Incentive Provision in Multitask Jobs: Experimental Evidence from the Workplace ${ }^{1}$ (JOB MARKET PAPER)

Sacha Kapoor ${ }^{2}$
Department of Economics
University of Toronto

November 10, 2010

Abstract

This paper presents field evidence that sheds new light on the provision of incentives in multitask jobs - jobs where workers carry out several tasks and the firm cares about performance in each task. Specifically, I design and conduct a field experiment at a large-scale restaurant, where the pre-existing wage contract encourages workers to carry out their tasks in a way that is not perfectly aligned with the firm's preferences. The experimental treatment pays performance bonuses to waiters for the number of customers they serve, in addition to their tips for customer service and hourly wages. I compare worker performance under the treatment to that under the pre-existing contract, where workers are rewarded for overemphasizing customer service, to evaluate the effect of a wage contract that encourages undesirable behavior. I find that, when paid bonuses for customer volume, the average worker earns more, is more productive, and generates higher short-run profits for the firm. At the same time, despite the added benefits of customer volume relative to customer service, the data reveal a negligible impact on tip percentages. Overall, the findings suggest that sharpening wage contracts to deal with incentive problems in multitask jobs has benefits for workers as well as the firm.

JEL Classification: J33, L81, M52
Keywords: multitasking, incentive contracts, worker heterogeneity

[^0]
1 Introduction

Many organizations use wage contracts that appear to be inconsistent with the organization's goals. For example, in settings where workers are expected to carry out many tasks, we often see contracts that emphasize a worker's performance in a few highly-visible margins. This is puzzling because, in theory, a discrepancy between the tasks emphasized by wage contracts and those carried out by workers can seriously distort incentives in the workplace [Holmstrom and Milgrom, 1991]. Despite the ubiquitous nature of this discrepancy [Kerr, 1975], there are few empirical studies assessing the role of these incentive problems for organizational performance.

To help fill the gap, this paper examines a workplace where the wage contract encourages workers to carry out their various tasks in a way that is not perfectly aligned with the firm's short-run goals. Specifically, I design and conduct a field experiment at a large-scale restaurant to investigate this issue empirically, focusing on the behavior of waiters, who are often susceptible to incentive problems related to multitasking.

These problems arise naturally in high-volume restaurants that face capacity constraints. On days with excess demand for seating, the wage contract emphasizes customer service, even though the firm would prefer that workers focus more attention on customer turnover because it might generate significant revenue gains. Workers tend to overemphasize customer service because it could improve earnings from tips, though it might generate only small gains in revenue. Since the firm finds it difficult to directly monitor the way workers divide their attention on the days with excess demand, workers have both the incentive and the means to direct their attention to customer service.

To evaluate how this incentive problem affected workers, consumers, and the firm, the experiment pays waiters performance bonuses for customer volume, in addition to their tips for customer service and hourly wages. The crux of the research design is to compare outcomes under the original incentive contract, where incentive problems related to multitasking are present, with outcomes under the treatment, where these problems are muted. Since these problems appear on days with excess demand for seating, the experiment is conducted on all busy days during the high season (November 2009 and January 2010).

The empirical analysis is based on detailed transactions data from a franchise of a major North American corporation located in the Greater Toronto Area (GTA). The data are used to construct broad within- and across-day measures of individual performance, such as sales and tip percentages, and measures of individual inputs to the production process, such as customer volume, hours worked, and sales of various items. I complement the data from the treatment period with information from October 2009 and from the same months last year (2008-2009). For the purposes of robustness and to gain sharper identification, I also use data from a comparable franchise in the same corporation during the 2009-2010 season.

I find that, when workers are encouraged to direct more attention to customer volume, there are large reductions in the distortions generated under the original contract. Under the experimental treatment, the average worker served 2.49 more customers per day at the expense of a $\$ 1.79$ reduction in sales per customer. Over the course of a shift, the average worker sold $\$ 66$ more, which roughly corresponds to a 6% improvement in daily sales.

I also find that the average worker earns more and generates larger profits for the firm. Workers earn more because of improvements in individual productivity and because changes in behavior that favor customer volume, such as reductions in dessert sales, had no influence on tip percentages. Under the experimental treatment, the average worker earned $\$ 16.50$ more (about 10% of average earnings) per day. In addition to generating benefits for workers, the augmented contracts resulted in an 18% improvement in profits per day for the firm. I obtain similar results when the other restaurant is used as a control group. Overall, these results suggest that, in distorting individual productivity, the original contract seriously misaligned worker behavior with the short-run interests of the firm.

On further examination, the data reveal that, while the performance bonuses induced all workers to direct more attention to customer volume, the average effects for individual productivity are driven by the behavior of high-ability workers. The evidence indicates that, in order to improve productivity, high-ability workers actually moved faster and sacrificed less in sales per customer than their coworkers. I also find that, after making the trade off, low-ability workers experienced a large reduction in tip percentages. The reduction in tip percentages suggests the responses of low-ability workers came at the expense of the overall quality of service delivered to consumers.

The heterogeneous treatment effects are used to investigate why a profit-maximizing firm might not want to sharpen employment contracts to deal with incentive problems in multitask jobs. In particular, I use these estimates to simulate the sensitivity of short-run profits to the composition of workers employed at the firm. I find that these contracts are only profitable when at least 15% of the firm's workforce consists of high-ability workers.

Overall, this paper contributes to a growing literature studying the role of incentives for individual productivity in the workplace. ${ }^{1}$ In contrast with work in ([Shearer, 2004], [Lazear, 2000], and [Paarsch and Shearer, 1999]), which highlight the importance of incentive effects and sorting, this paper focuses on the importance of incentive effects and the allocation of effort among the various duties of the worker. The paper builds on previous work that examines this issue [Dumont et al., 2008] by considering the implications for overall individual productivity, consumer satisfaction, and the profitability of the firm. In doing so, the study provides a direct empirical connection with

[^1]questions raised in [Holmstrom and Milgrom, 1991] concerning the importance of multitasking in agency situations. ${ }^{2}$

More broadly, the results speak to normative prescriptions derived in [Holmstrom, 1982] and [Holmstrom, 1979], to the effect that we should expect improved outcomes from contracts that use more information about worker performance, and provides a rationale for the observation made in [Stiglitz, 1991] that such complex contracts are not often observed in firms. In particular, the results suggest that these contracts are uncommon because the benefits are sensitive to the composition of workers (in terms of their ability) currently employed by the firm. This paper also speaks to observations from [Gibbons, 1998] that, in combination, multiple instruments can be used to provide workers with a 'balanced package of incentives' and subsequently to reduce inefficiencies based on incentive problems in multitask jobs. In these respects, the study may have particular significance for contract design in workplaces where multitask jobs are common and high-ability workers have a strong presence.

The paper is organized as follows. Section 2 describes institutional features of the workplace that provide a foundation for the identification strategy used in this paper. This section also provides details about the research design. Section 3 provides a detailed description of the data and further information about the context. Section 4 develops a theoretical framework that generates predictions about behavior under the experimental treatment. The model also highlights the sources of conflict between worker and firm. Section 5 elaborates on the identification strategy and the econometric framework, while Section 6 discusses the empirical findings and their theoretical implications. Section 7 concludes, discussing future research, broader implications for incentives in organizations, and the implications of the findings for compensation policies commonly used by governments. The appendix presents robustness checks based on information from the control restaurant.

2 Context

The CEO's Problem

The flagship product of the corporation is high-grade steaks. The franchise is located in a suburb of the GTA where the population exceeds 200,000, the median age is 36 years old, and the median annual income (for full time employees who work the full year) is approximately $\$ 50,000$. In an average week, the restaurant serves more than 1500 customers, with more than half of these being served on days with excess demand for seating. Consumers usually order one entree and pay

[^2]an average of $\$ 38$ for their entire meal.
On days with excess demand for seating, the franchise CEO believes that the best way to increase profits is by increasing customer turnover. There are two reasons for this belief. The first reason is that the firm can reduce average labor costs by simply spreading the labor bill over more customers. In other words, labor is essentially fixed cost for the firm. ${ }^{3}$ The second reason is that, when there are many customers, each new customer effectively generates the same gain in revenue for the firm. Since the costs of other inputs are a constant share of revenue, fixed labor costs and constant marginal revenue together imply higher per customer profits for the firm. I use data on average labor costs and average revenue from the 2006-2007 season to illustrate this in Figures 1 and 2.

The CEO's problem is that, in the short run, the wage contract discourages workers from sharing this view. The firm prefers that workers focus on customer turnover during busy periods, yet uses a wage contract (based on tips and hourly wages) that rewards workers for overemphasizing customer service. Since it is difficult to monitor worker-customer interactions when customer volume is large, workers have the means, as well as the incentive, to focus too much attention on customer service. On busy days, an overemphasis on customer service might generate large profit losses for the firm.

Research Design

The experiment exogenously changes the incentives of workers in November and January of the 2009-2010 season. Before the change, at the start of the 2009-2010 'high' season and for the entire 2008-2009 season, workers' earnings came from tips and a fixed hourly wage. During the experimental period, workers earned money through tips, hourly wages, and a simple linear performance bonus for customer volume.

The main benefit of using an experimental research design is that it allows me to identify how workers trade off customer service in response to performance bonuses for customer volume. Since these outcomes are generally determined simultaneously, it is difficult to identify the trade off without experimental variation. ${ }^{4}$

Workers received a bonus if customer volume, adjusted for shift length and section size, exceed an exogenously determined performance standard. ${ }^{5}$ Bonuses were proportional to the distance

[^3]between actual performance and the performance standard. In consultation with the CEO proportions were chosen so that workers who exceeding the performance standard by a standard deviation earned between $\$ 20$ and $\$ 30$, or more than 10% of average daily earnings. ${ }^{6}$ Proportions and performance standards were the same for all workers.

The use of a performance standard is motivated by how tasks are allocated between worker and firm. While the firm is responsible for inducing consumer participation, through advertising and marketing, workers are responsible for convincing consumers to purchase more items or to substitute towards more expensive items (i.e. up-selling). Since the firm effectively guarantees a minimum level of customer volume for each worker a performance standard was used to ensure workers were not rewarded for maintaining the status quo.

In early October of 2009, the CEO and I informed workers about a research project being conducted at the restaurant. ${ }^{7}$ We informed workers that the general objective of the research was to study how to reduce wait times for consumers. During this month, I conducted interviews with each worker. ${ }^{8}$ We did not inform workers about the performance bonuses for customer volume until November of 2009.

Upon workers' arrival for a previously scheduled shift (on a busy day), I informed workers that they would be paid performance bonuses for customer volume. Since adjustments to performance outcomes and standards are somewhat involved, I asked workers to explain how the bonuses worked in the context of several hypothetical examples. Workers were paid privately when the shift was completed. ${ }^{9}$

Each worker's experience followed a similar pattern on subsequent treated days. To minimize the influence of sorting on the empirical results the length of the treatment period was not revealed to workers.

The workplace has natural features that help minimize biases from Hawthorne and experimenterdemand effects. One important feature is that, having known about the trade off from higher customer service, the CEO has used other instruments, such as contests and non-monetary incentives, to direct the attention of workers to customer volume on busy days. In light of these instruments, the treatment was introduced to workers as a 'contest' that pays performance bonuses for customer volume.

Overall the experiment combines elements of a cluster design with elements of a randomized block design [List, Sadoff, and Wagner, 2010]. While the unit of analysis is at the worker level, the

[^4]unit of treatment is at the calendar date level. A key feature of the data is that the same worker is observed in more than one cluster. ${ }^{10}$

Assigning Consumers to Workers

An important feature of the workplace is that the firm uses a rules-based process to assign consumers to workers. A rules-based process places limits on managerial and support worker discretion about who to match with whom. Under this process consumer-based idiosyncrasies, such as preferences, are conditionally independent across bills and subsequently averaged out when data is aggregated to the daily level. As a consequence the process enables an identification strategy based mostly on worker specific heterogeneity and the 'average' consumer visiting the firm that day.

Decisions about shift allocations are based on management preferences and on the preferences of the worker. Workers publicly post shift requests (one to two weeks in advance of each workweek) and managers try to accommodate the preferences of each worker. Since a fixed number of slots are available in each shift, management will unilaterally allocate workers to over- or under-demanded shifts. The final schedule is public information. It includes information about start times, which range from $3: 30 \mathrm{pm}-6: 30 \mathrm{pm}$ and are generally staggered at $0-15-30$ minute intervals.

Before each shift, each worker is assigned their own section (of tables). Sections range in size from 10 to 16 seats. Section assignments are based on expected demand, the number and quality of workers, and managerial preferences. With more workers on days with high customer volume, the average size and quality of a section is lower than on days with low customer volume. ${ }^{11}$

Two rules govern the assignment of customers to workers on days with excess demand for seating. First, when the restaurant is below capacity, consumers are matched to workers based on the start time of the worker. Second, when the restaurant is at capacity, consumers are quoted an expected wait time and then matched with the next available worker. In both cases neither consumers nor workers have control over the identity of the other party in the match.

End times are at the discretion of the manager. When there are no consumers left waiting for a table a subset of workers are sent home. The number sent home will depend on expectations about the number of late customer arrivals. The order of finish is generally the same as the start order. ${ }^{12}$

[^5]
3 Data and Descriptive Statistics

I collected 6 months of transaction level data for October, November, and January 2008-2009 and October, November, and January 2009-2010. The analysis uses days with high customer volume (Fridays and Saturdays), where a significant number of customer arrivals are not served by the firm. Workers were offered performance bonuses for customer volume on these days in November 2009 and January 2010. Overall there are 40 workers, 52 days, and 937 worker-day observations. ${ }^{13}$

The period under study permits an identification strategy based primarily on within worker differences-in-differences across months and years. Since the firm experienced abnormally low turnover during this period, more than 75 percent of workers appear in both periods, I can compare changes in outcomes for the same worker across years to obtain estimates of the treatment effect.

Two additional samples are used to supplement the primary analysis. I collected information from February-May of 2008-2009 and 2009-2010 to study the longer term consequences of the initial treatment and to separately identify the incentive effects of piece rates from incentive effects of performance standards. To control for aggregate factors that might confound year-over-year comparisons, such as the recent economic turmoil, I collected information from a second comparable restaurant during the 2009-2010 season. The first sample consists of 42 workers, 104 days, and 1845 observations, while the second consists of 64 workers, 54 days, and 1644 observations. Robustness checks that use both samples are found in the appendix.

Figures 3-7 and the top panel of Table 1 summarize daily individual-level information on input choices, productivity, and tip percentages for the period under study. The raw data helps resolve some of the ambiguity present in the model. An examination of the raw statistics reveals an increase of $2.71+.56=3.27$ in the number of customers served, a decrease of $-(\$-.42-\$ 1.08)=\$ 1.50$ in the sales to each customer, and an overall improvement of $\$ 91.45-\$ 7.42=\$ 84.03$ for individual productivity. This evidence suggests input choices which favor customer volume have a stronger impact on individual productivity. Since tip percentages are apparently governed by factors other than effort $(.16-.16=0)$, the evidence also supports the notion that workers earned more under the experimental treatment. ${ }^{1415}$

More detailed summary evidence on input choices is presented in Figures 8-11. This data reveals reductions in daily post-entree (by $\$ 2.88$) and alcohol sales ($\$ 7.08$), and improvements in daily entree ($\$ 94.67$) and appetizer/salad sales ($\$ 1.25$). The raw result for post-entree sales is consistent with behavior predicted by the model. Specifically, that workers will reduce post-entree

[^6]sales to increase arrival rates.
The bottom panel of Table 1 summarizes daily firm-level information on the number of customer arrivals not served. While the raw evidence weakly supports claims about short run profits, -(28.63$31.11)=2.49$ fewer customer arrivals left without receiving service from the firm, the conditional evidence (in the next section) shows the treatment had a strong impact in this dimension. A similar case is made for the share of arrivals not served by the firm. ${ }^{16}$

	Period					
	Oct 08	Nov 08/Jan 09	Change 1	Oct 09	Nov 09/Jan 10	Change 2
Sales per Customer	37.04	38.12	1.08	38.76	38.34	-.42
	(4.36)	(4.42)		(4.63)	(4.60)	
Customer Volume	28.42	27.86	-.56	26.75	29.46	2.71
	(8.74)	(8.04)		(8.57)	(8.87)	
Sales	1043.50	1050.92	7.42	1026.64	1118.09	91.45
	(320.22)	(290.99)		(314.66)	(322.84)	
Tip Percentage	12.53	12.69	.16	12.84	13.00	.16
(After Tax Sales)	(2.52)	(2.52)		(2.37)	(2.70)	
Performance Bonus	-	-	-	-	11.75	-
					(19.43)	.51
Share Receiving	-	-	-	$(.50)$	-	
Bonus				328		
Observations	135	284			190	52.13
Customer Arrivals	32.7	63.81	31.11	23.5	(37.79)	28.63
not Served	(35.58)	(49.61)		(25.56)	6.31	3.31
Share not Served	4.00	7.94	3.94	3.00	(4.06)	
Days	(4.00)	(4.85)		(2.87)	16	

Table 1: Descriptive Statistics.

4 Theoretical Framework

In this section I develop a simplified model of individual productivity when workers are rewarded by consumers, through tips, and paid wages by the firm. I use the model to illustrate how and why the interests of workers might conflict with those of the firm. The model is also used to generate predictions about behavior under the experimental treatment.

Setup

Workers are hired to serve customers and to up-sell menu items on behalf of the firm. In the model workers can direct their effort to up-selling entree items (q_{1}) or to up-selling post-entree

[^7]items $\left(q_{2}\right)$. Workers who focus on the latter direct more attention to customer service than to customer volume.

Individual productivity is measured by daily sales

$$
Y=N(h) \times Q
$$

where $N(h)$ is the number of consumer arrivals for employees who work h hours and $Q=\sum_{i} q_{i}\left(e_{i}, \epsilon_{i}\right)$ is total sales per customer. q_{i} depends on e_{i}, the effort given to category-specific up-selling, and on a random variable, ϵ_{i}, measuring category-specific tastes for the 'average' consumer. ${ }^{17}$

The primary earnings source for workers is daily tip earnings, which are proportional to daily sales,

$$
D T E=t \times Y
$$

Tip percentages, $t=t(\mathbf{e}, \boldsymbol{\tau})$, depend on the effort spent on each category and a random vector, $\boldsymbol{\tau}$, representing consumer preferences over effort and the overall experience at the firm. Hourly earnings then consist of hourly tips earnings and hourly wages,

$$
H E=\frac{D T E+w h}{h}=\frac{t N Q}{h}+w .
$$

Workers are assumed to have quasi-linear preferences over hourly earnings and hourly effort, $U(H E, \mathbf{e})=H E-c(\mathbf{e})$, where $c_{e_{i}}, c_{e_{i} e_{i}}>0$ and cross partial derivatives $c_{e_{i} e_{j}} \geq 0$ measure the degree of substitutability across tasks. ${ }^{18}$

The timing of the model is consistent with the actual timing of transactions between consumers and workers:

- Workers are randomly matched with consumers.
- The random vector $(\boldsymbol{\epsilon}, \boldsymbol{\tau})$ is realized, observed by workers, but not by the firm.
- Workers use expectations about $N(h)$ to decide on an effort allocation.

[^8]- Consumers use $t(\mathbf{e}, \boldsymbol{\tau})$ to pay workers.

Misaligned Interests

The problem for the worker is to

$$
\begin{equation*}
\max _{e_{1}, e_{2}} t \lambda Q+w-c(\mathbf{e}) \tag{4.1}
\end{equation*}
$$

where $\lambda h=E_{N}[N(h)], t_{e_{i}}>0, t_{e_{i} e_{i}} \leq 0$, and e_{1} and e_{2} have complementary effects on tips, $t_{e_{1} e_{2}} \geq 0$. I assume effort directed at post-entree sales has a smaller impact on overall sales per customer than effort directed at entree sales, $\frac{\partial q_{1}}{\partial e_{1}}>\frac{\partial q_{2}}{\partial e_{2}} \geq 0$. I also assume $N(h)$ is generated by a Poisson Process where the arrival rate is decreasing in the effort allocated to post-entree sales, $\lambda_{e_{2}} \leq 0,{ }^{19}$ at a diminishing rate, $\lambda_{e_{2} e_{2}} \leq 0$.

The problem's assumptions embody the source of the conflict between workers and the firm. By selling more post-entree items, workers can earn more in tips at the expense of longer bill durations. When customers spend more time at their table, the firm quotes longer wait times to arriving customers. These wait times induce more customer arrivals to visit their next best alternative. While the firm gains $\$ 7-8$ per customer from the increase in post-entree sales, the firm loses the revenue that comes from serving customers that would have otherwise stayed. Over extended periods, where many customers decide to visit their best alternative, the overemphasis on post-entree sales can generate large profit losses for the firm.

To illustrate the conflict formally, I consider how the CEO would carry out e_{1} and e_{2} if he were in the worker's position. The CEO's problem is to

$$
\begin{equation*}
\max _{\mathbf{e}, w} \lambda Q-w \quad \text { subject to } \quad t \lambda Q+w-c(\mathbf{e}) \geq \bar{U} \tag{4.2}
\end{equation*}
$$

where $\lambda Q-w$ equals expected gross hourly profit margins and $\bar{U}>0$ reflects the worker's outside opportunities. The CEO chooses a fixed payment w that satisfies $t \lambda Q+w-c(\mathbf{e})=\bar{U}$ and then carries out e_{1} and e_{2} to maximize total surplus ${ }^{20}$

$$
\begin{equation*}
\max _{\mathbf{e}}(1+t) \lambda Q-c(\mathbf{e}) . \tag{4.3}
\end{equation*}
$$

[^9]This yields

$$
\begin{equation*}
\frac{t_{e_{1}}+\frac{(1+t)}{Y}\left[\lambda \frac{\partial q_{1}}{\partial e_{1}}\right]}{t_{e_{2}}+\frac{(1+t)}{Y}\left[\lambda_{e_{2}}\left(\sum_{i} q_{i}\right)+\lambda \frac{\partial q_{2}}{\partial e_{2}}\right]}=\frac{c_{e_{1}}}{c_{e_{2}}} . \tag{4.4}
\end{equation*}
$$

The term $\frac{1+t}{Y}$ measures the weight placed on earnings from sales, relative to earnings from tips, in the total marginal benefit for e_{1} and in the total marginal benefit for e_{2}.

In contrast, the worker's problem (4.1) yields

$$
\begin{equation*}
\frac{t_{e_{1}}+\frac{t}{Y}\left[\lambda \frac{\partial q_{1}}{\partial e_{1}}\right]}{t_{e_{2}}+\frac{t}{Y}\left[\lambda_{e_{2}}\left(\sum_{i} q_{i}\right)+\lambda \frac{\partial q_{2}}{\partial e_{2}}\right]}=\frac{c_{e_{1}}}{c_{e_{2}}} . \tag{4.5}
\end{equation*}
$$

The worker places less weight, $\frac{t}{Y}$, on earnings from sales in the marginal benefit for e_{1} and in the marginal benefit for e_{2}. Under the model's assumptions, $\lambda \partial q_{1} / \partial e_{1}<\lambda_{e_{2}}\left(\sum_{i} q_{i}\right)+\lambda \partial q_{2} / \partial e_{2}$, workers direct too much attention to post-entree sales. Relation (4.5) and Relation (4.4) coincide when waiters are simply order takers and effort has no influence on customer arrivals, i.e when $\lambda_{e_{2}}=\frac{\partial q_{1}}{\partial e_{1}}=\frac{\partial q_{2}}{\partial e_{2}}=0$, or when effort has no influence on tips, i.e when $t_{e_{1}}=t_{e_{2}}=0$.

The latter case, where effort has no influence on tips, highlights how and why the conflict relates to the pre-existing contract and also further motivates the experimental treatment. Since (4.4) and (4.5) coincide when $t_{e_{1}}=t_{e_{2}}=0$, workers divide their attention among their activities in a way that is desirable to the firm. In this case, a conflict arises because the total marginal benefits exceed those of the worker. The firm, in other words, would prefer that workers put more effort into all tasks.

When tips depend on effort, on the other hand, the relative marginal benefits in (4.4) and (4.5) do not coincide. In this situation, a conflict arises because the firm would prefer that workers put more effort into all tasks and because workers focus too much attention on post-entree sales.

The experimental treatment has two main consequences. The first is that it encourages workers to focus less attention on customer service because of a direct reduction in the marginal benefit from post-entree sales. The second consequence is that it encourages workers to focus more attention on customer volume because of an increase in the relative marginal benefit (4.4) from entree sales.

Behavior Under the Treatment

I precisely illustrate how a simple bonus scheme can generate more favorable outcomes for the firm. A major benefit of the scheme is that it is a low cost alternative to increasing capacity (adding seats) in order to deal with excess demand. While an increase in capacity might improve profits in periods with high customer volume, it also means more unused capacity in periods with
low customer volume.
When offered simple linear bonuses for customer volume the problem for workers is to

$$
\max _{e_{1}, e_{2}} E_{N}[H E+\alpha(N-T) I(N \geq T)]-c(\mathbf{e})
$$

where I is the indicator function, T is the performance standard, and α governs the magnitude of the bonus based on the expected distance to T. Note that the expectation E_{N} is decreasing in $e_{2} .{ }^{21}$ The first order conditions now imply

$$
\begin{equation*}
\frac{t_{e_{1}}+\frac{t}{Y}\left[\lambda \frac{\partial q_{1}}{\partial e_{1}}\right]}{t_{e_{2}}+\frac{t}{Y}\left[\lambda_{e_{2}}\left(\sum_{i} q_{i}\right)+\lambda \frac{\partial q_{2}}{\partial e_{2}}\right]+\frac{\alpha}{Y} \frac{\partial E_{N}}{\partial e_{2}}}=\frac{c_{e_{1}}}{c_{e_{2}}} . \tag{4.6}
\end{equation*}
$$

Since $\frac{\partial E_{N}}{\partial e_{2}}<0$, the bonus scheme provides workers with incentives to direct some of their attention away from $e_{2}\left(c . f\right.$. (Equation 4.5)). ${ }^{22}$

Comparative Statics

I base predictions about outcomes, when workers are paid bonuses for customer volume, on behavioral responses to $\alpha .^{23}$ In terms of the attention given to post-entree sales the model predicts an unambiguous reduction in e_{1}. Less attention is directed to post-entree sales under the experimental treatment. Or, more formally, $\frac{\partial e_{2}}{\partial \alpha}<0$ when the second order conditions are satisfied (because $\frac{\partial e_{2}}{\partial \alpha}$ is proportional to $\left(\frac{\partial^{2} E_{N}[H E]}{\partial e_{1} e_{1}}-c_{e_{1} e_{1}}\right)$).

The model also predicts an ambiguous effect on the attention paid to entree sales (since $\frac{\partial e_{1}}{\partial \alpha}$ is proportional to $\left.-\left(\frac{\partial^{2} E_{N}[H E]}{\partial e_{1} e_{2}}-c_{e_{1} e_{2}}\right)\right)$. The ambiguity occurs because there are costs to shifting attention from post-entree to entree sales and because post-entree sales has an ambiguous effect on the marginal benefits of entree sales (i.e. the sign for $\frac{\partial^{2} E_{N}[H E]}{\partial e_{1} e_{2}}$ is indeterminate ex ante). When workers have large substitution costs or the marginal benefits are decreasing in post-entree sales,

$$
\begin{aligned}
& { }^{21} \text { To see this consider the expression } E_{N}[(N-T) I(N \geq T)]=\sum_{j=T+1}^{\infty}(j-T) e^{-\lambda\left(e_{2}\right)} \frac{\lambda\left(e_{2}\right)^{j}}{j!} \text {. Differentiating yields } \\
& \qquad \frac{\partial E_{N}[(N-T) I(N \geq T)]}{\partial e_{2}}=e^{-\lambda\left(e_{2}\right)} \lambda_{e_{2}}\left\{\sum_{j=T}^{\infty} \frac{\lambda\left(e_{2}\right)^{j}}{j!}\right\}<0 .
\end{aligned}
$$

[^10]more attention is devoted to entree sales. On the other hand, when workers have small substitution costs and the marginal benefits are decreasing in entree sales, workers devote less attention to entree sales.

Given the behavioral predictions, the main consequences for observed input choices are: first, more customers are served under the experimental treatment because $\frac{\partial \lambda}{\partial \alpha}=\frac{\partial \lambda}{\partial e_{2}} \frac{\partial e_{2}}{\partial \alpha}>0$. Second, workers sell fewer post-entree items, $\frac{\partial q_{2}}{\partial \alpha}=\frac{\partial q_{2}}{\partial e_{2}} \frac{\partial e_{2}}{\partial \alpha}<0$. Third, the effect for per customer sales of other items $\frac{\partial q_{1}}{\partial \alpha}=\frac{\partial q_{1}}{\partial e_{1}} \frac{\partial e_{1}}{\partial \alpha}$ is ambiguous.

The main predictions for individual productivity and earnings are: first, since $\frac{\partial t}{\partial \alpha}=t_{e_{1}} \frac{\partial e_{1}}{\partial \alpha}+t_{e_{2}} \frac{\partial e_{2}}{\partial \alpha}$ the treatment has an ambiguous influence on tip percentages. However, there is no effect $\frac{\partial t}{\partial \alpha}=0$ when effort is not a factor used to determine tip percentages. Second, workers are more productive under the experimental treatment $\frac{\partial Y}{\partial \alpha}=\frac{\partial \lambda}{\partial \alpha} q+\lambda\left(\frac{\partial q_{1}}{\partial \alpha}+\frac{\partial q_{2}}{\partial \alpha}\right)>0$ when the arrival rate has a larger impact on daily sales than sales per customer. Third, when paid bonuses for customer volume, workers earn more if $\frac{\partial t}{\partial \alpha}=0$.

An important feature of the model is that it allows arrival rates to vary within shifts. This consideration is important because it maps more closely with actual ongoings at the firm, where busy days consist of periods of both high and low demand. In high demand periods the marginal benefit to up-selling entrees increases (through $\lambda \frac{\partial q_{1}}{\partial e_{1}}$), while post-entree sales have an ambiguous effect on these benefits because of the increase in $\lambda \frac{\partial q_{2}}{\partial e_{2}}$ and the decrease in $\lambda_{e_{2}}{ }^{24}$

One caveat of the model is that it assumes workers fully observe $(\boldsymbol{\epsilon}, \boldsymbol{\tau})$ before deciding on effort allocations [Baker, 1992]. In reality decisions are based on signals about ($\boldsymbol{\epsilon}, \boldsymbol{\tau}$). However this assumption allows me to capture the essence of the informational problem at the firm. Workers have better information because of their interactions with consumers and because of the high costs of monitoring each interaction. The noise from each interaction allows workers to direct more attention to appeasing consumers than is desired by the firm.

Worker Heterogeneity

To explore how behavioral responses vary across workers I first assume that the direct cost to generating effort is larger for less able workers, $\frac{\partial c_{e_{i} e_{i}}}{\partial \theta}<0$, where θ represents the ability of the worker. The assumption implies less attention is directed to post-entree sales per customer by workers with lower ability. Or, more formally, that for each worker θ if $\theta^{\prime}>\theta$ then

$$
\begin{equation*}
\frac{\partial e_{2}}{\partial \alpha}(\theta)<\frac{\partial e_{2}}{\partial \alpha}\left(\theta^{\prime}\right)<0 \tag{4.7}
\end{equation*}
$$

[^11]The prediction is obtained because small shifts in attention away from post-entree sales result in relatively large cost reductions for low-ability workers. The differences in cost reductions imply that low-ability workers have stronger incentives to reduce post-entree sales when offered performance bonuses for customer volume.

When I assume that more able workers also have lower substitution costs, $\frac{\partial c_{e_{1} e_{2}}}{\partial \theta}<0$, the model predicts that performance bonuses have a smaller impact on these workers relative to their less able counterparts. Formally, when $\theta^{\prime}>\theta$, I obtain

$$
\begin{equation*}
\frac{\partial e_{1}}{\partial \alpha}\left(\theta^{\prime}\right)<\frac{\partial e_{1}}{\partial \alpha}(\theta) \tag{4.8}
\end{equation*}
$$

The prediction in (4.8) is obtained because reductions in attention directed at post-entree sales has a smaller influence on the marginal cost of entree sales. When the response $\frac{\partial e_{1}}{\partial \alpha}(\theta)$ is nonnegative (for every ability type), this means that performance bonuses have a lesser influence on the attention directed to entree sales by high-ability workers.

In addition to having analogous consequences for observed entree and post-entree sales per customer, the relations in (4.8) and (4.7) have other implications for outcomes used in the econometric analysis. First, Relation (4.7) implies that, unless arrival rates are more responsive to the effort e_{2} of high-ability workers, workers with lower ability will have higher arrival rates. Second, in cases where arrival rates are highly responsive to e_{2} we should see improvements in overall productivity (daily sales). Third, if there is a worker who earns smaller tip percentages when paid performance bonuses then workers with lesser ability will also earn smaller tip percentages. Moreover, for these workers, the percentages decrease with ability.

5 Identification and Econometric Framework

To obtain treatment effects for individual level outcomes I estimate variants of the regression model

$$
\begin{equation*}
y_{i d}=\alpha_{i}+\beta_{1} I_{N o v / J a n}+\beta_{2} I_{09-10}+\beta_{D I D} I_{N o v / J a n} I_{09-10}+\mathbf{X}_{i d} \boldsymbol{\beta}+\epsilon_{i d} \tag{5.1}
\end{equation*}
$$

I is the indicator function. $\mathbf{X}_{i d}$ controls for time-varying factors common to all workers, such as day (Friday or Saturday) effects, calendar week effects, and customer arrival rates, as well as for time-varying factors specific to each individual, such as section characteristics (the number of booth seats, bench seats, and chair seats), days in sample, and average days in sample for members of the peer group. ${ }^{25}$ Regressions do not control for calendar date fixed effects because the treatment

[^12]is not randomized within shifts. Assume that $E\left[\epsilon_{i d} I\right]=0$.
$\epsilon_{i d}$ represents other time-varying individual specific factors that might influence performance. Apart from statistical error, the main factors driving variability in $\epsilon_{i d}$ are: first, time variation in the preferences of the average consumer matched to each worker. Such variation poses a threat to the identification strategy if, for example, recent economic shocks induced a shift in consumer types who visit on high demand days or in how consumers who visit spend their money.

Second, time variation in the behavior of support workers and managers at the firm. Changes in support worker or manager behavior related to the treatment incentive scheme, either directly or indirectly, could pose problems for identification. Behavioral changes from other agents at the firm are a threat if, for example, they respond differently to increased customer volume during the experimental period.

For robustness purposes I consider a second identification strategy in the appendix of this paper that uses within-worker comparisons across comparable restaurants on the same day. Estimates based on this strategy strongly support the main results in this paper.

6 Results

The first result shows the experimental treatment had the expected effect on input choices.
RESULT 1. While workers serve more customers in response to performance bonuses for customer volume, it comes at the expense of sales per customer. Consonant with the idea that 'you get what you pay for' [Gibbons, 1998], when the wage contract overemphasizes customer service, customer volume gets neglected.

Columns 1-4 of Table 4 show workers served 2.01-2.99 more customers during the treated period, where estimates are statistically significant at a $p<.01$ level (against a two-sided alternative). Columns 5-8 show a statistically significant reduction, at the $p<.05$ level, in sales per customer of $\$ 1.51-\$ 1.78$. In columns $9-12$ I show that, relative to customer volume, sales to each customer fell by $10-14 \%(p<.01)$. Overall, the average worker sold $\approx 2.49 * 40=\$ 94.62$ more, because of volume improvements, and sold $\approx 1.73 * 28 \approx \$ 48.44$ less, because of reductions in the sales to each customer. Based on this conservative difference, the average worker produced $\$ 94.62-\$ 48.44$ $=\$ 46.18$ more when paid bonuses for customer volume.

Result 1 reflects the fact that, under the original employment contract where the firm relies on buyer monitoring [Jacob and Page, 1980] and buyer rewards to motivate performance, workers direct more attention sales to per customer than is otherwise desired. As noted in Gibbons [1998],

[^13]this behavior is consistent with the idea that 'you get what you pay for'. When only some aspects of a job are rewarded then, unsurprisingly, other aspects are neglected.

Estimates from columns 9-12 of Table 5 are revealing about how workers reallocate effort to improve customer volume. The evidence shows a per customer reduction in pre-entree sales of $\$.39(p<.05)$, in alcohol sales of $\$.96(p<.05)$, and in post-entree sales of $\$.25(p<.05)$. The reduction in post-entree sales to each customer is consistent with predictions of the model. Under the experimental treatment workers benefit from selling fewer post-entree items because of the reduction in bill durations. The other results are consistent with ambiguous predictions from the model. ${ }^{26}$

To better grasp the mechanisms underlying the volume improvements I study treatment effects for hours worked and customer volume per hour (columns 1-4 of Table 5). Column 2 shows the average employee worked $16.2\left(.27^{*} 60\right)$ more minutes $(p<.05)$ during the treatment period. This means, in addition to experimental earnings and improved tip earnings, the average worker earned $\$ 2.23$ ($\$ 8.25^{*} .27$) more in hourly wages. It also means the labor bill for waiters rose by $\$ 44.6$ during the experiment. Estimates in columns 1 shows that, even with the increase in hours worked, the average worker served $.28(p<.10)$ more customers per hour.

The evidence on customer volume per hour, which suggests that workers actually moved faster, is supported by the within-shift descriptive evidence in Figures 12. In these figures restaurant sales are calculated at 15 minute intervals, averaged over the number of workers present during the interval, and then averaged over the number of shifts in the (control or treatment) period. The evidence in the bottom right panel indicates there was an increase in sales during peak and post-peak periods under the experimental treatment. When considered in tandem, evidence from the figures and the estimated reduction in sales to each customer suggest this is because of an increase in hourly customer volume. ${ }^{27}$

When one considers the implications for individual productivity the data reveals the following result:

RESULT 2. Offering performance bonuses for customer volume yields large gains in daily sales. These gains suggest that a discrepancy between the tasks covered by wage contracts and the tasks carried out by the worker can significantly distort productivity in the workplace.

Evidence for Result 2 is provided in columns 1-4 of Table 6. Estimates of the treatment effect

[^14]range from $\$ 49$ to $\$ 92$, where the results in columns 2-4 are significant at between the 1 and 5 percent levels. The most robust estimate (column 4) implies a $\$ 66$ gain in daily sales for the average worker. With an average of 20 workers per shift, the overall gain in daily sales for the firm is $\$ 66 \times 20 \approx \$ 1320 .{ }^{28}$ When combined with Result 1 , Result 2 supports the prediction that the benefits to improved customer volume, in terms of daily sales, outweigh the costs of reductions in sales to each customer.

The next result investigates relates tip percentages to worker behavior:
RESULT 3. Changes in worker behavior during the treatment period did not influence tip percentages. This suggests that the behavior induced by performance bonuses for customer volume did not adversely affect the overall experience of the consumer.

As shown in columns 5-8 of Table 6 the influence on tip percentages is small and statistically insignificant. ${ }^{29}$ At a minimum, Result 3 strengthens the link between multitask incentive problems in this workplace and the classic problem, as originally exposited in [Holmstrom and Milgrom, 1991]. Basically, this is because Result 3 implies the original contract pays piece rates that are not influenced by the behavior of workers.

Result 3 has three main explanations. First, consumers do not use tip percentages to reward effort allocations (or, in the context of the model, $t_{e_{1}}=t_{e_{2}}=0$). Second, new consumers visit the restaurant on high demand days, have no basis for comparison, and simply behave in accordance with conventions on tipping. Third, the treatment did not significantly alter the perceived experience of repeat consumers. Irrespective of the correct interpretation, the findings suggest consumers were not made worse off from the behavior induced by the treatment. ${ }^{30}$

As is the case with individual productivity and tip percentages model predictions about tip earnings are ambiguous. Further exploration of the data yields the following result.

RESULT 4. Workers who direct more attention to consumer volume under the experimental contract earn more money from tips and hourly wages.

Evidence for this result are found in columns 9-12 of Table 6. The estimate in column 12, despite

[^15]being marginally insignificant at the $p<.1$, suggests that there was a $\$ 12$ improvement in tip earnings. ${ }^{31}$ The estimate is consistent with the evidence used to support Results 2 and 3, which imply that tip earnings improved by $.125 * 66 \approx \$ 8.25$. When combined with the change in hourly wages and expected experimental earnings, the average worker earned at least $\$ 8.25+2.23+.51^{*} 11.75=$ $\$ 16.47$ more per shift.

While Results 3 and 4 do not suggest a decline in outcomes for consumers and workers, Result 2 does not fully reveal the influence on outcomes for the firm. The following result considers the implications for the profitability of the firm:

RESULT 5. The firm is more profitable in the short run when workers are paid bonuses for customer volume in addition to their tips and hourly wages. This, in combination with the previous results, is in line with early predictions from contract theory, that using multiple instruments to deal with incentive problems in multitasking workplaces can improve outcomes for workers and the firm.

Based on the most conservative treatment effect for daily sales (\$66), the experimental treatment resulted in a 18% increase in profits per day. This effect consists of a change in daily revenue $\$ 60 \times$ 20 workers $=\$ 1200$, the average daily cost of providing the incentive $\approx \$.5^{*} 11.75^{*} 20=\$ 117.50$, an increase in average daily labor costs $\$ 8.25$ per hour $\times .27$ hours $\times 20=\$ 44.60$, and an increase in (food) input costs. Profits plus input costs (net revenue) are then given by $\$ 1320-117.50-44.60 \approx$ $\$ 1158$. Using conservative values for the input cost per additional dollar of net revenue (δ) yields the $\% 18(\delta \times 1158 /$ (average daily profits $) \times 100)$ increase in daily profits. ${ }^{32}$

Results 3 through 5 are consonant with predictions made in [Holmstrom, 1979], [Holmstrom, 1982], [Holmstrom and Milgrom, 1994], and [Gibbons, 1998]. Specifically, as noted in [Holmstrom, 1979], that the firm can base employment contracts on additional information about worker performance and improve the welfare of workers and the firm. ${ }^{33}$

I use alternative data, at the firm-level, to investigate the factors driving improvements in short-run profitability. Specifically, I use firm-level information to estimate the specification:

$$
\begin{equation*}
q_{d}=\beta_{1} I_{N o v / J a n}+\beta_{2} I_{09-10}+\beta_{D I D} I_{N o v / J a n} \times I_{09-10}+\mathbf{X}_{d} \boldsymbol{\beta}+\epsilon_{d} \tag{6.1}
\end{equation*}
$$

In equation (6.1), q_{d} equals either the number or share of customer arrivals not served by the firm. \mathbf{X}_{d} controls for time-varying factors influencing unmet demand, such as the number of arrivals, the day of the week (Friday or Saturday), and the weather, while ϵ_{d} represents unobserved time-

[^16]varying factors influencing unmet demand. The identifying assumption for this specification is that unobserved changes in unmet demand from October 2008 to November 2008/ January 2009 are the same on average as the unobserved changes from from October 2009 to November 2009/ January 2010.

Estimates of equation (6.1) are presented in Table 7. ${ }^{34}$ Column 1 shows 15.50 fewer customer arrivals $(p<.1)$ are not served by the firm in the treatment period. Column 2 supports this result, it shows a 2 percentage point reduction $(p<.1)$ in the share of arrivals not served. ${ }^{35}$

Multiple Incentive Instruments and Heterogeneous Responses

If these labor contracts are so profitable why don't firms use them more often? One reason that came from discussions with the CEO is that the benefits to augmented labor contracts are sensitive to the composition of workers employed by the firm. In other firms, where workers might have low ability or inadequate training, these contracts might not have a significant impact on profits.

In this and the next section, I use 2038 observations from control-period days (with high and low customer volume) to investigate how treatment responses differ from worker to worker and to draw inferences about how the benefits from the performance bonuses vary across firms with different labor pools. As a first step I obtain individual estimates of average productivity and of average inputs used in the production process. The estimates are based on the following specification:

$$
\begin{equation*}
y_{i d}=\theta_{i}+\gamma_{d}+\mathbf{X}_{i d} \boldsymbol{\beta}+\epsilon_{i d} \tag{6.2}
\end{equation*}
$$

γ_{d} is a calendar date fixed effect, and $\mathbf{X}_{i d}$ includes days in sample, the square of days in sample, and controls for quality of the section assigned to the waiter (the number of booth seats, bench seats, chair seats). The random variable $\epsilon_{i d}$ measures the transitory component of individual productivity (or input choices).

When the dependent variable is an output, θ_{i} measures the average permanent productivity of the worker. Conversely, when the dependent variable measures an input in the production process, such as with customer volume or the sales to each customer, θ_{i} represents the average permanent input of the worker in that dimension.

Figure 14 provides a graphical view of various estimates of θ_{i}. The x-axis represents the average permanent effort dedicated to customer volume (per hour worked) and the y-axis represents the

[^17]average permanent effort dedicated to sales per customer. The number at each coordinate pair is the average permanent productivity of the worker, measured using sales per hour worked as the outcome, of the worker. This figure suggests the behavior of high-ability workers, whose average permanent productivity ranges from $\$ 132$ to $\$ 144$ per hour, under the original contract was more closely aligned with the interests of the firm than the behavior of low-ability workers. Specifically, under the original contract high-ability workers directed relatively more attention to customer volume.

The empirical analysis exploits the fact that workers naturally fall into three to four categories, based on the 'level sets' in Figure 14. In Figure 15 I plot the productivity distribution and illustrate the precise criteria used to allocate workers into groups: low ability, workers whose averages sales per hour is more than one standard deviation below the mean sales per hour (across all workers); average ability, workers whose average sales per hour is within one standard deviation of the mean; high ability, workers whose averages sales per hour is more than one standard deviation above the mean. In all, there are 6 low-ability workers (16.2%, with 121 observations in treatment-control period), 24 average-ability workers (64.8%, with 639 observations), and 7 high-ability workers (18.9%, with 172 observations). This characterization yields the following result.

RESULT 6. Performance bonuses for customer volume has the largest impact on the productivity of high-ability workers. The benefits from augmenting labor contracts to deal with multi-task agency problems largely depend on the response of high-ability workers.

Evidence for the first part of Result 6 is presented in column 8 (row 3) of Table 8. When paid bonuses for customer volume high-ability workers sold $\$ 90.60(p<.1)$ more per day. Estimates from column 1 (rows 1 and 2) of Table 8, on the other hand, show for average- and low-ability workers the treatment had no statistically discernible influence on daily sales.

While the treatment only had a significant impact on the productivity of high-ability workers, it had a strong impact on the effort allocations of all workers. Column (3) of Table 8 shows that relative to customer volume the treatment induced a $15 \%(p<.1)$ reduction in sales to each customer for low-ability workers, a $10 \%(p<.1)$ reduction for average-ability workers, and a 17% ($p<.01$) reduction for high-ability workers.

When one considers the level effects on customer volume, the data is consistent with the idea that arrival rates are more responsive to the effort allocations of high-ability workers. This claim is supported by the estimated productivity differences across workers (as per the model) and by the estimates in Column (1) of Table 8, which show customer volume improved by $3.14(p<.01)$ customers for high-ability workers and by $2.24(p<.05)$ for average-ability workers. While the estimate for low-ability workers is larger than for workers with average ability, it is (marginally) statistically insignificant at the 10% level.

In contrast, the level effects on sales per customer are strongest for low-ability workers. Column (2) shows the performance bonuses induced a reduction in sales per customer of $\$ 2.62(p<.05)$ and $\$ 2.15(p<.05)$ for low- and high-ability workers, respectively. The treatment did not have statistically significant impact on sales per customer for workers with average ability.

The estimates in the middle panel of Table 8 provide information about the mechanisms underlying differences in behavior at this workplace. It shows the treatment induced larger behavioral changes for low and average-ability workers than for high-ability workers: low-ability workers reduced per customer sales of pre-entree and alcohol items by $\$.47(p<.1)$ and $\$ 1.37(p<.01)$, respectively; average-ability workers reduced per customer sales of pre-entree, alcohol, and postentree items by $\$.44(p<.1), \$.90(p<.01)$, and $\$.35(p<.01)$; high-ability workers reduced per customer sales of alcohol items by $\$.90(p<.1)$. This evidence is suggestive about what separates good from bad workers in multitasking workplaces:

RESULT 7. For the most able workers there are large productivity gains from small changes in up-selling behavior. Most of the improvement occurs because these workers move faster.

This evidence is also somewhat consistent with model predictions about heterogeneous responses to performance bonuses for customer volume. The model predicts that, first, the reductions in sales of items which typically lower arrival rates are largest for less able workers. Evidence for this prediction is presented in columns (4) and (6), which shows that the reductions in sales of alcohol and pre-entree items (per customer) are largest for low-ability workers. In contrast with predictions from the model, the evidence in column (7) shows that only average-ability workers reduced their sales of post-entree items. One explanation for this phenomenon might be that lowand high-ability workers did not direct their attention towards selling these items on busy days. This explanation is consistent with the idea that high-ability workers exploited the trade off under the original contract.

A second prediction about heterogeneity in responses to performance bonuses is that, in terms of sales of entree items, the response for more able workers is weaker than for less able workers. Although not statistically significant, the evidence in column (5) is consistent with this prediction: high-ability workers reduce entree sales by $\$.38$; average-ability workers increase entree sales by $\$.13$; low-ability workers increase entree sales by $\$.19$.

A natural next step is to determine if the patterns, particularly for low-ability workers, are congruent with a reduction in the overall service quality delivered to consumers. The data on tip percentages reveals that this is, in fact, the case.

RESULT 8. When the firm uses multiple instruments to deal with multi-task agency problems, the cost includes large reductions in the overall service quality delivered by low-ability workers.

Initial evidence for Result 8 is presented in column (9) of Table 8. While the estimate is marginally significant at the 10% level, it suggests that, when paid performance bonuses, low-ability workers experience an 8% reduction in tip percentages.

A closer examination of the data (Table 2) reveals, consonant with model predictions, a stronger effect (both in terms of magnitude and statistical significance) as one moves further out in the left tail of the ability distribution. Columns (2) and (3) respectively show a $9 \%(p<.1)$ and 11% ($p<.05$) reduction in tip percentages for workers who are 1.1 and 1.2 standard deviations below the mean ability level.

	Dependent Variable $=\ln$ (Tip Percentages) Distance to Mean Ability		
	1 Standard Deviation (1)	1.1 Standard Deviations	1.2 Standard Deviations
	(1)	(2)	(3)

Table 2: Reductions in the Perceived Quality of Service. Regressions use daily data at the individual level and the same restaurant last year as a control group. Robust Standard Errors are in parentheses with *** for $p<.01,{ }^{* *}$ for $.01<p<.05$, * for $p<.1$, and \cdot for estimates marginally significant at the 10 percent level. All regressions control for worker fixed effects, calendar week fixed effects, the day of the week (Friday or Saturday), section characteristics, customer arrivals, and days in sample. Controls for section characteristics include the number of booth seats, the number of bench seats, and the number of chair seats. Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. Controls for days in sample include days in sample for the individual and average days in sample for the peer group.

Short Run Profits

I complement the empirical analysis with information on input costs and itemized profit margins to evaluate the short run relationship between the profits from augmented labor contracts and the composition of workers employed by the firm. This exercise is based on the expected change in profits per worker

$$
\begin{equation*}
E[\Delta \Pi]=E[\Delta \Pi \mid \text { Low }] \operatorname{Pr}(\text { Low })+E[\Delta \Pi \mid \text { Average }] \operatorname{Pr}(\text { Average })+E[\Delta \Pi \mid \text { High }] \operatorname{Pr}(\text { High }) \tag{6.3}
\end{equation*}
$$

where treatment effects for individual productivity (Table 8, Column 8) are used to calculate
the difference in sales, hours worked (Table 8, Column 11) and the minimum wage in Ontario ($\$ 8.25 /$ hour) are used to calculate differences in the labor bill, and experimental earnings are used to calculate incentive costs. To compute the expected percentage gain in daily profits I subtract other input costs from equation (6.3), multiply by the average number of workers, and divide by average daily profits.

Calculations are presented in Table 3. Column 4 (6) evaluates the gains at the lower (upper) confidence bound of the treatment effect for daily sales. Column (5) sets the statistically insignificant coefficients to zero. While profits are generally smaller when there are fewer high-ability workers, column (5) shows that profits become negative when they comprise less than 15% of the workforce. Overall, the calculations suggest that augmented labor contracts have larger benefits in workplaces where high-ability workers are more common.

\left.| | Shares, by Ability | | | Change in Profits | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| per Worker (\%) | | | | | | |$\right\}$

Table 3: Multiple Incentive Instruments and Short Run Profits. Estimates in columns (4)-(6) are based on treatment effects for daily sales from Table 8. Column (4) uses the lower confidence bound for each worker type. Column (6) uses the upper bound. $\$ 90.60$ for average-ability workers and $\$ 0$ for high and low-ability workers.

Long Run Profits

A major concern with this study, especially when one considers the behavior of low-ability workers, involves the long run consequences of augmented contracts that deal with multi-task agency problems. To explore this concern I use transaction level information from the control and treatment periods on the number of visits by each consumer type, where types are defined by consumers who paid using credit cards and by the first four and last two digits of the credit card number. The information is summarized in Figure 13. The raw evidence in this figure suggests that, since repeat visits are not common on days with high customer volume, the adverse behavior
of low-ability workers under the experimental treatment has minimal long term implications for the profitability of the firm. ${ }^{36}$

7 Conclusion

I design and conduct a field experiment at a large-scale restaurant to study the short-run distortions generated by a wage contract that rewards the wrong behavior. I also investigate why, when more profitable contractual arrangements are available, a firm might continue to use these contracts.

I find that, in the short run, contracts that reward the wrong behavior generate large losses for workers and the firm. Using simulated evidence, I also find that wage contracts can be used to better align worker incentives when at least 15% of the labor pool has high ability.

A natural extension considers the interplay of incentive pay offered under the experimental treatment with the risk preferences of workers. Such an exercise provides a basis for quantifying the inefficiencies of the experimental contract relative to the optimal contract with incomplete information (See e.g. [Ferrall and Shearer, 1999]).

Fundamentally, as is the case with many incentive problems, the conflict is rooted in a trade off between short- and long-run rewards. Workers who appease consumers earn more in the near term but, over the long term, might earn less if the firm bases future decisions (about e.g. shift and section allocations) on current performance. ${ }^{37}$ The study suggests that these long-run incentives are insufficient for encouraging the right behavior, an implication that is consistent with behavior observed in more sophisticated jobs. When executives are paid for accounting profits, for example, these incentives are not enough to motivate them to increase future profits, by financing projects such as R \& D [Murphy, 1999], at the expense of current profits.

The paper may also have implications for government policies that relate to the compensation schemes used by firms. Specifically, the results suggest that the application of minimum wage laws to pay-for-performance jobs is not always prudent. While internal compensation policies can be used to deal with incentive problems, minimum wage laws that regulate hourly wages constrain firms to provide more insurance than is otherwise optimal. Alternative minimum wage policies, which allow for the use of incentive pay in lieu of hourly wages, could improve outcomes for consumers, workers, and the firm.

[^18]
References

George P. Baker. Incentive contracts and performance measurement. Journal of Political Economy, 100(3):598-614, June 1992.

Oriana Bandiera, Iwan Barankay, and Imran Rasul. Social preferences and the response to incentives: Evidence from personnel data. The Quarterly Journal of Economics, 120(3):917-962, August 2005.

Srikant Datar, Susan Cohen Kulp, and Richard A. Lambert. Balancing performance measures. Journal of Accounting Research, 39(1):75-92, June 2001.

Etienne Dumont, Bernard Fortin, Nicolas Jacquemet, and Bruce Shearer. Physicians' multitasking and incentives: Empirical evidence from a natural experiment. Journal of Health Economics, 27 (6):1436-1450, December 2008.

Ernst Fehr and Klaus M. Schmidt. Fairness and incentives in a multi-task principal-agent model. Scandinavian Journal of Economics, 106(3):453-474, November 2004.

Gerald A. Feltham and Jim Xie. Performance measure congruity and diversity in multi-task principal/agent relations. The Accounting Review, 69(3):429-453, July 1994.

Christopher Ferrall and Bruce Shearer. Incentives and transactions costs with the firm: Estimating an agency model using payroll records. The Review of Economic Studies, 66(2):309-338, April 1999.

Robert Gibbons. Incentives in organizations. Journal of Economic Perspectives, 12(4):115-132, Fall 1998.

Barton H. Hamilton, Jack A. Nickerson, and Hideo Owan. Team incentives and worker heterogeneity: An empirical analysis of the impact of teams on productivity and participation. The Journal of Political Economy, 111(3):465-497, June 2003.

Bengt Holmstrom. Moral hazard and observability. The Bell Journal of Economics, 10(1):74-91, Spring 1979.

Bengt Holmstrom. Moral hazard in teams. The Bell Journal of Economics, 13(2):324-340, Autumn 1982.

Bengt Holmstrom and Milgrom. Multitask principal-agent analyses: Incentive contracts, asset ownership, and job design. Journal of Law, Economics, and Organization, 7(Special Issue): 24-52, January 1991.

Bengt Holmstrom and Paul Milgrom. The firm as an incentive system. The American Economic Review, 84(4):972-991, September 1994.

Nancy L. Jacob and Alfred N. Page. Production, information costs, and economic organization: The buyer monitoring case. American Economic Review, 70(3):476-478, June 1980.

Charles Kahn and Gur Huberman. Two-sided uncertainty and 'up-or-out' contracts. Journal of Labor Economics, 6(4):423-444, October 1988.

Steven Kerr. On the folly of rewarding a, while hoping for b . The Academy of Management Executive, 18:769-783, December 1975.

Edward P. Lazear. Perfomance pay and productivity. American Economic Review, 90(5):13461361, December 2000.

John A. List, Sally Sadoff, and Mathis Wagner. So you want to run an experiment, now what? some simple rules of thumb for optimal experimental design. Experimental Economics, 2010. Forthcoming.

Alexandre Mas and Enrico Moretti. Peers at work. American Economic Review, 99(1):112-145, March 2009.

Kevin J. Murphy. Executive compensation. Handbook of Labor Economics, 3(2):2485-2563, 1999.
Harry J. Paarsch and Bruce S. Shearer. The response of worker effort to piece rates: Evidence from the british columbia tree-planting industry. The Journal of Human Resources, 34(4):643-667, Autumn 1999.

Canice Prendergast. The role of promotion in inducing specific human capital acquisition. Quarterly Journal of Economics, 108(2):523-534, May 1993.

Canice Prendergast. The provision of incentives in firms. Journal of Economic Literature, 37(1): 7-63, March 1999.

Ram T.S Ramakrishnan and Anjan V. Thakor. Competition and cooperation in agency. Journal of Law, Economics, and Organization, 7(2):248-283, 1991.

Sherwin Rosen. The economics of superstars. American Economic Review, 71(5):845-858, December 1981.

Bruce Shearer. Piece rates, fixed wages and incentives: Evidence from a field experiment. Review of Economic Studies, 71:513-534, 2004.

Margaret E. Slade. Multitask agency and contract choice: An empirical exploration. International Economic Review, 37(2):465-486, May 1996.

Joseph E. Stiglitz. Symposium on organizations and economics. Journal of Economics Perspectives, 1(2):15-24, Spring 1991.

A Robustness Checks

In this section I present evidence against alternative explanations for the main (average) results found in this paper. Specifically, I use data from another franchise to rule out explanations related to changes in consumer behavior (due to the most recent economic crisis), changes in the behavior of other agents (managers and support staff) at the firm, and temporary adjustments in worker behavior. I also use data from a second treatment to consider the incentive effects of the piece rate versus the incentive effects of the performance standard. In the second treatment workers received the same piece rate (as in the first treatment) and a unique performance standard. The performance standard is adjusted for section assignments to reflect the fact that some workers are assigned to sections where customer turnover is generally more difficult. This treatment was administered in May 2009. The evidence in this section reinforces the main conclusions of the paper.

A. 1 Economic Shocks

Estimates of the impact of the experimental incentive scheme are prone to (upward) bias if recent trends in the overall economy induced an artificial reduction in the difference in outcomes from October 2008 to November/January 2009 relative to the difference for October 2009 to November/January 2010. Such reductions can be attributed to: first, a change in the type of consumers that visit the restaurant. The difference in outcomes for the 2008-2009 season are artificially inflated if, for example, more consumers visited the firm in the October 2008 relative to October 2009. Second, a change in behavior for consumers that continued to visit the firm in the presence of an economic crisis. In this case the difference is inflated if each consumer spent more in October 2008.

The top panel of Table 9 provides information about changes in consumer behavior at the treated restaurant across the various periods under study. Evidence from the top left panel of this table suggests an increase in consumer spending did occur in October of 2008. The proportion of bills (using a single payment method) paid by credit card was .61 in October 2008 and .54 in November 2009/January 2010. In comparison the proportion was . 52 in October 2009 and .55 in November 2009/January 2010. The corresponding differences-in-differences is equal to .10. Similar evidence from the top right panel suggests, that while there are large differences in the proportion of bills paid by credit, there are relatively small differences in the proportion of bills using more than one payment method.

To assess this threat to internal validity I compare outcomes for workers at the treated franchise with outcomes for workers at another franchise in the same corporation during the 2009-2010
season..38 More specifically the identification strategy used in this appendix is to compare within worker differences across restaurants on the same day. Overall this strategy relies on 1533 observations, 50 days, and 64 workers to estimate the impact of the treatment incentive scheme on worker behavior.

Evidence for the comparability of the control restaurant is presented in the bottom panel of Table 9 and Figure 16. The bottom panel of Table 9 shows changes in consumer spending in the control restaurant in October 2009 (relative to November 2009/January 2010) are roughly similar to changes at treated restaurant in October 2009. Figure 16 shows that, while there are level differences in the number of customer arrivals, the patterns are strikingly similar for 2009-2010 season across restaurants.

Descriptive evidence for the main outcomes are presented in Figures 17 -19. Figures 17 and 18 show an increase in both sales and customer volume for workers in the treated restaurant in both treated periods. Figure 19 shows that, again in both treated periods, treated workers reduced their sales per customer more than control workers.

Estimates of the impact of the treatment incentive scheme are based on the specification:

$$
\begin{equation*}
y_{i r d}=\alpha_{i}+\beta_{1} T_{1 r d}+\beta_{2} T_{2 r d}+\gamma_{d}+\mathbf{X}_{i r d} \boldsymbol{\beta}+\epsilon_{i r d} . \tag{A.1}
\end{equation*}
$$

where $\mathbf{X}_{i r d}$ includes days in sample, peer days in sample, the number of consumer arrivals, arrivals squared, and controls for quality of the section assigned to the waiter (the number of booth seats, bench seats, chair seats) in restaurant $r(r \in\{1,2\}) . \gamma_{d}$ is a fixed effect for the calendar date. The random variable $\epsilon_{i r d}$ measures the transitory component of the performance of workers at restaurant r on date $d . T_{1 r d}\left(T_{2 r d}\right)$ indicates if workers in restaurant r received the first (second) treatment on date d.

Regression estimates for (A.1) are presented in Table 10. Interestingly, the estimates are similar in sign and magnitude to the results presented in Table 4. Note that estimates of the impact are measured imprecisely in columns (7) and (8). The imprecision is not surprising because, in contrast with the earlier identification strategy, the estimates are based on comparisons of workers at two different restaurants rather than on comparisons for the same worker across years.

Estimates in columns (1)-(4) of Table 11 provides information about the channels used to increase customer volume. ${ }^{39}$ Columns (1) and (2) reveal that, when offered performance bonuses for customer volume, the average worker served 1.11 more customers per hour ($p<.01$) and worked .25 fewer hours ($p<.05$) than workers from the control restaurant. In contrast with the estimate in columns (2) of Table 5, which suggests an year-over-year increase in hours worked, these results

[^19]suggest a reduction in hours worked for the average worker at the treated restaurant relative to workers at the control restaurant. Consonant with this evidence, columns (3) and (4) show the average treated worker served .87 more bills $(p<.01)$ and reduced average bill duration by .07 hours ($p<.01$).

In columns (4)-(12) I investigate the impact of performance bonuses on the sales of items from various categories. Columns (5)-(7) provides evidence for an increase in the daily sales of most items, including pre-entree, entree, and alcohol items. The result is not surprising because of a mechanical relationship between the sales of these items and the number of customers served. Of greater import is the result in column (8), which shows the treatment had no statistically discernible impact on daily post-entree sales. This result suggests that relative to workers in the control group the experimental contract better aligned the interests of workers with those of the firm. The treatment induced workers to trade-off the added benefits from post-entree sales for the added benefits from customer volume. The estimates in columns (9)-(12) show that workers sold fewer post-entree items to each customer (valued at $\$.18, p<.05$) and that the treatment did not effect per customer sales of other items for the average worker.

Table 12 shows that with a control restaurant the treatment incentive scheme had a similar impact on profits, consumer satisfaction, and tip earnings. Consistent with the magnitude of previous estimates, columns (1)-(4) suggests an increase in daily revenue of between $\$ 73.56$ - $\$ 92.52$ $(.01<p<.05)$ while columns (5)-(8) again suggest a neglible impact on consumer satisfaction. Estimates of the impact on tip earnings (columns (9)-(12)) are similar in magnitude to previous estimates but at best are marginally statistically significant.

A. 2 Manager and Coworker Behavior

Matching Consumers with Workers

A second concern involves changes in the assignment mechanism, used to match consumers with workers, in response to the treatment. My estimates are biased if hosts and/or managers, agents who observe consumer characteristics before allocating consumers to workers, match consumers with workers based on expected bill durations. To investigate this mechanism as a potential confounding factor I estimated Specification (5.1), a triple-difference specification using data from the treated restaurant over two seasons, and Specification (A.1) with average table usage:

$$
y_{i r d}=(\text { seats filled } / \text { table capacity })_{i r d}
$$

as the dependent variable. This proxy measures, in part, the assignment decisions of hosts/managers.

Regression results for this dependent variable are provided in Table 15. Estimates based on full seasons (columns (5)-(12)) show the treatment incentive scheme did not have a statistically significant impact on agents responsible for the assignment mechanism at the firm. Estimates from columns (1)-(8), while marginally significant at $p<.1$, suffer from similar consumer selection issues discussed earlier. More specifically, if the recent downturn is concurrent with a reduction in the average group size of visiting patrons then it could introduce upward bias into these estimates.

Section Assignments

A related concern is that managers can influence consumer-worker matches through section designations, how tables are divided into sections, and/or the assignment of sections to workers. To explore the impact of this concern, I used two years of control period data (leading up to the introduction of the first treatment) from high demand days to obtain long run measures of service volume for each table, computed the average service volume of the section assigned to each worker (for each shift), and estimated treatment effects for the constructed measures. Estimates are provided in Table 13. Columns (1)-(4) use binary measures of section quality (in terms of volume), indicating if the average volume of the worker's section is above mean (or median) average service volume across all tables, and probit regressions to estimate the effect of the treatment on section assignments. Columns (5)-(6) use the constructed continuous measures of section quality. All regressions suggest the treatment had a negligible effect on the section quality of workers.

A. 3 Hawthorne Effects

To address concerns about whether the results are driven by transitory responses to the treatment I estimate the baseline specification (Equation 5.1) for various time windows around the initial introduction of the treatment. Estimates are presented in Table 14. The data reveals that parameter estimates approach the values previously obtained within three weeks of the first treatment date.

A. 4 Incentive Effects of Piece Rates or Performance Standards

To evaluate the incentive effects of the piece rate and the performance standard I estimate the following specification:

$$
\begin{equation*}
y_{i r d}=\alpha_{i}+\beta_{1} \text { Rate }_{r d}+\beta_{2} \text { Standard }_{r d}+\gamma_{d}+\mathbf{X}_{i r d} \boldsymbol{\beta}+\epsilon_{i r d} . \tag{A.2}
\end{equation*}
$$

The results are presented in Table 16. While the introduction of a standard, that better reflects the constraints of each worker, induced the average worker to serve 1.96 fewer customers ($p<.1$),
it had a statistically insignificant impact on productivity overall (Column 8). The data also reveals that the effect of the piece rate is consistent with earlier estimates of the (first) treatment effect.

B Figures

Figure 1: Short run average cost for the period September 01, 2006 to June 06, 2006. The x-axis measures the number of customers served. The y-axis measures total daily labour cost (at the minimum hourly wage of $\$ 8$ per hour) per customer served. Each point in the figure represents a unique calendar date. A lowess estimator is used to fit the data.

Figure 2: Short run average revenue for the period September 01, 2006 to June 06, 2006. The x-axis measures the number of customers served. The y-axis measures total daily revenue per customer served. Each point in the figure represents a unique calendar date. A lowess estimator is used to fit the data.

Figure 3: Customers.

Figure 4: Sales per Customer.

Figure 5: Sales.

Figure 6: Tip Percentages.

Estimated Weekend Tip Earnings

Figure 7: Estimated Tip Earnings.

Figure 8: Sales of Appetizers and Salads.

Figure 9: Sales of Entree Items.

Figure 10: Sales of Alcoholic Beverages.

Figure 11: Sales of Desserts, Coffee, and Tea.

Figure 12: Weekend Sales, by 15 minute intervals. Restaurant sales are calculated at 15 minute intervals, averaged over the number of workers present during the interval, and then averaged over the number of shifts in the (control or treatment) period.

Number of Visits, by Credit Card Identifier

Figure 13: Repeat Visits.

Figure 14: The x-axis represents average permanent effort dedicated to service volume (per hour worked) and the y-axis represents the average permanent effort dedicated to service quality. The number at each coordinate pair is the average permanent productivity, measured using sales per hour worked as the outcome, of the worker. 38 of 39 workers are represented in the figure. The omitted worker had a negative fixed effect for Entrees per Hour.

Figure 15: Ability is measured using Equation (6.2) with sales per hour as the dependent variable.

Figure 16: Demand Conditions, in terms of the number of customer arrivals, for the treated and control restaurants in the 2009-2010 season.

Figure 17: Daily Sales for the treated and control restaurants in the 2009-2010 season.

Figure 18: Daily Customer Volume for the treated and control restaurants in the 2009-2010 season.

Figure 19: Demand Sales per Customer for the treated and control restaurants in the 2009-2010 season.

C Tables

	Dependent Variable											
	Number of Customers				Sales per Customer				$\ln \left(\frac{\text { Sales per Customer }}{\text { Number of Customers }}\right)$			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(11)	(10)	(12)
Nov/Jan \times 2009-2010	$\underset{(.89)}{2.01^{* *}}$	$\underset{(.80)}{2.99^{* * *}}$	$\stackrel{2.86^{* * *}}{(.77)}$	$\underset{(.77)}{2.49^{* * *}}$	$\underset{(.73)}{-1.51^{* *}}$	$\underset{(.75)}{-1.54^{* *}}$	$\underset{(.83)}{-1.78^{* *}}$	$\underset{(.84)}{-1.73^{* *}}$	$\begin{gathered} -.10^{* * *} \\ (.04) \end{gathered}$	$\begin{gathered} -.13^{* * *} \\ (.04) \end{gathered}$	$\stackrel{-.14^{* * *}}{(.04)}$	$\underset{(.04)}{-.13^{* * *}}$
2009-2010	$\begin{gathered} .46 \\ (1.12) \end{gathered}$	$\begin{aligned} & -.19 \\ & (.89) \end{aligned}$	$\begin{aligned} & -2.35 \\ & (2.43) \end{aligned}$	$\begin{aligned} & -1.53 \\ & (2.44) \end{aligned}$	$\underset{(.66)}{1.86^{* * *}}$	$\underset{(.62)}{1.89^{* * *}}$	$\underset{(2.24)}{7.30^{* * *}}$	$\begin{gathered} 7.20^{* * *} \\ (2.25) \end{gathered}$	$\begin{gathered} .03 \\ (.05) \end{gathered}$	$\begin{gathered} .05 \\ (.04) \end{gathered}$	$\begin{gathered} .28^{* * *} \\ (.10) \end{gathered}$	$\begin{gathered} .25 \\ (.10) \end{gathered}$
R^{2}	. 20	. 38	. 38	. 43	. 06	. 07	. 08	. 08	. 18	. 28	. 29	. 33
Observations	938	938	938	938	937	937	937	937	937	937	937	937
Workers	40	40	40	40	40	40	40	40	40	40	40	40
Days	52	52	52	52	52	52	52	52	52	52	52	52
Section Characteristics	N	Y	Y	Y	N	Y	Y	Y	N	Y	Y	Y
Arrivals	N	N	N	Y	N	N	N	Y	N	N	N	Y
Days in Sample (Own and Peers')	N	N	Y	Y	N	N	Y	Y	N	N	Y	Y

Table 4: Substitution Effects. Regressions use daily data at the individual level and the same restaurant last year as a control group. Robust Standard Errors are in parentheses with ${ }^{* * *}$ for $p<.01,{ }^{* *}$ for $.01<p<.05,{ }^{*}$ for $p<.1$, and \cdot for estimates marginally significant at the 10 percent level. All regressions control for worker fixed effects, calendar week fixed effects, and the day of the week (Friday or Saturday). Controls for section characteristics include the number of booth seats, the number of bench seats, and the number of chair seats. Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. Controls for days in sample include days in sample for the individual and average days in sample for the peer group.

	Dependent Variable											
	Entrees per Hour (1)	Hours Worked (2)	Bills (3)	Bill Duration (4)	Pre-Entree (5)	Sales, by Entree (6)	category Alcohol	Post-Entree (8)	Sales Pre-Entree (9)	per Cust Entree (10)	mer, by c Alcohol (11)	egory Post-Entree (12)
Nov/Jan \times 2009-2010	$\underset{(.23)}{.59 * * *}$	$\xrightarrow[(.13)]{.27^{* *}}$	$\begin{gathered} .08 \\ (.39) \end{gathered}$	$\begin{aligned} & -.07 \\ & (.05) \end{aligned}$	$\begin{gathered} .24 \\ (4.72) \end{gathered}$	$\begin{gathered} 68.20^{* * *} \\ (18.04) \end{gathered}$	$\begin{gathered} -15.27^{* *} \\ (7.08) \end{gathered}$	$\begin{aligned} & -2.51 \\ & (2.91) \end{aligned}$	$\begin{gathered} -.39^{* *} \\ (.19) \end{gathered}$	$\begin{aligned} & -.05 \\ & (.30) \end{aligned}$	$\underset{(.29)}{-.96^{* * *}}$	$\stackrel{-.25^{* * *}}{(.09)}$
2009-2010	$\begin{aligned} & -.07 \\ & (.75) \end{aligned}$	$\begin{aligned} & -.62 \\ & (.45) \end{aligned}$	$\begin{gathered} 2.26^{* *} \\ (1.21) \end{gathered}$	$\begin{gathered} .07 \\ (.12) \end{gathered}$	$\begin{gathered} 7.99 \\ (11.82) \end{gathered}$	$\begin{gathered} 1.79 \\ (68.55) \end{gathered}$	$\begin{gathered} 33.94 \\ (19.48) \end{gathered}$	$\begin{gathered} 1.81 \\ (7.32) \end{gathered}$	$\begin{gathered} .83 \\ (.46) \end{gathered}$	$\begin{aligned} & 1.90 \\ & (.72) \end{aligned}$	$\begin{aligned} & 2.10 \\ & (.85) \end{aligned}$	$\begin{gathered} .03 \\ (.25) \end{gathered}$
R^{2}	. 12	. 33	. 23	. 06	. 18	. 39	. 13	. 14	. 05	. 06	. 12	. 06
Observations	851	851	938	938	938	938	938	938	937	937	937	937
Workers	39	39	40	40	40	40	40	40	40	40	40	40
Days	52	52	52	52	52	52	52	52	52	52	52	52

Table 5: Substitution Channels. Regressions use daily data at the individual level and the same restaurant last year as a control group. Robust Standard Errors are in parentheses with ${ }^{* * *}$ for $p<.01,{ }^{* *}$ for $.01<p<.05,{ }^{*}$ for $p<.1$, and \cdot for estimates marginally significant at the 10 percent level. All regressions control for worker fixed effects, calendar week fixed effects, the day of the week (Friday or Saturday), section characteristics, customer arrivals, and days in sample. Controls for section characteristics include the number of booth seats, the number of bench seats, and the number of chair seats. Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. Controls for days in sample include days in sample for the individual and average days in sample for the peer group.

	Dependent Variable Sales $\ln ($ Tip Percentage $)$ Estimated Tip Ear											
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Nov/Jan \times 2009-2010	$\begin{gathered} 48.63 \\ (39.32) \end{gathered}$	$\begin{gathered} 91.59^{* * *} \\ (34.67) \end{gathered}$	$\begin{gathered} 81.61^{* *} \\ (33.10) \end{gathered}$	$\begin{gathered} 66.15^{* *} \\ (32.98) \end{gathered}$	$\begin{aligned} & .001 \\ & (.04) \end{aligned}$	$\begin{aligned} & .001 \\ & (.04) \end{aligned}$	$\begin{aligned} & -.01 \\ & (.04) \end{aligned}$	$\begin{gathered} -.01 \\ (.04) \end{gathered}$	$\begin{gathered} 13.53 \\ (11.14) \end{gathered}$	$\begin{aligned} & 17.97^{*} \\ & (10.50) \end{aligned}$	$\begin{aligned} & 13.73^{*} \\ & (8.02) \end{aligned}$	$\begin{aligned} & 12.22 \\ & (8.00) \end{aligned}$
2009-2010	$\begin{gathered} 69.00 \\ (46.21) \end{gathered}$	$\begin{gathered} 41.47 \\ (34.67) \end{gathered}$	$\begin{gathered} 45.47 \\ (112.17) \end{gathered}$	$\begin{gathered} 79.44 \\ (112.14) \end{gathered}$	$\begin{aligned} & .003 \\ & (.03) \end{aligned}$	$\begin{aligned} & .003 \\ & (.03) \end{aligned}$	$\begin{gathered} .15 \\ (.10) \end{gathered}$	$\begin{gathered} .15 \\ (.10) \end{gathered}$	$\begin{gathered} 5.02 \\ (6.74) \end{gathered}$	$\begin{gathered} 2.25 \\ (6.20) \end{gathered}$	$\begin{gathered} 36.09 \\ (25.80) \end{gathered}$	$\begin{gathered} 38.85 \\ (25.40) \end{gathered}$
R^{2}	. 16	. 34	. 34	. 43	. 03	. 03	. 03	. 03	. 04	. 06	. 06	. 06
Observations	938	938	938	938	933	933	933	933	935	935	935	935
Workers	40	40	40	40	40	40	40	40	40	40	40	40
Days	52	52	52	52	52	52	52	52	52	52	52	52
Section Characteristics	N	Y	Y	Y	N	Y	Y	Y	N	Y	Y	Y
Arrivals	N	N	N	Y	N	N	N	Y	N	N	N	Y
Days in Sample (Own and Peers')	N	N	Y	Y	N	N	Y	Y	N	N	Y	Y

Table 6: Individual Productivity and Earnings. Regressions use daily data at the individual level and the same restaurant last year as a control group. Robust Standard Errors are in parentheses with ${ }^{* * *}$ for $p<.01,{ }^{* *}$ for $.01<p<.05,{ }^{*}$ for $p<.1$, and for estimates marginally significant at the 10 percent level. All regressions control for worker fixed effects, calendar week fixed effects, the day of the week (Friday or Saturday), section characteristics, customer arrivals, and days in sample. Controls for section characteristics include the number of booth seats, the number of bench seats, and the number of chair seats. Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. Controls for days in sample include days in sample for the individual and average days in sample for the peer group.

	Dependent Variable	
Customer Arrivals		
not Served		

not Served\end{array}\right]\)| Nov/Jan $\times 2009-2010$ | -15.50^{*} | -2.02^{*} |
| :--- | :---: | :---: |
| November/January | (8.27) | (1.06) |
| | 10.73 | 1.60 |
| $2009-2010$ | (6.96) | $(.99)$ |
| | 1.19 | .15 |
| Mean for | (5.78) | $(.69)$ |
| Dependent Variable | 46 | 5.73 |
| R^{2} | | .87 |
| Observations | .91 | 52 |

Table 7: Aggregate Effects. Regressions use data aggregated at the daily level. Robust Standard Errors are in parentheses with $* * *$ for $p<.01,{ }^{* *}$ for $.01<p<.05,^{*}$ for $p<.1$, and \cdot for estimates marginally significant at the 10 percent level. Controls for the weather include mean temperature, total precipitation (in millimetres), and maximum windgust (in kilometres per hour). Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. The share of arrivals not served equals the number of arrivals not served divided by the total number of arrivals.

	Dependent Variable										
	Customers (1)	Sales per Customer (2)	$\ln \text { (Ratio) }$ (3)	Sales Pre-Entree (4)	per Cust Entree (5)	mer, by c Alcohol (6)	egory Post-Entree (7)	Sales (8)	$\ln (\mathrm{Tip}$ Percentage) (9)	Estimate Tip Earnings (10)	Hours (11)
Nov/Jan $\times 2009-2010 \times$											
Low Ability	$\begin{gathered} 2.28 \\ (1.41) \end{gathered}$	$\begin{gathered} -2.62^{* *} \\ (1.20) \end{gathered}$	$\begin{aligned} & -.15^{*} \\ & (.08)) \end{aligned}$	$\begin{gathered} -.47^{*} \\ (.28) \end{gathered}$	$\begin{gathered} .19 \\ (.41) \end{gathered}$	$\begin{gathered} -1.37^{* * *} \\ (.35) \end{gathered}$	$\begin{gathered} -.04 \\ (.13) \end{gathered}$	$\begin{gathered} 33.83 \\ (41.03) \end{gathered}$	$\begin{aligned} & -.08 \\ & (.05) \end{aligned}$	$\begin{gathered} -1.76 \\ (6.59) \end{gathered}$	$\begin{gathered} .11 \\ (.40) \end{gathered}$
Average Ability	$\begin{gathered} 2.24^{* *} \\ (.99) \end{gathered}$	$\begin{gathered} -1.41 \\ (.95) \end{gathered}$	$\begin{gathered} -.10^{*} \\ (.05) \end{gathered}$	$\begin{gathered} -.44^{* *} \\ (.20) \end{gathered}$	$\begin{gathered} .13 \\ (.32) \end{gathered}$	$\begin{gathered} -.90^{* * *} \\ (.29) \end{gathered}$	$\begin{gathered} -.35^{* * *} \\ (.10) \end{gathered}$	$\begin{gathered} 62.19 \\ (40.07) \end{gathered}$	$\begin{gathered} -.002 \\ (.04) \end{gathered}$	$\begin{gathered} 7.48 \\ (7.76) \end{gathered}$	$\begin{aligned} & .42^{*} \\ & (.22) \end{aligned}$
High Ability	$3.14^{* * *}$ (.67)	$\begin{gathered} -2.15^{* *} \\ (.87) \end{gathered}$	$\begin{gathered} -.17^{* * *} \\ (.04) \end{gathered}$	$\begin{aligned} & -.28 \\ & (.23) \end{aligned}$	$\begin{aligned} & -.38 \\ & (.43) \end{aligned}$	$\begin{gathered} -.91^{*} \\ (.47) \end{gathered}$	$\begin{aligned} & -.14 \\ & (.16) \end{aligned}$	$\begin{gathered} 90.60^{* *} \\ (35.72) \end{gathered}$	$\begin{gathered} .02 \\ (.05) \end{gathered}$	$\begin{aligned} & 12.05 \\ & (8.04) \end{aligned}$	$\begin{gathered} .36 \\ (.24) \end{gathered}$
R^{2}	. 43	. 07	. 33	. 05	. 06	. 12	. 39	. 12	. 05	. 17	. 20
Observations	932	931	931	931	931	931	931	932	926	927	852
Workers	38	38	38	38	38	38	38	38	38	37	37
Days	52	52	52	52	52	52	52	52	52	52	52

Table 8: Heterogeneous Treatment Effects. Regressions use daily data at the individual level and the same restaurant last year as a control group. Robust Standard Errors are in parentheses with ${ }^{* * *}$ for $p<.01,{ }^{* *}$ for $.01<p<.05,{ }^{*}$ for $p<.1$, and \cdot for estimates marginally significant at the 10 percent level. All regressions control for worker fixed effects, calendar week fixed effects, the day of the week (Friday or Saturday), section characteristics, customer arrivals, and days in sample. Controls for section characteristics include the number of booth seats, the number of bench seats, and the number of chair seats. Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. Controls for days in sample include days in sample for the individual and average days in sample for the peer group.

	Bills Paid with Credit			Bills Paid with more than one payment method		
	Oct	Nov - Jan	Change	Oct	Nov - Jan	Change
Season						
2008-09	. 61	. 54	-. 07	. 18	. 24	. 06
	(.49)	(.50)		(.39)	(.43)	
Bills	1102	2200		1352	2901	
2009-10	. 52	. 55	. 03	. 23	. 30	. 07
	(.50)	(.50)		(.42)	(.46)	
Bills	1499	2468		1942	3536	
Difference-in-Differences			. 10			. 01
Restaurant						
Control	. 63	. 64	. 01	. 24	. 34	. 10
	(.48)	(.48)		(.43)	(.47)	
Bills	612	985		802	1496	
Treatment	. 52	. 55	. 03	. 23	. 30	. 07
	(.50)	(.50)		(.42)	(.46)	
Bills	1499	2468		1942	3536	
Difference-in-Differences			. 02			-. 03

Table 9: Consumer Selection. The outcome in the left panel is the proportion of bills paid with credit where a single payment is used. The outcome in the right panel is the proportion of bills where more than one payment method is used. The top panel summarizes this information when the same restaurant last year is used as a control group. The bottom panel summarizes this information when a comparable restaurant from the 2009-2010 season is used as a control group. The number of bills used for calculations in each quadrant are: 13861 for the top left panel, 18660 for the top right panel, 11465 for the bottom left panel, and 16112 for the bottom right panel.

	Dependent Variable											
	Number of Entrees Sold				Sales per Entree				$\ln \left(\frac{\text { Sales per Entree }}{\text { Number of Entrees Sold }}\right)$			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
First Treatment (Nov 2009/Jan 2010)	$\begin{gathered} 2.52^{* * *} \\ (.86) \end{gathered}$	$\begin{gathered} 2.71^{* * *} \\ (.65) \end{gathered}$	$1.99^{* * *}$ (.75)	$\begin{gathered} 2.25^{* * *} \\ (.76) \end{gathered}$	$\begin{gathered} -1.16^{*} \\ (.64) \end{gathered}$	$\underset{(.64)}{-1.15^{*}}$	$\begin{gathered} -.94 \\ (.76) \end{gathered}$	$\begin{gathered} -.90 \\ (.74) \end{gathered}$	$\begin{gathered} -.12^{* *} \\ (.05) \end{gathered}$	$\begin{gathered} -.12^{* * *} \\ (.04) \end{gathered}$	$\begin{gathered} -.09^{*} \\ (.05) \end{gathered}$	$\begin{gathered} -.10^{* *} \\ (.05) \end{gathered}$
Second Treatment (May 2010)	$\begin{gathered} -1.38 \\ (.99) \end{gathered}$	$\begin{gathered} .02 \\ (.89) \end{gathered}$	$\begin{gathered} .25 \\ (.90) \end{gathered}$	$\begin{gathered} .28 \\ (.93) \end{gathered}$	$\begin{gathered} -.21 \\ (.90) \end{gathered}$	$\begin{gathered} -.19 \\ (.89) \end{gathered}$	$\begin{aligned} & -.24 \\ & (.88) \end{aligned}$	$\begin{aligned} & -.01 \\ & (.89) \end{aligned}$	$\begin{aligned} & .11^{* *} \\ & (.05) \end{aligned}$	$\begin{gathered} .06 \\ (.05) \end{gathered}$	$\begin{gathered} .05 \\ (.04) \end{gathered}$	$\begin{gathered} .05 \\ (.05) \end{gathered}$
R^{2}	. 25	. 42	. 42	. 44	. 05	. 05	. 05	. 06	. 16	. 27	. 27	. 29
Observations	1533	1533	1533	1514	1533	1533	1533	1514	1533	1533	1533	1514
Workers	64	64	64	64	64	64	64	64	64	64	64	64
Days	50	50	50	49	50	50	50	49	50	50	50	49
Section Characteristics	N	Y	Y	Y	N	Y	Y	Y	N	Y	Y	Y
Arrivals	N	N	N	Y	N	N	N	Y	N	N	N	Y
Days in Sample (Own and Peers')	N	N	Y	Y	N	N	Y	Y	N	N	Y	Y

Table 10: Robustness Checks for Substitution Effects. Regressions use daily data at the individual level and a comparable restaurant as a control group. Robust Standard Errors are in parentheses with ${ }^{* * *}$ for $p<.01$, ${ }^{* *}$ for $.01<p<.05$, * for $p<.1$, and \cdot for estimates marginally significant at the 10 percent level. All regressions include controls for worker fixed effects and calendar date fixed effects. Controls for section characteristics include the number of booth seats, the number of bench seats, the number of chair seats, days in sample, peer days in sample. Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. Controls for days in sample include days in sample for individual i and the average days in sample for the peer group in the same restaurant.

	Dependent Variable											
	Entrees per Hour (1)	Hours Worked (2)	Bills (3)	Bill Duration (4)	$\begin{gathered} \text { Pre-Entree } \\ (5) \\ \hline \end{gathered}$	Sales, by Entree (6)	category Alcohol	$\begin{gathered} \text { Post-Entree } \\ (8) \\ \hline \end{gathered}$	Sales Pre-Entree (9)	per Cust Entree (10)	mer, by Alcohol (11)	tegory Post-Entree (12)
First Treatment (Nov 2009/Jan 2010)	$\begin{gathered} 1.20^{* * *} \\ (.24) \end{gathered}$	$\begin{gathered} -.39^{* *} \\ (.14) \end{gathered}$	$\xrightarrow[(.30)]{.68^{* * *}}$	$\begin{gathered} -.07^{* * *} \\ (.03) \end{gathered}$	$\begin{gathered} 4.73 \\ (4.42) \end{gathered}$	$\begin{gathered} 58.58^{* * *} \\ (18.06) \end{gathered}$	$\begin{gathered} 14.73^{* * *} \\ (6.19) \end{gathered}$	$\stackrel{.20}{(2.71)}$	$\begin{gathered} -.15 \\ (.21) \end{gathered}$	$\begin{gathered} -.06 \\ (.26) \end{gathered}$	$\begin{gathered} .16 \\ (.30) \end{gathered}$	$\begin{gathered} -.18^{* *} \\ (.10) \end{gathered}$
Second Treatment (May 2010)	$\begin{gathered} .19 \\ (.16) \end{gathered}$	$\begin{gathered} -.16 \\ (.11) \end{gathered}$	$\begin{gathered} -.11 \\ (.46) \end{gathered}$	$\begin{gathered} .03 \\ (.05) \end{gathered}$	$\begin{aligned} & -5.65 \\ & (5.21) \end{aligned}$	$\begin{gathered} 15.34 \\ (28.19) \end{gathered}$	$\begin{gathered} -2.91 \\ (7.60) \end{gathered}$	$\begin{aligned} & -1.65 \\ & (3.54) \end{aligned}$	$\begin{aligned} & -.26 \\ & (.17) \end{aligned}$	$\begin{aligned} & .14 \\ & (.36) \end{aligned}$	$\begin{gathered} .01 \\ (.31) \end{gathered}$	$\begin{gathered} -.07 \\ (.12) \end{gathered}$
Mean (standard dev.) for Dependent Variable	$\begin{aligned} & \hline 4.33 \\ & (1.78) \end{aligned}$	$\begin{gathered} \hline 6.37 \\ (1.19) \end{gathered}$	$\begin{gathered} 9.91 \\ (3.17) \end{gathered}$	$\begin{aligned} & 1.54 \\ & (.30) \end{aligned}$	$\begin{gathered} \hline 93.63 \\ (40.00) \end{gathered}$	$\begin{gathered} 706.29 \\ (223.82) \end{gathered}$	$\begin{aligned} & 145.57 \\ & (57.90) \end{aligned}$	$\begin{gathered} \hline 38.37 \\ (23.00) \end{gathered}$	$\begin{aligned} & \hline 3.54 \\ & (1.38) \end{aligned}$	$\begin{aligned} & \hline 26.14 \\ & (2.32) \end{aligned}$	$\begin{gathered} \hline 5.53 \\ (2.03) \end{gathered}$	$\begin{aligned} & 1.45 \\ & (.84) \end{aligned}$
R^{2}	. 19	. 33	. 24	. 07	. 20	. 47	. 19	. 13	. 09	. 13	. 1514	. 05
Observations	1412	1412	1514	1514	1514	1514	1514	1514	1514	1514	1514	1514
Workers	63	63	64	64	64	64	64	64	64 49	64	64	64
Days	49	49	49	49	49	49	49	49	49	49	49	49

Table 11: Robustness Checks for Other Outcomes. Regressions use daily data at the individual level and a comparable restaurant as a control group. Robust Standard Errors are in parentheses with ${ }^{* * *}$ for $p<.01,{ }^{* *}$ for $.01<p<.05,{ }^{*}$ for $p<.1$, and \cdot for estimates marginally significant at the 10 percent level. All regressions include controls for worker fixed effects, calendar date fixed effects, section characteristics, customer arrivals, and days in sample. Controls for section characteristics include the number of booth seats, the number of bench seats, the number of chair seats, days in sample, peer days in sample. Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. Controls for days in sample include days in sample for individual i and the average days in sample for the peer group in the same restaurant.

	Dependent Variable											
	Sales				\ln (Tip Percentage)				Estimated Tip Earnings			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
First Treatment (Nov 2009/Jan 2010)	$\begin{gathered} 87.24^{* * *} \\ (37.63) \end{gathered}$	$\begin{gathered} 96.18^{* * *} \\ (30.33) \end{gathered}$	$\begin{gathered} 69.31^{* * *} \\ (29.47) \end{gathered}$	$\begin{gathered} 81.70^{* * *} \\ (30.43) \end{gathered}$	$\begin{gathered} .03 \\ (.04) \end{gathered}$	$\begin{gathered} .03 \\ (.04) \end{gathered}$	$\begin{gathered} .03 \\ (.05) \end{gathered}$	$\begin{gathered} .02 \\ (.05) \end{gathered}$	$\begin{gathered} 9.68 \\ (7.38) \end{gathered}$	$\begin{aligned} & 10.60 \\ & (6.51) \end{aligned}$	$\begin{gathered} 4.78 \\ (6.59) \end{gathered}$	$\begin{gathered} 5.85 \\ (6.93) \end{gathered}$
Second Treatment (May 2010)	$\begin{aligned} & -70.70 \\ & (50,52) \end{aligned}$	$\begin{gathered} -7.48 \\ (45.42) \end{gathered}$	$\begin{gathered} 1.92 \\ (46.87) \end{gathered}$	$\begin{gathered} 10.31 \\ (47.45) \end{gathered}$	$\begin{aligned} & -.02 \\ & (.08) \end{aligned}$	$\begin{aligned} & -.03 \\ & (.08) \end{aligned}$	$\begin{aligned} & -.03 \\ & (.08) \end{aligned}$	$\begin{aligned} & -.04 \\ & (.08) \end{aligned}$	$\begin{aligned} & -9.85 \\ & (7.81) \end{aligned}$	$\begin{aligned} & -2.93 \\ & (6.68) \end{aligned}$	$\begin{aligned} & -1.26 \\ & (6.67) \end{aligned}$	$\begin{gathered} -.42 \\ (6.77) \end{gathered}$
R^{2}	. 23	. 41	. 42	. 43	. 05	. 05	. 05	. 05	. 10	. 19	. 19	. 20
Observations	1533	1533	1533	1514	1530	1530	1530	1511	1523	1523	1523	1504
Workers	64	64	64	64	63	63	64	64	64	64	64	64
Days	50	50	50	49	50	50	50	49	50	50	50	49
Section Characteristics	N	Y	Y	Y	N	Y	Y	Y	N	Y	Y	Y
Arrivals	N	N	N	Y	N	N	N	Y	N	N	N	Y
Days in Sample (Own and Peers')	N	N	Y	Y	N	N	Y	Y	N	N	Y	Y

Table 12: Robustness Checks for Revenue, Consumer Satisfaction, and Tip Earnings. Regressions use daily data at the individual level and a comparable restaurant as a control group. Robust Standard Errors are in parentheses with ${ }^{* * *}$ for $p<.01,{ }^{* *}$ for $.01<p<.05, *$ for $p<.1$, and \cdot for estimates marginally significant at the 10 percent level. All regressions include controls for worker fixed effects and calendar date fixed effects. Controls for section characteristics include the number of booth seats, the number of bench seats, the number of chair seats, days in sample, peer days in sample. Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. Controls for days in sample include days in sample for individual i and the average days in sample for the peer group in the same restaurant.

	Dependent Variable						
	Indicator for good section based on Mean Mean		Average Section Quality				
	(1)	(2)	(3)	Median	(4)	(5)	(6)
Nov/Jan $\times 2009-2010$	-.05	-.02	-.07	-.03	-.01	.001	
	$(.20)$	$(.20)$	$(.20)$	$(.20)$	$(.06)$	$(.05)$	
Log Likelihood	-550.04	-594.62	-553.35	-596.85			
R^{2}					.04	.05	
Observations	883	937	931	937	937	937	
Workers	36	40	37	40	40	40	
Worker	Y	N	Y	N	Y	N	
Fixed Effects						Y	
Worker	N	Y	N	Y	N	Y	
Random Effects							

Table 13: Selection into Sections. Probit and OLS tests for section-based selection. Robust Standard Errors are in parentheses with ${ }^{* * *}$ for $p<.01,{ }^{* *}$ for $.01<p<.05,^{*}$ for $p<.1$, and \cdot for estimates marginally significant at the 10 percent level. Regressions use the entire sample and control for the treated period, the year, day of the week (Friday or Saturday), the number of customer arrivals, the number of customer arrivals squared, days in sample, peer days in sample, and a weekly trend. I measure average section quality by: first, computing the long run average number of entrees per hour (from the 2008-2009 data) for each table in the restaurant; second, averaging over the long run averages for the tables assigned to each worker. In columns 1 and 2 good sections have averages that exceed the mean number of entrees per hour (over all tables). In columns 3 and 4 good sections have averages that exceed the median number of entrees per hour (over all tables). The specifications differ in the number of observations because some workers always have 0's or always have 1's while in the sample.

		Window			
	1 week	2 week	3 weeks	4 weeks	5 weeks
Nov/Jan $\times 2009-2010$	-25.20	35.20	52.32	$81.71^{* *}$	64.11^{*}
	(169.66)	(56.00)	(42.07)	(33.30)	(33.47)
November/January	81.37	-16.71	-33.03	$-69.56^{* *}$	-48.97
	(128.44)	(48.24)	(39.06)	(30.64)	(29.83)
$2009-2010$	-298.71	-90.66	-64.21	$-210.25^{* *}$	-109.54
	(1695.22)	(317.29)	(179.53)	(89.95)	(81.74)
R^{2}	.49	.50	.50	.49	.48
Observations	131	274	418	561	625
Workers	35	36	39	39	39
Worker Fixed	Y	Y	Y	Y	Y
Effects					

Table 14: Temporary Incentive Effects. Regressions use daily data at the individual level and the same restaurant last year as a control group. Robust Standard Errors are in parentheses with ${ }^{* * *}$ for $p<.01,{ }^{* *}$ for $.01<p<.05$, * for $p<.1$, and • for estimates marginally significant at the 10 percent level. All regressions control for the day of the week (Friday or Saturday) Controls for section characteristics include the number of booth seats, the number of bench seats, and the number of chair seats. Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. Controls for days in sample include days in sample for the individual and average days in sample for the peer group.

	Dependent Variable $=$ Number of Consumers Seated/Table CapacityControl $=$ Same Firm Last YearControl $=$ Another Firm											
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
First Treatment (Nov 2009/Jan 2010)	$\begin{gathered} .09 \\ (.06) \end{gathered}$	$\begin{gathered} .09 \\ (.06) \end{gathered}$	$\begin{aligned} & .10 \\ & (.06) \end{aligned}$	$\begin{aligned} & .10^{*} \\ & (.06) \end{aligned}$	$\begin{gathered} .07 \\ (.07) \end{gathered}$	$\begin{gathered} .05 \\ (.06) \end{gathered}$	$\begin{gathered} .06 \\ (.06) \end{gathered}$	$\begin{gathered} .06 \\ (.06) \end{gathered}$	$\begin{aligned} & -.005 \\ & (.03) \end{aligned}$	$\begin{gathered} -.002 \\ (.03) \end{gathered}$	$\begin{aligned} & -.02 \\ & (.03) \end{aligned}$	$\begin{aligned} & -.04 \\ & (.03) \end{aligned}$
Second Treatment (May 2010)					$\begin{gathered} -.02 \\ (.05) \end{gathered}$	$\begin{aligned} & -.03 \\ & (.05) \end{aligned}$	$\begin{aligned} & -.03 \\ & (.05) \end{aligned}$	$\begin{gathered} -.03 \\ (.05) \end{gathered}$	$\begin{gathered} -.0001 \\ (.05) \end{gathered}$	$\begin{gathered} -.007 \\ (.05) \end{gathered}$	$\begin{aligned} & .0004 \\ & (.05) \end{aligned}$	$\begin{gathered} -.005 \\ (.05) \end{gathered}$
R^{2}	. 03	. 07	. 08	. 08	. 03	. 08	. 08	. 08	. 04	. 07	. 07	. 08
Observations	938	938	938	938	1845	1845	1845	1845	1644	1644	1644	1625
Workers	40	40	40	40	42	42	42	42	64	64	64	64
Days	52	52	52	52	104	104	104	104	54	54	54	54
$\begin{aligned} & \text { Controls } \\ & \hline \text { Saturday } \end{aligned}$	Y	Y	Y	Y	Y	Y	Y	Y	N	N	N	N
2009-2010	Y	Y	Y	Y	Y	Y	Y	Y	N	N	N	N
2009-2010 \times Feb-May	-	-	-	-	Y	Y	Y	Y	N	N	N	N
Section Characteristics	N	Y	Y	Y	N	Y	Y	Y	N	Y	Y	Y
Arrivals	N	N	N	Y	N	N	N	Y	N	N	N	Y
Days in Sample (Own and Peers')	N	N	Y	Y	N	N	Y	Y	N	N	Y	Y

Table 15: Consumer to Worker Matches. Regressions use daily data at the individual level. Robust Standard Errors are in parentheses with *** for $p<.01,{ }^{* *}$ for $.01<p<.05, *$ for $p<.1$, and \cdot for estimates marginally significant at the 10 percent level. Columns (1)-(8) include controls for calendar week fixed effects. Columns (9)-(12) include controls for calendar date fixed effects. Controls for section characteristics include the number of booth seats, the number of bench seats, and the number of chair seats. Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. Controls for days in sample include days in sample for individual i and the average days in sample for the peer group in the same restaurant.

Table 16: Incentive Effects of Piece Rates or Performance Standards. Regressions use daily data at the individual level and a comparable restaurant as a control group. Robust Standard Errors are in parentheses with ${ }^{* * *}$ for $p<.01,{ }^{* *}$ for $.01<p<.05, *$ for $p<.1$, and \cdot for estimates marginally significant at the 10 percent level. All regressions include controls for worker fixed effects and calendar date fixed effects. Controls for section characteristics include the number of booth seats, the number of bench seats, the number of chair seats, days in sample, peer days in sample. Controls for Customer Arrivals include the total number of arrivals and the total number of arrivals squared. Controls for days in sample include days in sample for individual i and the average days in sample for the peer group in the same restaurant.

[^0]: ${ }^{1}$ I thank my supervisors, Dwayne Benjamin, Gustavo Bobonis, and Nicola Lacetera for invaluable guidance during the course of this research. This paper has benefited from discussions with Victor Aguirregabiria, Gordon Anderson, Michael Baker, Iwan Barankay, Michael L. Bognanno, Stéphane Bonhomme, Branko Boskovic, Leah Brooks, Alain Cohn, Loren Brandt, David Byrne, Christian Dippel, Morley K. Gunderson, Joshua Lewis, John A. List, Hugh Macartney, Arvind Magesan, Alexandre Mas, Robert McMillan, Philip Oreopoulos, Justin Rao, Moritz Ritter, Carlos Serrano, Aloysius Siow, Junichi Suzuki, Trevor Tombe, Matthew Turner, and Achim Wagner. Thanks also to seminar participants in the 2010 Advances with Field Experiments Workshop at Wharton and the 2010 CLSRN Annual Conference. This research was supported by the Social Sciences and Humanities Research Council and the Canadian Labour Market and Skills Research Network. All omissions and errors are my own.
 ${ }^{2}$ Email: sacha.kapoor@utoronto.ca

[^1]: ${ }^{1}$ For a summary see [Prendergast, 1999]. More recent empirical treatments include: [Bandiera, Barankay, and Rasul, 2005], who compare productivity under relative performance evaluations with productivity under piece rates; [Hamilton, Nickerson, and Owan, 2003], who compare productivity under team production with productivity under piece rates and explore differences across workers; [Mas and Moretti, 2009], who study peer effects in a fixed wage workplace.

[^2]: ${ }^{2}$ As with [Holmstrom and Milgrom, 1991], [Ramakrishnan and Thakor, 1991] investigate job design in the presence of multitasking concerns. For other theoretical papers that examine contract design in the presence of these concerns, see [Feltham and Xie, 1994] and [Datar et al., 2001]. For empirical papers that examine contract choice in these situations, see [Fehr and Schmidt, 2004] and [Slade, 1996]).

[^3]: ${ }^{3}$ In reality labor costs become variable following peak demand periods. After the peak period labor decisions are based on the number of seated consumers and on expectations about the number of late arrivals. As a share of total labor costs the variable component is quite small.
 ${ }^{4}$ An alternative to the design studied in this paper is to increase base wages and have workers transfer more tip earnings to the firm. Since in the past workers objected to such changes by reducing productivity, this design was not implemented.
 ${ }^{5}$ More specifically, to calculate the standard I: first, computed long run averages for customer volume, hours worked, and section size on high demand days; second, divided service volume by hours worked to reduce the gains from gaming the system (by trading end times); third, divided customer volume per hour to ensure equitable earnings across workers. The second step yields values of 2.11 consumers per hour for Fridays and 2.72 consumers per hour for Saturdays. The third step yields .4 for Fridays and .41 for Saturdays.

[^4]: ${ }^{6}$ The rate was set at $\$ 3$ for every tenth of a point above the performance standard.
 ${ }^{7}$ As per ethical review, I had to identify myself to workers as a researcher from the University of Toronto and request their participation in a research study; as per the CEO, I had to administer the experiment.
 ${ }^{8}$ All but one worker agreed to participate in the interviews.
 ${ }^{9}$ I paid workers immediately to ensure that one dollar in tip earnings (which are paid immediately) was equivalent to one dollar in experimental earnings. If I paid workers at a later date and workers discount future earnings then, because they would value one dollar in tip earnings more than one dollar in experimental earnings, it might have muted the response to the treatment.

[^5]: ${ }^{10} \mathrm{An}$ alternative strategy where workers are randomized within shifts was not used because the CEO had equity concerns about within shift earnings differences and because complementarities in production might have led to cross contamination between treatment and control groups.
 ${ }^{11}$ Section quality is based on the number of booth seats, bench seats, and chairs. Sections with booth seats have the best quality, sections with benches are second, and sections with chairs have the lowest quality.
 ${ }^{12}$ While workers have minimal discretion over shift length, trades to prolong shifts are possible.

[^6]: ${ }^{13}$ I ignored data from December because customer arrivals are more evenly spread across days of the week and subsequently because there are few days where large numbers of customer arrivals are not served by the firm.
 ${ }^{14}$ The incongruence between tip percentages described in Figure 6 and in Table 1 is because the figure uses weekend averages, while the table uses daily averages.
 ${ }^{15}$ To compute tip percentages I use all credit and debit card transactions over the sample period (75.6% of all bills). The daily tip percentage is just the average for each day, taken over the number of credit and debit card transactions.

[^7]: ${ }^{16}$ The number of arrivals not served is measured with error. Some customers, having seen the length of the queue upon arrival, decide not to visit the firm. Since the firm does not track these customers (because of large costs) the measure used in this study likely underestimates the true number of arrivals not served.

[^8]: ${ }^{17}$ Menu prices are excluded from the analysis because there were no price changes during the principal periods under study. However the model allows one to consider the influence of prices or, more specifically, the influence of complementarities in demand. This is done by letting $q_{i}=q_{i}\left(e_{i}, \mathbf{p}, \epsilon_{i}\right)$, where \mathbf{p} is a vector of category-specific prices. Menu prices are especially important when one considers the optimal employment contracts [Slade, 1996].
 ${ }^{18} \mathrm{~A}$ more realistic model recognizes that, while tips are paid immediately, hourly wages are paid at a later date. In such a model hourly wages are discounted according to the time until the payment is received.

[^9]: ${ }^{19}$ These diseconomies of scale arise because during busy periods workers spend less time with each customer and/or provide lower quality service to each customer [Rosen, 1981].
 ${ }^{20}$ In reality, the CEO uses hours (h), and not w, to guide behavior within shifts (after sections are assigned). When the model allows the firm to use hours to guide worker behavior (over a full shift), the conclusions are qualitatively similar.

[^10]: ${ }^{22}$ Note that as the performance standard becomes very large Equations (4.5) and (4.6) coincide because $\frac{\partial E_{N}}{\partial e_{2}}$ approaches 0 .
 ${ }^{23}$ To properly study the incentive effects of the experimental bonus one must consider both the influence of the piece rate and the influence of the performance standard. In this section only the influence of the piece rate is considered. This is done to simplify the analysis and because a second treatment was implemented later in the same season to generate independent variation in performance standards. Since the piece rate was the same for both treatments the second treatment allows me to identify the incentive effects of the piece rate. These empirical results are presented in the Appendix.

[^11]: ${ }^{24}$ The model also allows consumer preferences to vary within shifts. However managers and workers have both emphasized that there is relatively less variation with shifts on high demand days. This is because 'diners', consumers who typically require more attention and more knowledgeable servers, visit the firm on low demand days, spend more on menu items, and are better tippers than their counterparts who visit on high demand days.

[^12]: ${ }^{25}$ Peer days' in sample proxies for the helping effort available to each worker. In theory this variable has an

[^13]: ambiguous impact on individual productivity. While workers who work more frequently are more able to help others, they are also more likely to spend time socializing.

[^14]: ${ }^{26}$ Intuitively, if alcohol consumption induces longer stays by customers and has a minimal impact on tips then workers have an incentive to reduce alcohol sales. On the other hand, an immediate explanation for the reduction in pre-entree sales is not obvious. It may, in fact, reflect a perverse behavioral response to the treatment.
 ${ }^{27}$ Managers rationalized the increase in sales following the peak period as a spillover effect from the behavior of workers during the peak period. Improvements in hourly customer volume during the busiest periods leads to a reduction in wait times quoted to customers and enhances the relative attractiveness of waiting for a table to become available after the busy period.

[^15]: ${ }^{28}$ Patterns in columns 1-5 allow for inferences about the nature of attrition over the sample period. Specifically, they suggest there was an improvement in the labor pool over this period.
 ${ }^{29}$ One concern is that the estimates for tip percentages (and tip earnings) are an artifact of how they are calculated. If the number of credit and debit card transactions is small then the true tip percentage is measured with considerable noise. As a precaution I ran regressions with tip percentages (and tip earnings) as the dependent variable for different sample sizes, according to the number of credit and debit card transactions. The results were qualitatively similar.
 ${ }^{30} \mathrm{~A}$ fourth explanation for Result 3 is that if smaller bills are associated with higher percentages reductions in average service quality has two opposing effects. Tip percentages are higher because bill sizes are smaller and are lower because of perceived reductions in service quality. In this case Result 2 reflects the fact that the net effect is zero. To explore this possibility I plotted tip percentages against bill size and found a slight inverse relationship for very large parties (with 10 or more consumers). I then eliminated large parties from the sample. This reduced the number of bills by less than 5%.

[^16]: ${ }^{31}$ One explanation for the imprecision of these estimates is that tip percentages are measured with a considerable amount of noise. This is because the number of bills used to calculate tip percentages are often too small to accurately calculate the 'true' mean tip percentage.
 ${ }^{32}$ This information (δ and average daily profits) is confidential.
 ${ }^{33}$ Precise verification of this claim requires a structural econometric model. This is left for future research.

[^17]: ${ }^{34}$ To ensure the accuracy of inferences based on OLS estimates of equation (6.1) I test for $A R(1)$ serial correlation in the errors. The t-statistic from the baseline test for $A R(1)$ serial correlation is equal to -.25 for the regression in column 1 and -.37 for the regression in column 2. Both statistics lead to (strongly) not rejecting the null of no serial correlation in the error terms.
 ${ }^{35}$ Since the number of arrivals not served is underreported the estimates likely understate the true influence of the experimental treatment.

[^18]: ${ }^{36}$ The evidence in Figure 13 is also consistent with observations made by managers and workers at the firm. 'Diners', who are most likely to be affected by the change in behavior, visit the restaurant more regularly but do so on days with low customer volume.
 ${ }^{37}$ For more detailed discussions on the role of current performance for future rewards within firms see [Kahn and Huberman, 1988] and [Prendergast, 1993].

[^19]: ${ }^{38}$ A differences-in-differences identification strategy is used (rather a triple difference approach) because information from the control restaurant during the 2008-2009 season was not available.
 ${ }^{39}$ Note that results from Table 12 are each robust to each of the specifications explored in Table 10.

