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1 Credit Risk Modeling

1.1 Introduction

The general approach in portfolio modeling is to assume some kind

of distribution for your financial instruments, then do some kind of

portfolio modeling to get the distribution of your overall portfolio.

Credit risk modeling involves modeling of assets that have potential

to go to zero. The obvious example is bonds but can also included

derivatives. Bonds do not appear much in news and certainly are not

as hot as stocks, but in reality, they play a major part in finance. This

section looks in more detail on how we model bonds.

To start, let’s look at the bond prices of some major companies during

the 2008-2009 financial crisis.

What can observe from this table?

• Automotive bonds lost about 80% of their value in one year

• Bonds of discount retailers retained their value

We can therefore say that the market was less confident that auto-

motive companies would be able to make the required interest and

principle payments. This is therefore an example of credit risk, the

expectation of default for that counterparty that you are holding.

Based on the above example, the formal of definition of credit risk

is as follows. Credit risk is the risk of monetary loss due to the default
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or a change in the perceived likelihood of default, of a counterparty to

a contract.

So clearly, knowing the likelihood of default is very important for

us in terms of modeling credit risk. How can we model the likelihood

of default?

One way to assess the likelihood is through credit ratings of the

counterparties. These credit ratings are assigned by various credit rat-

ing agencies such as S&P, Moody’s, Fitch, DBRS etc. The lower the

rating is, the more compensation is required from that company or

government either in form of more interest or more collateral in getting

a loan. So generally, if there is more perceived likelihood of default,

you must provide more collateral or pay more interest on a loan, or a

combination of both.

Generally, even when there is a default on a bond, we can get some

of our capital back through collateral, coupons, bankruptcy proceed-

ings etc. On average, after a default, bond holders get 40-60% of their

original loan back, so defaults do not mean zero return.

1.2 Credit Rating Agency Designations

The following table shows the rating scales among major agencies.

The ratings can be divided into investment grade, and non-investment

grade.

For us, in the examples given, we will ignore CC and C ratings because
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these are very close to default anyways.

1.3 Credit Risk Transition

Now the previous section gave us a good start on how we can model

the credit risk of a counterparty credit risky financial instrument. How-

ever, in general, the current risk rating alone is not sufficient for mod-

eling.

So credit loss value is not only due to the perceived default but also

to the change in the credit rating. So if your company is downgrade

from let’s say AA to A, then the value of the bond in that case goes

down. In the same way, we can improve if the value of the credit rating

is upgraded.

Therefore, we need to quantify not just the credit rating of the bond,

but also the probability of the credit rating changing from one rating to

another. For this, we form what is called an Transition Matrix which

specifies the likelihood of migrating from one credit rating (state) to

another over a fixed time horizon usually a year.

An example of an annual transition matrix is shown below:

What this is showing is that for example, if our current rating is

AAA, then the probability of our rating staying at AAA one year from

now is about 93%, the probability of it going down to AA is 7.06% and

so on. Notice that the highest probability for any rating is to stay at

the same rating for next year. Also notice that if you are in default,

then you will stay at default, there is no chance of a company that is

in default getting back to any rating.
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1.4 Calculating Credit Losses

So now that we have the general preliminaries, we want to see how

we can calculate and model credit losses. So as before, since credit

losses, just like any other financial instrument future pricing, is an un-

certainty, we will "measure" the loss through a probability distribution.

So we need to essentially come up with a relationship between the

credit risk and the probability of change in that credit risk and the

underlying price of the credit risky financial instrument, for example

a bond.

Our basic model is quite simple. First of all, we assume for simplic-

ity that bond value only depends on credit rating. We then assume

that associated with each future credit state there is an accompanying

change in the monetary value of the contract. For example a BBB-rated

bond that is worth $100 today may, one year from now, be worth $92

if the issuer is downgraded to BB or $104 if the issuer is upgraded to

AA rating.

So the the counterparty loss (L) has a discrete distribtuion (FL). For

example, assume we have a bond with a current BBB rating, then the

future loss can be modeled as shown below 1 1 positive values mean losses

Notice that if the credit rating does not change, then we lose noth-

ing. If it improves, then we gain in our price and if it goes down we

lose on the bond price. Note that in this model, we assume 100% loss

for a default but you can adjust for that if you expect to salvage some

value through collateral or other means.

1.5 Real world examples of Credit Loss Data

To give you an idea of how you normally calculate credit loss, we will

look at the data sets that companies use when evaluating portfolios of

credit risky instruments. The following is a the data for some credit

risky instruments which gives the general characteristic of the instru-
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ments. We have highlighted one company. We can see that the current

rating for this company is BB. We can also see that in case of default,

we can recover 70% of the value of the bond. Standard deviation of re-

covery rate gives you likelihood of getting that 70 percent. We will not

recover 70 percent for sure, that is just a mean, so standard deviation

gives you what is the 63% probability to recover within that mean.

Generally we do not take into account standard deviation in examples

given, but you can take it into account when doing more precise modeling

or when a lot of money is at stake.
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The following is the transition matrix for the above assets.

We can also show the above graphically:

Finally, below you can see the loss matrix for the assets if the ratings

changes from the current to one of the various ratings shown.

1.6 Factor Modeling of Credit Risk

As we mentioned, we will assume for our model that bond prices

only depend on credit risk. And to model credit risk, we will use

factor models. Specifically, a single factor model. For our model, the

only factor will be in which industry and in which country the coun-
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terparty issuing the credit risky instrument is located in. So for our

example above that was highlighted in red, we have the credit driver

"E2BSC". This means that the company is in the European Union (E)

and in the basic material sector (BSC). The value ”sensitivity vector” is

essentially the β factor and this is basically saying that 54% of the at-

tributes this company can be attributed to movements in the European

basic material sector. 2 2 using a single factor model for bond
losses is actually an industry standard.
You can do multifactor models if you
like.1.7 Correlation Matrix Between Credit Drivers

So what else do we need? We also need the correlation matrix between

the credit drivers, those country industry indices. This is because if we

are going to use random numbers to create scenarios, then we need to

make sure that if there is a relationship between different counterpar-

ties, that these are taken into account. For example, it would be wrong

to assume that one counterparty’s rating is downgraded and another is

upgraded, if there is any correlation between these two counterparties.

So for example assume you have three credit drivers: US chemicals,

German Insurance, German banking. Then you can say perhaps the

following correlation between these drivers. So for example, the cor-

relation between US chemicals and german banking is only 8% but for

german banking and german insurance it is 34% which makes sense

since they are in the same company and similar industries.

1.8 Structural model of portfolio credit risk

So first of all let’s recap, what do we want? We want to know if we

have a portfolio of credit risky assets such as bonds, what will the loss

distribution of that portfolio look like. Note that previously, we never
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looked at credit risk, only at market risk so this is somewhat new.3 3 Our underlying assumption was that
credit risk was zero

Now the model for our portfolio credit risk will be a factor model.

And we want to know what happens with the migration of credit wor-

thiness (ratings) 1 year (or whatever time period you choose) from

today. Since we don’t know the future, as usual we model the future

with a random variable w, which we call the creditworthiness index.

What does that random variable represent?

So assume that we generate a random number and it falls some-

where between -1.6 to 1.6, then this bond will stay at it’s current rating,

for now assumed to be BBB.

However, before generating that random variable, we need a model

for it. So as it is done in general for factor models, we divide the

total credit risk into systemic and specific risk. Systemic risk depends

on which country and which industry that company belongs. This is

modeled by the credit drivers that we just talked about in the previous

section. And the second part of the model is the specific risk 4 which 4 which we have seen in the capital asset
pricing model

is independent on any of the risk factors.

So if we want to compute wj where j is the index of our company,

we must compute:

wj = β jyj(k) + σjzj

where we have:

• β j sensitivity of counterparty j to the credit driver. For the example
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above it is 0.54. So this means 54% of the changes in credit worthi-

ness of this company can be attributed to being in that country or

industry (ie related to our factor)

• yj(k) is the one factor in our model. Note that j is the counterparty

and k is the industry. So for our exmaple above of the french steel

company, j is 129 and k is the CDIDX number 21. This random

variable depends on how good the situation is in that country and

in that index. So the larger this value the bigger the chance that our

company is performing well.

Y is generated assuming a random distribution with a correlation

that you get from your data (again you cannot assume that system-

atic risk is independent across all companies)

Note that y and z are random variables so we need to make some

assumptions on the distribution of those random variables. In this

model the assumption is that z is a standard normal random variable.

This means that it has a mean of 0 and standard deviation of 1. We

denote this usually with N(0, 1). Y is also a standard normal variable

but y’s are correlated to each other because we know that there is a

correlation matrix between credit drivers. Different countries and dif-

ferent industries are related to each other (some move together, some

opposite) and we capture that through the distribution of y.

We now are in a process to start our simulation modeling. So we do

not know w unless we sample. So we generate random numbers for

z and y, multiply by β and σ and compute wj. We then need to look

in which range that value wj belongs and that tells us how does the

credit worthiness of our counterparty changes in that specific scenario.

So we need to generate random numbers as before, but process is a bit

more involved.

Let’s go over the process. Assume we are in scenario 1. Then we

generate random numbers for z for company j assume here it is the

French company we have in examples above. In this case, then we
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β129 = 0.54

σ129 =
√

1− β2
129 = 0.842

So for the above scenario, we then generate random variable zj so

assume it is equal to 0.1. Now we generate random variable for yi but

remember that the random variable is correlated random numbers so

we need to take into account the correlation matrix.

So let’s say you calculated yj(k) = 1.2. After you substitute every-

thing into the formula and you get a w equals to some value -0.5.

Then you look at our distribution and see that since this falls in the

fat part of our curve, there is no change in credit rating and therefore

there is zero loss on the credit risky asset we are holding (ie a bond).

Therefore, after every scenario generation you know the associated

loss.

1.8.1 Meaning of random variable y

Now there is something subtle that we did in the previous section that

we need to emphasize further here. y is a normal random variable

with the mean zero. If the random variable y is greater than zero,

what does it tell us about that country and industry? Is that country

doing good or doing bad? Well the bigger the y value, then the bigger

the w value will be and more chance that our change in credit rating

will be an improvement and the price will increase.

So what this means is that as soon as we generate y, the distribu-

tion of in this formula is shifted to the right if y is greater than zero

(favourable systematic risk) and to the left if y is less than zero (unfa-

vorable systematic risk).

So during the 2008-2009 crisis the systematic risk was substantially

unfavorable, hence the chance of default went up. Curves that only

have z are called conditional transition probabilities - conditional be-

cause they are only dependent on value of y.
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1.8.2 Conditional Independence Framework

So what happens when you start generating scenarios for this model?

So you start with generating random numbers for y and y′js are corre-

lated to each other. So it’s usually beneficial to generate all the yj’s in

one shot. So in the our example you have 50 different credit drivers

- so your index is k = 1 to 50. So usually what you do is generate y

for those 50 values with a normal distribution 5 and correlation ma- 5 N(0, 1)

trix C. What happens next, when you start generating vector w for

each instrument j, you need to know which y to take for that vector

w. For instance, let’s say that our counterparty j = 10 and it belongs to

the country-industry 3 (this is the credit driver factor that affects our

counter party j = 10). In that case then what you do is take the third

coordinate of y and substitute it in your formula. Because your counter

party j depends on factor k. You then generate a random variable z,

this is uncorrelated so easy to generate.

So first thing we observe is that it is much more computationally

intensive to generate random values for y than z because y values are

correlated with each other. So one way to reduce our computational

method is 6 to generated it once and afterwards, for each y you gen- 6 And this is what we do in the example
below

erate z 5 times, and that gives you 5 different values of w. So this is

one thing that you often need to do in any field involving simulations.

Can you simplify the computational time and get the precise result.

So for scenario one, we went and generated vector y of correlated

random numbers. We then need to calculate w1 for scenario 1. So we

just get y and z and get a value for w. But now in scenario 2, we keep

the same y but get new z. We repeat this 5 times, each time keeping

the same y but generating new z.

Then in scenario 6, what you do is generate a new vector y which

you use in the next 5 scenarios. So this simplifies your computation.

And in the example, that’s what exactly we will test. What happens

if you generate a new y in every scenario and what happens if you

generate a new y every 5 scenarios. How less precise your results

become. Think of simulations as a way for you to test your hypothesis,

if you are waiting three days for simulations to finish and you then

realize that you misplaced a matrix somewhere, then that’s a big waste
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of time. So you need to have the skill to reduce simulation times. Once

you have a model that you are fairly confident in, you can run the

simulation for few days just to get a final result.

So in the example below, we need to generate two sets of scenarios.

One set of scenarios contains 100, 000 samples and we call this out of

sample scenario7 because 100,000 is quite a large number, we can see 7 Also known as "in reality"

it as a true distribution of portfolio losses. In this case, we generate y

100, 000 times and z 100, 000 times.

The second set of scenarios is called in sample scenario and con-

tains 5, 000 scenarios. Why we call it "in-sample"? The word "in-

sample" means we are not generating enough scenarios (samples) to

get a true distribution. We do this cause we want to reduce computa-

tional time. We also go a little further to reduce computational inten-

sity. For those 5, 000 scenarios, we generate y only 1000 times, and for

each y we generate z 5000 times, so total is 5000 scenarios. However,

we will likely lose something in the quality of our distribution and this

is something you need to compare.

Using the above two techniques, we will be able to evaluate what

we call the "sampling error". We will aslo look at what the error would

be if we do "normal" distribution rather the distribution given by the

scenario generations.

So the purpose of the example is two fold, measure risk through

CvaR and VaR and calculate

1. How much risk is underestimated or overestimated with small sam-

ples and

2. How much risk is underestimated or overestimated assuming nor-

mal distribution.

1.8.3 Finding true distribution

Note that portfolio loss distribution conditional on ym is the convo-

lution of conditional counterparty loss distributions:

FL(x)|y = FL1x1|y ∗ FL2x2|y ∗ . . . ∗ FLJ xJ |y

This means that if we have 8 credit states, J counterparties, then
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there is 8J possible portfolio losses for each y.

The unconditional portfolio loss distribution is the mixture of the

conditional portfolio loss distributions:

FL(x)(l) =
1
M

M

∑
m=1

FL(x)|y(l)

And as we said, the approximations to conditional loss distribu-

tion FL(x)|y is to use either 1) Monte Carlo sampling (MC) or Condi-

tional Normal (CN) –> ie assume a normal distribution and accept that

the error is not that big.

1.8.4 Overall Summary

So the following bullet summarize the steps we take for finding the

structural model of portfolio:

• we generate scenarios for the random variable y from the normal

distribution with the correlation matrix C. Remember that y is a

random vector of random variables corresponding to each of the

credit drivers. In the figure below the number of times you generate

y is given by M. For each M, you will get a vector of size k, k being

the number of drivers.

• We generate a random variable z. This variable is not conditional.

• compute wi for each credit risky asset i that can be in our portfolio.

We do this by taking the credit driver factor that corresponds to the

company, multiplying by βi and adding zi.

• Now realistically, we need to generate a new y vector every time

we calculate a new wi. But this is computationally intensive, so we

have some tricks that lead to what is known as sampling error. We

explore this in the examples at the end of this chapter.

• Either way, once we have generated all our losses based on our

model for all our credit risky assets, we multiply these losses for

each company by vector x which represents our weights in these

assets. Based on this we get our portfolio of conditional losses on a

given y. This is denoted by FL(x)|y1
where x is your portfolio weights.
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• Once we generate enough separate conditional losses, we sum up all

the conditional portfolio distribution losses to get the unconditional

distribution of losses for our portfolio

1.8.5 A note on sampling error and number of samples needed

Generally, sampling error gets worse as α → 1. For common credit

risk analysis, α ≥ 0.995 so to get good estimates of VaRα and CVaRα

we would need a lot of samples.
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1.8.6 Calculating Losses

As we mentioned previously, finding the true loss distribution requires

convolution. Monte Carlo gives you an approximation. So given vector

x which represents the positions we are taking in each counterparty8, 8 In the example, this is fixed, we are not
doing any optimization, just analysis on
the portfoliothen in order to calculate the losses for each portfolio you need to do is

sum up for each counterparty the number of units, multiplied by the

per unit loss for that counter party that you get from the scenarios. So

how is that going to be done, that is going to be done first we generate

all these random numbers z and y, we create the creditworthiness vari-

able w, after we check in which interval that w belongs, that tells you

in which credit rating you are in now, and for each of the credit rat-

ings you look up what are the losses in that credit rating. You multiply

that loss by the number of units of the counterparty in your portfolio,

sum up over all portfolios 9 and you will get an approximation to the 9 ie all your scenarios

portfolio of loss distributions.

Now the formula we have is as follows:

FL(x)(l) ≈ FMC(l; x) =
1

MN ∑
m,n

1L(ym, zmn; x) ≤ l

This formula looks complex, you may implement it differently. But

what does it tell us? 1B is an indicator function and it is equal to 1

when w is in the range of c where c is a specific credit rating and it is

equal to zero if wj is not in that range. So remember you must sum

up over all credit states (Defualt, CCC, B, BB, BBB, A, AA, AAA). So

c takes eight different values and we know what is the loss in each of

those credit stats given by vector l j
c. So we need to determine in which

range our w belongs and so we will have a vector that will be zeros

and only 1 in the position that the credit loss occurs.

So for example, let’s say in one scenario w is equal to −2.5. So now,

we check that -2.5 is in range B, so our bond has migrated from BB to

B. So now, we must do the sum. The default is -$49 million, multiplied

by indicator function which would be zero plus, triple C loss ($3.5

million) times indicator function (again zero), and so on. The only

non-zero is in the B-rating where the loss -$1.2 million.
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Note that the function B gives you the vector of numbers corre-

sponding to the ranges.

1.8.7 Monte Carlo Sampling Approximation

So you start off by generating random variable y in scenario M = 1

which is a vector of 50 random variables

Next you need to determine loss for instrument 1 to whatever. In

order to calculate loss, you need to use the factor model, generate

w, figure out what is your migration, look up the loss in that credit

state. Remember that you may generate z multiple times for each

y because computing independent random variables is much easier

computational than generating correlated random numbers. So this is

a simplification and this is shown in the Fig. 1.1.

Figure 1.1: Monte Carlo Simulation with
reduced computationally intensity by
reusing y variablesIn the example, capital N is either 1 or 5 which means that we can

use the same y up to 5 times to make our algorithm more computation-
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ally efficient. So for counterparty one, you will have 1− 5 losses for

different z. We denote this by l1
11 which mean the loss for counterparty

one for M = 1 and N = 1.

So the portfolio loss in one scenario yM is the loss for each counter-

party times the portfolio weights and given by:

Λ(x)|yM , N = λMN(x) =
J

∑
i=1

l J
MN xj

We are using this notation because as we said, for simplification,

we may generate M y random variables and for y then generate an

additional N z random variables. So the total number of scenarios

would be M× N.

Now the distribution of losses then would give us an approximate

true distribution (had we used convolution). And as soon as you have

the distribution of portfolio losses we can plot it and get VaR and CVaR

as we did previously from a distribution of portfolio losses.

Λ(x) = [λMN(x)]

As soon as you have all the losses, your work is done.

1.8.8 Distribution of Unconditional Framework

The following shows 10 conditional normal distributions. When we

put these together, we get the unconditional portfolio loss distribution.

notice that the portfolio distribution is not normal 10. So this is an 10 we say that it has a fat tail

illustration that even when we use random variables that are normally

distributed, we get portfolios that are not normally distributed. So this

is one of the caveats of the conditional dependence framework which

we have used.

So conditional independence framework is not a normal distribu-

tion. Conditional on y, each one of the distributions is a normal distri-

bution . But unconditionally, the portfolio distribution is a fat line. So

this shows that with the help of normal distributed variables we can

still model portfolios and counterparties that do not have normally dis-

tributed losses - even though each of the random variables is normally

distributed.
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1.8.9 Summary and use in Industry

Conditional Dependence Framework is the most complex model we

talk about in this book and in fact is used in industry. The attributes

in industry are as follows:

• Typical portfolio size: 5, 000 counterparities

• Typical number of credit drivers per party: 1

• Typical Beta: 0.4− 0.5

• Typical number of systematic samples M: 10, 000

• Typical number of specific samples N: 1, 000 (for risk measure-

ment, not for optimization.)

• Typical total number of scenarios 10, 000, 000 (M× N)

So in the example, we are essentially solving an industry problem

with much smaller number of counterparties, and a 100 times less out

of sample scenarios (100,000 versus 10,000,000). Note that the code

provided ran around 30 seconds for 100,000 scenarios so you can use

this as a benchmark 11 11 maybe different for your system but
should not take hours!



2 Matlab Functions

2.1 Vector Based Programming and simulation time

All codes used in the in-sample and out of sample analysis are vector

based for speed. The code for 100,000 samples run for less than 30

seconds. The 100 trials take a few minutes to run but can be optimized

more to reduce the time.

Overall, the 100,000 out of sample scenarios and MC1 and MC2

scenarios with 100 trials take 4 minutes to run.



3 Results and analysis

3.1 Period Output

Portfolio 1:

Out-of-sample: VaR 99.0% = $15574388.00, CVaR 99.0% = $23498580.80

In-sample MC1: VaR 99.0% = $13899085.00, CVaR 99.0% = $20527116.78

In-sample MC2: VaR 99.0% = $11928212.00, CVaR 99.0% = $17855827.94

In-sample No: VaR 99.0% = $8215656.80, CVaR 99.0% = $9617205.94

In-sample N1: VaR 99.0% = $7235465.67, CVaR 99.0% = $8503896.23

In-sample N2: VaR 99.0% = $6921917.20, CVaR 99.0% = $8142676.01

Out-of-sample: VaR 99.9% = $24590588.00, CVaR 99.9% = $42627487.00

In-sample MC1: VaR 99.9% = $27782539.00, CVaR 99.9% = $34046393.40

In-sample MC2: VaR 99.9% = $27701140.00, CVaR 99.9% = $30968822.00

In-sample No: VaR 99.9% = $11375078.14, CVaR 99.9% = $12520160.18

In-sample N1: VaR 99.9% = $10094806.44, CVaR 99.9% = $11131129.06

In-sample N2: VaR 99.9% = $9673794.64, CVaR 99.9% = $10671168.88

Portfolio 2:

Out-of-sample: VaR 99.0% = $14452443.67, CVaR 99.0% = $23064292.72

In-sample MC1: VaR 99.0% = $12888880.03, CVaR 99.0% = $20181297.05

In-sample MC2: VaR 99.0% = $10546353.42, CVaR 99.0% = $16921141.93

In-sample No: VaR 99.0% = $7605223.57, CVaR 99.0% = $8927654.97

In-sample N1: VaR 99.0% = $6757345.86, CVaR 99.0% = $7963000.61

In-sample N2: VaR 99.0% = $6285256.40, CVaR 99.0% = $7424018.26

Out-of-sample: VaR 99.9% = $25833032.68, CVaR 99.9% = $38565450.43

In-sample MC1: VaR 99.9% = $28944736.31, CVaR 99.9% = $34157176.74
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In-sample MC2: VaR 99.9% = $26721076.74, CVaR 99.9% = $31485366.18

In-sample No: VaR 99.9% = $10586294.92, CVaR 99.9% = $11666736.85

In-sample N1: VaR 99.9% = $9475175.18, CVaR 99.9% = $10460209.22

In-sample N2: VaR 99.9% = $8852293.42, CVaR 99.9% = $9782675.18

3.2 Distributions Plots

In the following pages the distribution plots for the three scenarios are shown.

Although the losses do follow the expected log-normal shape for the loss side,

there also seems to be log-normal distribution for gains which is expected. We

only care about losses in the following analysis however.

3.3 Analysis

3.3.1 Analyzing Sample Error and Model Error

These results show that sampling error is significant.

The in sample VaR and CVaR are not as accurate and sometime overstate or

underestimate the the more accurate out of sample loss. The difference can be

as large as 30% which is quite unacceptable. For example, out of sample VaR

for 99.9% indicates $14.2Million loss but the in sample VaR indicates a $12.9

Million loss (MC1) and $10.5 Million loss (MC2). Therefore both in-sampling

techniques underestimate loss in this case.

On the other hand, for VaR 99.9%, the out of sample loss is $25.8 Million

but the in-sample VaR is $28.9 Million (MC1) and $26.7 Million (MC2). So

in this case, the in-sample scenarios overestimate the loss. Similar conditions

hold for CVaR.

Model error (using normal distribution) has much worse results than in-

sample errors. Model errors are more than 50% off in most cases and some-

times more. So I would only use model error for quick "back of the envelope"

simulations but they should not be relied upon for decision making.

3.3.2 Reporting in Sample VaR and CVaR

Based on the above analysis, reporting in sample VaR and CVaR can either un-

derestimate or overestimate risk. So essentially, reporting in-sample VaR/CVaR

can cause you to either to take too much risk (losses are too small) or be too

conservative (losses are too large) and therefore suffer on returns.
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3.3.3 Possible Strategies

Apart from using a higher speed equipment, one method I can think of to

improve results is regression. So we take the results that we achieve using

out of samples and try to regress as to how much error there is when doing

in-sample scenarios and make an adjustment.

A second approach is to use a more hardware oriented programming lan-

guage. Matlab has quite a bit of overhead. Looking at Python, C/C++ or even

machine language (Assembly) can speed up programs by a few factors.

A third approach is to use FPGA programming to do this, this is quite

simple using Verilog code.

Finally, I would only do this if there is a clear reason for speeding up the

simulations (for example if you are looking to test/improve on new models).

Overall, I believe if you are going to plan for a 1 year risky asset model, then

you are better off spending a few days running your simulations. Cutting

corners can have catastrophic results.
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Figure 3.1: Out of sample loss distribu-
tion for portfolio 1
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Figure 3.2: Out of sample loss distribu-
tion for portfolio 2
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Figure 3.3: In sample loss distribution
for portfolio 1
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Figure 3.4: In sample loss distribution
for portfolio 2
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Figure 3.5: In sample loss distribution
for portfolio 1
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Figure 3.6: In sample loss distribution
for portfolio 2
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