB2IQrVLDv0T+5ytHH7lSMN0Sdf4IiE6b7/YKRL/XZnsP ouc5Q+iACOUJCkB6mtLHKSD6vNeMqyB6zafNj0B05Ja9z0B0UMnelyB6cWbz LEUgfehtzFwQHWF3RkMJSK83TtIE0UqrpturA+k7qckOIFr86vOZbAyvHSM+ zTkDordcr5TTBtJfm7rBNM/UZA5XIM1vYcoJop9sUjID0X7tV81BdJG9jxuI zu/T8QHRSbdzA+JB6sR3hoPokKUXY0F0zj2ZchAdLXa2BkSv+vwMTBu4PFkC otmS5y0F0TFHVA6C6FCjbDBtpON6FkQfWnLoIoh2Ke27BqL3FvbdANGbXH5f MZr02tGJ7d9VEB1tanYPRAf9+XkfRAMAF96zJw== "], TextJustification->1., FontSize->14], Cell["\<\ If the initial deer population is 140, about how many hunting permits should \ be issued so that the deer population does not become extinct?\ \>", "ItemNumbered", CellChangeTimes->{{3.620273440483904*^9, 3.6202734436599483`*^9}, { 3.6202737024797993`*^9, 3.620274002206958*^9}, {3.620274040192863*^9, 3.620274040195754*^9}, {3.6202753291045303`*^9, 3.620275367535472*^9}, { 3.620275884759132*^9, 3.620275989623373*^9}, {3.620276021928265*^9, 3.6202760459204493`*^9}, {3.620277460106645*^9, 3.620277482904023*^9}, { 3.6202785983826103`*^9, 3.620278603068809*^9}, {3.620289020739518*^9, 3.620289027106184*^9}, {3.623892175244762*^9, 3.6238925808989887`*^9}, { 3.623966903005722*^9, 3.623966939374824*^9}, {3.6240196903203907`*^9, 3.624019690333749*^9}, {3.624023679028216*^9, 3.624023696202908*^9}, { 3.624074457567197*^9, 3.624074458103149*^9}, {3.624074852201125*^9, 3.6240748526655483`*^9}}, TextJustification->1., FontSize->14], Cell[TextData[{ "Write a small interactive model using Manipulate[..] and Locator[..], that \ initially plots the StreamPlot[..] from part ", StyleBox["1", FontWeight->"Bold"], ", and then on click, colors the solution curve that passes through the \ point where the user clicked on. " }], "ItemNumbered", CellChangeTimes->{{3.620273440483904*^9, 3.6202734436599483`*^9}, { 3.6202737024797993`*^9, 3.620274002206958*^9}, {3.620274040192863*^9, 3.620274040195754*^9}, {3.6202753291045303`*^9, 3.620275367535472*^9}, { 3.620275884759132*^9, 3.620275989623373*^9}, {3.620276021928265*^9, 3.6202760459204493`*^9}, {3.620277460106645*^9, 3.620277482904023*^9}, { 3.6202785983826103`*^9, 3.620278603068809*^9}, {3.620289020739518*^9, 3.620289027106184*^9}, {3.623892175244762*^9, 3.6238925808989887`*^9}, { 3.623966903005722*^9, 3.623966939374824*^9}, {3.6240196903203907`*^9, 3.6240199100943727`*^9}, 3.6240739331358423`*^9, {3.6240753531717987`*^9, 3.624075356490829*^9}, {3.7005289257886868`*^9, 3.700528925788968*^9}, { 3.70053078464188*^9, 3.700530785151774*^9}}, TextJustification->1., FontSize->14], Cell["\<\ Solve the differential equation given in the problem. It is a separable \ differential equation, so you can separate the variables and integrate to \ obtain an implicit equation involving P. When integrating, you may need to \ use partial fraction decomposition (the Mathematica function Apart[..] might \ come in handy). Plot a couple of relevant level curves of the implicit \ equation you have obtained, and compare them to the trajectories of the \ PhasePortrait from part 1. \ \>", "ItemNumbered", CellChangeTimes->{{3.620273440483904*^9, 3.6202734436599483`*^9}, { 3.6202737024797993`*^9, 3.620274002206958*^9}, {3.620274040192863*^9, 3.620274040195754*^9}, {3.6202753291045303`*^9, 3.620275367535472*^9}, { 3.620275884759132*^9, 3.620275989623373*^9}, {3.620276021928265*^9, 3.6202760459204493`*^9}, {3.620277460106645*^9, 3.620277482904023*^9}, { 3.6202785983826103`*^9, 3.620278603068809*^9}, {3.620289020739518*^9, 3.620289027106184*^9}, {3.623892175244762*^9, 3.6238925808989887`*^9}, { 3.623966903005722*^9, 3.623966939374824*^9}, {3.6240196903203907`*^9, 3.6240199100943727`*^9}, 3.6240739331358423`*^9, {3.6240753531717987`*^9, 3.624075356490829*^9}, {3.7005289308605137`*^9, 3.7005290464474373`*^9}, { 3.7005291049617233`*^9, 3.700529127145011*^9}, {3.700529163689744*^9, 3.700529191106505*^9}, {3.700529390191141*^9, 3.70052962662855*^9}}, TextJustification->1., FontSize->14] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Problem 2", "Subsection"]], "Section", CellChangeTimes->{{3.6188834470493517`*^9, 3.618883458254191*^9}, { 3.6188841737965927`*^9, 3.618884177712782*^9}, {3.6188846295181627`*^9, 3.6188846297983932`*^9}, {3.619056965231044*^9, 3.619056965742797*^9}, { 3.620184812387269*^9, 3.620184812898695*^9}, {3.620185327776074*^9, 3.620185327888328*^9}, {3.6202755381324787`*^9, 3.620275543299217*^9}, 3.6202756456554832`*^9, {3.624023016643999*^9, 3.6240230208670397`*^9}, { 3.655692864659383*^9, 3.6556928648905287`*^9}, {3.655697339984288*^9, 3.6556973401657467`*^9}}], Cell[TextData[{ "In this problem, we will visualize a famous phenomenon in dynamics of \ nonlinear differential equations, called the Poincar\[EAcute]-Andronov-Hopf \ bifurcation, or in short a Hopf bifurcation. It exhibits the birth of a limit \ cycle through a change in the stability of the equilibrium point. This type \ of bifurcation is widely present in physical systems. ", StyleBox["\[OpenCurlyDoubleQuote]Hopf bifurcation underlies many \ \[OpenCurlyQuote]spontaneous\[CloseCurlyQuote] oscillations such as airfoil \ flutter and other wind-induced oscillations (e.g., those that caused the \ Tacoma-Narrows bridge collapse) in structural engineering systems, vortex \ shedding in fluid flow around a solid body at sufficiently high stream \ velocity, LCR oscillations in electrical circuits, relaxation oscillations \ (e.g., as described by the Van der Pol oscillator), the periodic firing of \ neurons in nervous systems (e.g., in the FitzHugh-Nagumo equation modelling \ these phenomena), oscillations in autocatalytic chemical reactions (e.g., the \ Belousov-Zhabotinsky reaction) as described by the Brusselator and similar \ models, oscillations in fish populations (as described by predator-prey \ models), periodic fluctuations in the number of individuals suffering from an \ infectious disease (as described by epidemic models)\[CloseCurlyDoubleQuote] \ Gert van der Heijden", FontSlant->"Italic"], ". Hopf bifurcations are also one of the most studied types of bifurcations \ in economics (for example, ", StyleBox["debt-financed investment-led growth models, optimal growth model \ with several capital goods, etc.", FontSlant->"Italic"], ") Weather prediction models and climate change models also exhibit Hopf \ bifurcations (for example, ", StyleBox["the El Nin\:0303o-Southern Oscillation is a quasi-periodic climate \ pattern that occurs across the equatorial Pacific Ocean roughly every three \ to seven years. It is characterized by a change in sea surface temperatures \ in the eastern Pacific off the coast of Peru and accompanying changes in the \ air pressure difference between the central and western Pacific Ocean", FontSlant->"Italic"], ").\n\nIn our project, we will first analyze an example of a system of \ differential equations which exhibits a Hopf bifurcation. \n\n", StyleBox["Part I:", FontWeight->"Bold"], " Consider the nonlinear system ", StyleBox["\[ScriptCapitalS]", FontWeight->"Bold"], " of differential equations given below, where \[Alpha] is a real parameter:" }], "Text", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGAQB2IQrdE3f7Ybw2vHiM8b5oNoq5gSgxgg/WbFaSMQrZbo ZQGiN9XnW4PovJZg93ggrXSv3ANEb7+ooZIIpJ0ca8H0PbOyNetsXjve2KK9 DkQzPQvbAaI38O8C0/l97l7rgXTfZF8/EB2talCxAUh7pi1uAtF1H627QPSM S2smgegfHRlxBpNeO5qbPE8E0a8ab2WD6Gc/9fNAtMvK9IMg+tFNhcMgmq9R /wSI/tf/9CyIvtn58DKIPnSr8g6I5jykxWQI4ncfZgPRC97JhoBou4v5YSBa q3dXDIgOz9HPBdE8bTfMjIC0rfREcxD9TYTJAURfk5ByAtFc7A93gOg54nkH QLRm2+cjIDqC68UFEB0Q659jDKTdVraBaQBj67Dh "], TextJustification->1.], Cell[CellGroupData[{ Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ StyleBox[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ { RowBox[{ RowBox[{"x", "'"}], "=", " ", RowBox[{"y", "-", RowBox[{"x", "(", RowBox[{ RowBox[{"x", "^", "2"}], "+", RowBox[{"y", "^", "2"}], "-", "\[Alpha]"}], ")"}]}]}], RowBox[{"(", "1", ")"}]}, { RowBox[{ RowBox[{"y", "'"}], "=", " ", RowBox[{ RowBox[{"-", "x"}], "-", RowBox[{"y", "(", RowBox[{ RowBox[{"x", "^", "2"}], "+", RowBox[{"y", "^", "2"}], "-", "\[Alpha]"}], ")"}]}]}], RowBox[{"(", "2", ")"}]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}, Selectable->True]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False], FontSize->14], StyleBox[" ", FontSize->14], StyleBox[".", FontSize->14], StyleBox[ RowBox[{ StyleBox[" ", FontSize->14], StyleBox[" ", FontSize->16]}]], StyleBox["Its", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]]}], StyleBox[" ", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox["linearization", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox[" ", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox["at", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox[" ", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox[ RowBox[{"(", RowBox[{"0", ",", "0"}], ")"}], FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox[" ", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox["is", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox[" ", FontSize->16, FontColor->GrayLevel[0]], StyleBox["denoted", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox[" ", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox["by", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox[" ", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox["\[ScriptCapitalL]", FontSize->16, FontColor->GrayLevel[0]], StyleBox[" ", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox["and", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox[" ", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox["given", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox[" ", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox["by", FontSize->16, FontWeight->"Plain", FontColor->GrayLevel[0]], StyleBox[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ { RowBox[{ RowBox[{"x", "'"}], "=", " ", RowBox[{"\[Alpha]x", " ", "+", " ", "y"}]}], RowBox[{"(", "1", ")"}]}, { RowBox[{ RowBox[{"y", "'"}], "=", " ", RowBox[{ RowBox[{"-", "x"}], "+", "\[Alpha]y"}]}], RowBox[{"(", "2", ")"}]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}, Selectable->True]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False], FontSize->14]}], TraditionalForm]], "Subsubsection", CellChangeTimes->{{3.6556937093792477`*^9, 3.6556938292372847`*^9}, { 3.6556947682975197`*^9, 3.655694770338237*^9}, {3.655694881569666*^9, 3.6556949156974297`*^9}, {3.655694966106332*^9, 3.6556950393668222`*^9}, 3.6556991440588713`*^9}], Cell[CellGroupData[{ Cell["\<\ Find the equilibrium points of the nonlinear system. Find the eigenvalues of \ the coefficient matrix of the linearized system at the equilibrium points in \ terms of the parameter \[Alpha].\ \>", "ItemNumbered", CellChangeTimes->{{3.620273440483904*^9, 3.6202734436599483`*^9}, { 3.6202737024797993`*^9, 3.620274002206958*^9}, {3.620274040192863*^9, 3.620274040195754*^9}, {3.6202753291045303`*^9, 3.620275367535472*^9}, { 3.620275884759132*^9, 3.620275989623373*^9}, {3.620276021928265*^9, 3.6202760459204493`*^9}, {3.620277460106645*^9, 3.620277482904023*^9}, { 3.6202785983826103`*^9, 3.620278603068809*^9}, {3.620289020739518*^9, 3.620289027106184*^9}, {3.623892175244762*^9, 3.623892580904583*^9}, { 3.623966963807581*^9, 3.623966964359736*^9}, {3.624020035111944*^9, 3.624020041663093*^9}, {3.624020401084337*^9, 3.6240204146727667`*^9}, { 3.624020530382745*^9, 3.624020577392387*^9}, {3.624023055498755*^9, 3.624023076900386*^9}, {3.6240675974841948`*^9, 3.624067629242054*^9}, { 3.624073133499358*^9, 3.624073139835445*^9}, {3.655694594724592*^9, 3.6556947054822206`*^9}, 3.700523066032337*^9}, TextJustification->1., FontSize->14], Cell[TextData[{ "Look at the linear system ", StyleBox["\[ScriptCapitalL]", FontWeight->"Bold"], " and assume that the value of the parameter \[Alpha] is -1/4. " }], "ItemNumbered", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGCQAGIQrVLDv0T+5ytHH7lSMN0Sdf4IiE6b7/YKRL/XZnsP ouc5Q+iACOUJCkB6mtLHKSD6vNeMqyB6zafNj0B05Ja9z0B0UMnelyB6cWbz LEUgfehtzFwQHWF3RkMJSK83TtIE0UqrpturA+k7qckOIFr86vOZbAyvHSM+ zTkDordcr5TTBtJfm7rBNM/UZA5XIM1vYcoJop9sUjID0X7tV81BdJG9jxuI zu/T8QHRZ7++b3QD0t/Oz2kB0W116x1jgHTCguWuIPpTdGoOiN4ZrJcPolNs lrfFAekTtWLtIFqhvnoOiDbYvmguiDZZ1SgeD6Sv+08C0+vy848kAGmn4FIw fbb8W/R6m9eONStFEkA0U3B80gYg/WDTdjA96dpnFoNJrx21/rOxgmgAsSe4 qg== "], TextJustification->1., FontSize->14], Cell[CellGroupData[{ Cell["\<\ Assume that the system satisfies the initial condition x(0) = -10 and y(0) = \ 20. Use DSolve[..] to find the solution of the corresponding initial value \ problem, then plot the corresponding trajectory in the xy plane. \ \>", "SubsubitemNumbered", CellChangeTimes->{{3.620273440483904*^9, 3.6202734436599483`*^9}, { 3.6202737024797993`*^9, 3.620274002206958*^9}, {3.620274040192863*^9, 3.620274040195754*^9}, {3.6202753291045303`*^9, 3.620275367535472*^9}, { 3.620275884759132*^9, 3.620275989623373*^9}, {3.620276021928265*^9, 3.6202760459204493`*^9}, {3.620277460106645*^9, 3.620277482904023*^9}, { 3.6202785983826103`*^9, 3.620278603068809*^9}, {3.620289020739518*^9, 3.620289027106184*^9}, {3.623892175244762*^9, 3.623892580904583*^9}, { 3.623966963807581*^9, 3.623966964359736*^9}, {3.624020035111944*^9, 3.624020041663093*^9}, {3.624020401084337*^9, 3.6240204146727667`*^9}, { 3.624020530382745*^9, 3.624020577392387*^9}, {3.624023055498755*^9, 3.624023076900386*^9}, {3.6240675974841948`*^9, 3.624067629238327*^9}, { 3.624067939167474*^9, 3.62406796144772*^9}, {3.624072245226122*^9, 3.624072248698206*^9}, {3.6240724451489267`*^9, 3.6240724640490026`*^9}, { 3.624072764236108*^9, 3.624072795352497*^9}, {3.624073237675996*^9, 3.6240732699086237`*^9}, {3.624073625644052*^9, 3.624073637754884*^9}, { 3.624076828371114*^9, 3.62407683112251*^9}, {3.655697182336219*^9, 3.655697193766617*^9}, 3.7005230530765343`*^9}, TextJustification->1., FontSize->14], Cell[TextData[{ "For your trajectory in part ", StyleBox["2.0.1", FontWeight->"Bold"], ", draw the graphs of x versus t and y versus t on the same graph." }], "SubsubitemNumbered", CellChangeTimes->{{3.620273440483904*^9, 3.6202734436599483`*^9}, { 3.6202737024797993`*^9, 3.620274002206958*^9}, {3.620274040192863*^9, 3.620274040195754*^9}, {3.6202753291045303`*^9, 3.620275367535472*^9}, { 3.620275884759132*^9, 3.620275989623373*^9}, {3.620276021928265*^9, 3.6202760459204493`*^9}, {3.620277460106645*^9, 3.620277482904023*^9}, { 3.6202785983826103`*^9, 3.620278603068809*^9}, {3.620289020739518*^9, 3.620289027106184*^9}, {3.623892175244762*^9, 3.623892580904583*^9}, { 3.623966963807581*^9, 3.623966964359736*^9}, {3.624020035111944*^9, 3.624020041663093*^9}, {3.624020401084337*^9, 3.6240204146727667`*^9}, { 3.624020530382745*^9, 3.624020577392387*^9}, {3.624023055498755*^9, 3.624023076900386*^9}, {3.6240675974841948`*^9, 3.624067629238327*^9}, { 3.624067939167474*^9, 3.62406796144772*^9}, {3.624072245226122*^9, 3.624072248698206*^9}, {3.6240724451489267`*^9, 3.6240724640490026`*^9}, { 3.624072764236108*^9, 3.624072815560172*^9}, {3.624072847557684*^9, 3.6240728481164722`*^9}, {3.624072878300632*^9, 3.624072901272327*^9}, 3.624072968661681*^9}, TextJustification->1., FontSize->14], Cell[TextData[{ "For your trajectory in part ", StyleBox["2.0.1", FontWeight->"Bold"], ", draw the corresponding graph in the three-dimensional txy-space." }], "SubsubitemNumbered", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGCQAGIQrVLDv0T+5ytHH7lSMN0Sdf4IiE6b7/YKRL/XZnsP ouc5Q+iACOUJCkB6mtLHKSD6vNeMqyB6zafNj0B05Ja9z0B0UMnelyB6cWbz LEUgfehtzFwQHWF3RkMJSK83TtIE0UqrpturA+k7qckOIFr86vOZbAyvHSM+ zTkDordcr5TTBtJfm7rBNM/UZA5XIM1vYcoJop9sUjID0X7tV81BdJG9jxuI zu/T8QHRZ7++b3QD0t/Oz2kB0W116x1jgHTCguWuIPpTdGoOiN4ZrJcPolNs lrfFgewNF2sH0UxHlswH0XkTGReBaKO+9uMg+t2bj2dBdM+NjxdBtMou5ksg +vi8k1dBtMZlz9sgOk5Q+BGIbrBsegKir9TnfE0A0tPmQ2gARli6yA== "], TextJustification->1., FontSize->14] }, Open ]], Cell[TextData[{ StyleBox["In parts ", FontSlant->"Italic", FontColor->GrayLevel[0.5]], StyleBox["2.0.1", FontWeight->"Bold", FontSlant->"Italic", FontColor->GrayLevel[0.5]], StyleBox[" - ", FontSlant->"Italic", FontColor->GrayLevel[0.5]], StyleBox["2.0.3", FontWeight->"Bold", FontSlant->"Italic", FontColor->GrayLevel[0.5]], StyleBox[", it is important that you choose appropriate ranges for x,y,t and \ appropriate scales for your plot.", FontSlant->"Italic", FontColor->GrayLevel[0.5]] }], "Item", CellDingbat->"\[LightBulb]", CellChangeTimes->{{3.620273440483904*^9, 3.6202734436599483`*^9}, { 3.6202737024797993`*^9, 3.620274002206958*^9}, {3.620274040192863*^9, 3.620274040195754*^9}, {3.6202753291045303`*^9, 3.620275367535472*^9}, { 3.620275884759132*^9, 3.620275989623373*^9}, {3.620276021928265*^9, 3.6202760459204493`*^9}, {3.620277460106645*^9, 3.620277482904023*^9}, { 3.6202785983826103`*^9, 3.620278603068809*^9}, {3.620289020739518*^9, 3.620289027106184*^9}, {3.623892175244762*^9, 3.623892580904583*^9}, { 3.623966963807581*^9, 3.623966964359736*^9}, {3.624020035111944*^9, 3.624020041663093*^9}, {3.624020401084337*^9, 3.6240204146727667`*^9}, { 3.624020530382745*^9, 3.624020577392387*^9}, {3.624023055498755*^9, 3.624023076900386*^9}, {3.6240675974841948`*^9, 3.624067629238327*^9}, { 3.624067939167474*^9, 3.62406796144772*^9}, {3.624072245226122*^9, 3.624072248698206*^9}, {3.6240724451489267`*^9, 3.6240724640490026`*^9}, { 3.624072764236108*^9, 3.624072815560172*^9}, {3.624072847557684*^9, 3.6240728481164722`*^9}, {3.624072878300632*^9, 3.624072922307026*^9}, { 3.62407297659587*^9, 3.624072996069519*^9}, {3.624077227390604*^9, 3.624077363606332*^9}, {3.624077426846244*^9, 3.624077428686591*^9}, 3.700523058259954*^9, {3.700526964506411*^9, 3.700526965039928*^9}}, TextJustification->1., FontSize->14], Cell[TextData[{ "By using Manipulate[...] and StreamPlot[..], do an interactive model of the \ vector field of the system, with the parameter \[Alpha] taking values in the \ closed interval [-2, 2]. The interactive model will show the Phase Portrait \ of the nonlinear system ", StyleBox["\[ScriptCapitalS]", FontWeight->"Bold"], " , the Phase Portrait of the linear system ", StyleBox["\[ScriptCapitalL] ", FontWeight->"Bold"], "and the eigenvalues at the equilibrium points." }], "ItemNumbered", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGCQBGIQrVLDv0T+5ytHH7lSMN0Sdf4IiE6b7/YKRL/XZnsP ouc5Q+iACOUJCkB6mtLHKSD6vNeMqyB6zafNj0B05Ja9z0B0UMnelyB6cWbz LEUgfehtzFwQHWF3RkMJSK83TtIE0UqrpturA+k7qckOIFr86vOZbAyvHSM+ zTkDordcr5TTBtJfm7rBNM/UZA5XIM1vYcoJop9sUjID0X7tV81BdJG9jxuI zu/T8QHRZ7++b3QD0t/Oz2kB0W116x1jgHTCguWuIPpTdGoOiN4ZrJcPolNs lrfFgewNF2sH0UxHlswH0VkVjItAdObR9ctA9P6kL2tA9OQe2U0g+mnX2cMg evU5peOJQPrLe9MzILpNd8YFEP3h959rILqUuT5tvc1rRzYPqwYQ/e1jvv8G IN1VYRUAogFLusN1 "], TextJustification->1., FontSize->14], Cell[TextData[{ "Analyze the type and stability of the equilibrium points of the nonlinear \ system ", StyleBox["\[ScriptCapitalS]", FontWeight->"Bold"], " for all values of the parameter \[Alpha]. Use the interactive model to \ find the values of the parameter \[Alpha] where the qualitative nature of the \ solutions for the system changes. " }], "ItemNumbered", CellChangeTimes->CompressedData[" 1:eJwlzk0og3EABvDXDotSTqY0Yy+1MUlkc1hY2g5rSXOw+Ta2mtSKKSSFtalp qfluPmJtkZq2UdQoHwc1LYdxkYNENiwLRZH/8zo8/XpOz8PXmdR6FkVRXBJY MJLhzv2KyVS8AUZLU+QUGlYVMZgQsRNwpfbfek3+dB5xjn6bgRHlQhRuJwN3 UBsMPUC1OfQEN4wTS3zi8UvLMtRUhYU00VeuK4T01ny1gHij76qBWdHHRTYV l2mSrjAMXg/xRMSPcTtj+mxXqpyYUVmRBu/9tBjW2aIS2FetUkCTo1gFLz4S YwriZ8RlgdZRn6yF2LHmlcNks74X7jeUmGC31Gttw24jxwZZp+5V2DOYsg6N Zz4PPNK9b0PnVI4fJltfd6G49PmH6Zk/v3DvgKtsx19FP6MgtMLpIB6eXGXD 0YAns5P4PXzOaJY7xn3SuExyKbVAa9HtJBQa7E5IBcu0O0R6U874Bw3d1og= "], TextJustification->1., FontSize->14], Cell[TextData[{ "Use the Interactive model to find the values of the parameter \[Alpha] for \ which the system develops limit cycles. Then ", StyleBox["prove mathematically", FontVariations->{"Underline"->True}], " the existence of the limit cycle by changing the system into polar \ coordinates x = r cos(\[Theta]), y = r sin(\[Theta]) and solving it. " }], "ItemNumbered", CellChangeTimes->CompressedData[" 1:eJwlzk0og3EABvDZYVFqJ5QYRo2R1PJxWOZNW1lL2g6GYTZTpFZMISmzRtGS b5pNtqyk3mIUGcUc1LQcxgUHiRiWZfIR+T+vw9Ov5/Q8WTqj0sBmsVhpJDBn gOvO+HykFLweRkt90A/bnLJHGMnnRKCj8t8adfZEJnGW/zoNg/L5EFyPbt7A Oq/vDipNvgfoah9ezCIePmuWoLo8kMsn0iJdHuSvzUkExEuDvgKmhO4XOKww pY7aA9B70cfLJ8bMY4yJM/p4KZFbVpwAbzf4JbB6JFQKuyQKGTTaChTwNBYZ khHfg3YLtA7SlIaoXfZIYbTB0Al3VIVG2Cr2WJuwW5s8Atl+txN29MatwPZj ehUe6N7W4dR4+gaMNr5swZKipx+mJ/38wu3dNHkz/sq6GQU+R7KWuH90ngoH N1eTWohf/SeMJqnNTIvDVOmZ2AKtwutRSGs+XFDI3asSTYYp+/eVCv4BKmLY kQ== "], TextJustification->1., FontSize->14] }, Open ]], Cell[TextData[{ StyleBox["Part II:", FontWeight->"Bold"], " For the second part of the project, browse the literature and find a \ concrete example from physical sciences which exhibits a Hopf bifurcation. \ The (non-exhaustive) list of applications given in the introduction should \ give you many starting points for your investigation. Once you find such an \ example, describe its mathematical model (the system of differential \ equations) and explain for what values of the parameters the system undergoes \ a Hopf bifurcation. No mathematical proof is necessary or required, but \ StreamPlot pictures are encouraged. Explain the relevance of all quantities \ modeled by the system of differential equations (for example, x is the debt \ at time t, y is the investment at time t, etc). Then describe the relevance \ of the birth of the limit cycle to the practical application." }], "Text", CellChangeTimes->{{3.7005259595361834`*^9, 3.700526384730913*^9}, { 3.700527271104188*^9, 3.7005274986682463`*^9}, {3.700527558822871*^9, 3.700527561325839*^9}}, TextJustification->1.] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[StyleBox["General considerations:", "Subsection"]], "Section", CellChangeTimes->{{3.6188834470493517`*^9, 3.618883458254191*^9}, { 3.6188841737965927`*^9, 3.618884177712782*^9}, {3.6188846295181627`*^9, 3.6188846297983932`*^9}, {3.619056965231044*^9, 3.619056965742797*^9}, { 3.620184812387269*^9, 3.620184812898695*^9}, {3.620185327776074*^9, 3.620185327888328*^9}, {3.6202755381324787`*^9, 3.620275543299217*^9}, 3.6202756456554832`*^9, {3.624023016643999*^9, 3.6240230208670397`*^9}, { 3.6240776546836967`*^9, 3.624077659705956*^9}}], Cell[TextData[{ "No previous knowledge of differential equations is assumed is this project, \ except for the theory developed in the lecture notes posted on our course \ webpage. Please read the lab notes on Blackboard to find what ", StyleBox["Mathematica", FontSlant->"Italic"], " commands are used for solving differential equations and visualizing Phase \ Portraits. More examples and tutorials about solving differential equations \ and plotting vector fields can be found in the ", StyleBox["Mathematica", FontSlant->"Italic"], " documentation (Help \[RightArrow] Wolfram Documentation). You are of \ course welcome to consult introductory courses in differential equations as \ well, if needed for the mathematical proofs. " }], "Text", CellChangeTimes->{{3.624077664011726*^9, 3.624077801314446*^9}, { 3.62407783157104*^9, 3.6240778802978373`*^9}, {3.6240781339772997`*^9, 3.6240781406817923`*^9}, {3.6240782046778097`*^9, 3.6240784658548613`*^9}, { 3.6240785295459423`*^9, 3.624078557736636*^9}, {3.624078638876143*^9, 3.624078666802195*^9}, {3.655697864209486*^9, 3.6556978913103333`*^9}, { 3.655697923873823*^9, 3.655697954911539*^9}, {3.700529871756425*^9, 3.700529901755196*^9}, {3.700530157363118*^9, 3.7005301943699512`*^9}}, TextJustification->1.] }, Open ]] }, WindowSize->{1280, 588}, WindowMargins->{{20, Automatic}, {Automatic, 25}}, FrontEndVersion->"11.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \ 21, 2016)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 456, 11, 64, "Section"], Cell[CellGroupData[{ Cell[1039, 35, 308, 4, 41, "Section"], Cell[1350, 41, 3195, 47, 68, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[4582, 93, 477, 6, 55, "Section"], Cell[5062, 101, 645, 10, 68, "Text"], Cell[CellGroupData[{ Cell[5732, 115, 364, 12, 47, "Subsubsection"], Cell[6099, 129, 401, 7, 30, "Text"], Cell[CellGroupData[{ Cell[6525, 140, 926, 18, 62, "ItemNumbered"], Cell[7454, 160, 930, 20, 45, "ItemNumbered"], Cell[8387, 182, 969, 16, 28, "ItemNumbered"], Cell[9359, 200, 1143, 20, 45, "ItemNumbered"], Cell[10505, 222, 1445, 22, 62, "ItemNumbered"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[12011, 251, 610, 8, 55, "Section"], Cell[12624, 261, 3023, 52, 296, "Text"], Cell[CellGroupData[{ Cell[15672, 317, 6537, 213, 49, "Subsubsection"], Cell[CellGroupData[{ Cell[22234, 534, 1195, 19, 28, "ItemNumbered"], Cell[23432, 555, 700, 17, 28, "ItemNumbered"], Cell[CellGroupData[{ Cell[24157, 576, 1528, 23, 41, "SubsubitemNumbered"], Cell[25688, 601, 1357, 23, 24, "SubsubitemNumbered"], Cell[27048, 626, 691, 16, 24, "SubsubitemNumbered"] }, Open ]], Cell[27754, 645, 1922, 40, 28, "Item"], Cell[29679, 687, 1033, 23, 45, "ItemNumbered"], Cell[30715, 712, 941, 21, 45, "ItemNumbered"], Cell[31659, 735, 954, 20, 45, "ItemNumbered"] }, Open ]], Cell[32628, 758, 1092, 18, 106, "Text"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[33769, 782, 572, 7, 55, "Section"], Cell[34344, 791, 1290, 22, 87, "Text"] }, Open ]] } ] *)