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Course Goals

• Deepen understanding of CMOS analog circuit
design through a top-down study of a modern
analog system

The lectures will focus on Delta-Sigma ADCs, but
you may do your project on another analog system.

• Develop circuit insight through brief peeks at
some nifty little circuits

The circuit world is filled with many little gems that
every competent designer ought to recognize.
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Logistics
• Format:

Meet Mondays 3:00-5:00 PM
except Feb 4 and Feb 18

12 2-hr lectures
plus proj. presentation

• Grading:
40% homework
60% project

• References:
Schreier & Temes, “Understanding ∆Σ …”
Johns & Martin, “Analog IC Design”
Razavi, “Design of Analog CMOS ICs”

Lecture Plan:
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Date Lecture Ref Homework

2008-01-07 RS 1 Introduction: MOD1 & MOD2 S&T 2-3, A Matlab MOD2

2008-01-14 RS 2 Example Design: Part 1 S&T 9.1, J&M 10 Switch-level sim

2008-01-21 RS 3 Example Design: Part 2 J&M 14 Q-level sim

2008-01-28 TC 4 Pipeline and SAR ADCs Arch. Comp.

2008-02-04 ISSCC– No Lecture

2008-02-11 RS 5 Advanced ∆Σ S&T 4, 6.6, 9.4, B CTMOD2; Proj.

2008-02-18 Reading Week– No Lecture

2008-02-25 RS 6 Comparator & Flash ADC J&M 7

2008-03-03 TC 7 SC Circuits J&M 10

2008-03-10 TC 8 Amplifier Design

2008-03-17 TC 9 Amplifier Design

2008-03-24 TC 10 Noise in SC Circuits  S&T C

2008-03-31 Project Presentation

2008-04-07 TC 11 Matching & MM-Shaping Project Report

2008-04-14 RS 12 Switching Regulator Q-level sim
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NLCOTD: Level Translator
VDD1 > VDD2, e.g.

• VDD1 < VDD2, e.g.

• Constraints: CMOS
1-V and 3-V devices
no static current

3-V logic 1-V logic?

1-V logic 3-V logic?
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What is ∆Σ?
• ∆Σ is NOT a fraternity

It is more like a way of life…

• Simplified ∆Σ ADC structure:

• Key features: coarse quantization, filtering,
feedback and oversampling

Quantization is often quite coarse: 1 bit!

Loop
Filter

Coarse
ADC

DAC

Loop
Filter

Coarse
ADC

DAC

Analog
In

Digital
Out

(to digital
filter)
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What is Oversampling?
• Oversampling is sampling faster than required

by the Nyquist criterion
For a lowpass signal containing energy in the
frequency range , the minimum sample rate
required for perfect reconstruction is

• The oversampling ratio is

• For a regular ADC,
To make the anti-alias filter (AAF) feasible

• For a ∆Σ ADC,
To get adequate quantization noise suppression.
All signals above  are removed digitally.

0 f B,( )
f s 2f B=

OSR f s 2f B( )⁄≡

OSR 2 3–∼

OSR 30∼

f B
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Oversampling Simplifies AAF

f s 2⁄

Desired
Signal

Undesired
Signals

f

OSR ~ 1:

First alias band is very close

f s 2⁄
f

OSR = 3: Wide transition band

Alias far away



ECE1371 1-9

How Does A ∆Σ ADC Work?
• Coarse quantization ⇒ lots of quantization error.

So how can a ∆Σ ADC achieve 22-bit resolution?

• A ∆Σ ADC spectrally separates the quantization
error from the signal through noise-shaping

∆Σ
ADC

u v Decimation
Filter

analog
1 bit @fs

digital
output

desired
shaped

n@2fB

Nyquist-rate
PCM Data

1

–1
t

noise

w
input

t

f s 2⁄f B f s 2⁄f B f B

undesired
signals

signal
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A ∆Σ DAC System

• Mathematically similar to an ADC system
Except that now the modulator is digital and drives a
low-resolution DAC, and that the out-of-band noise is
handled by an analog reconstruction filter.

∆Σ
Modulator

u v Reconstruction
Filter

digital

1 bit @fs

analog
output

signal shaped
analog
output

1

–1
t

noise

input
w

(interpolated)

f B f s 2⁄ f B f s 2⁄ f B f s
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Why Do It The ∆Σ Way?
• ADC: Simplified Anti-Alias Filter

Since the input is oversampled, only very high
frequencies alias to the passband. These can often
be removed with a simple RC section.
If a continuous-time loop filter is used, the anti-alias
filter can often be eliminated altogether.

• DAC: Simplified Reconstruction Filter
The nearby images present in Nyquist-rate
reconstruction can be removed digitally.

+ Inherent Linearity
Simple structures can yield very high SNR.

+ Robust Implementation
∆Σ tolerates sizable component errors.
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Highlights
(i.e. What you will learn today)

1 1st- and 2nd-order modulator structures and
theory of operation

2 Inherent linearity of binary modulators

3 Inherent anti-aliasing of continuous-time
modulators

4 Spectrum estimation with FFTs
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Background
(Stuff you already know)

• The SQNR* of an ideal n-bit ADC with a full-scale
sine-wave input is (6.02n + 1.76) dB

“6 dB = 1 bit”

• The PSD at the output of a linear system is the
product of the input’s PSD and the squared
magnitude of the system’s frequency response

i.e.

• The power in any frequency band is the integral
of the PSD over that band

*. Signal-to-Quantization-Noise Ratio

H(z)X YSyy f( ) H ej 2πf( ) 2 Sxx f( )⋅=
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Poor Man’s ∆Σ DAC
Suppose you have low-speed 16-bit data and
a high-speed 8-bit DAC

• How can you get good analog performance?

16-bit data
@ 50 kHz ? DAC

Good

Audio
Quality

5 MHz

16 8
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Simple (-Minded) Solution
• Only connect the MSBs; leave the LSBs hanging

DAC
16 8

8

MSBs

LSBs

5 MHz (or 50 kHz)

@50 kHz

16-b Input Data DAC Output

Time
20 us
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Spectral Implications

Frequency

Desired Signal Unwanted Images

25 kHz
Quantization Noise
@ 8-bit level
⇒  SQNR = 50 dB

x( )sin
x

------------------ DAC frequency response
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Better Solution
• Exploit oversampling: Clock fast and add dither

DAC
16 8

8

5 MHz

@50 kHz
8

dither spanning
one 8-bit LSB

@ 5 MHz

16-b Input Data

DAC Output

Time
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Spectral Implications
• Quantization noise is now spread over a broad

frequency range
Oversampling reduces quantization noise density

Frequency
25 kHz 2.5 MHz

In-band quantization noise power
= 1% of total quantization noise power
⇒  SQNR = 70 dB

OSR 2.5 MHz
25 kHz

---------------------- 100= = 20 dB→
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Even More Clever Method
• Add LSBs back into the input data

DAC
16 8

8

5 MHz

@50 kHz @ 5 MHz

16-b Input Data

DAC Output

Time

z–1

ECE1371 1-20

Mathematical Model
• Assume the DAC is ideal, model truncation as

the addition of error:

• Hmm… Oversampling, coarse quantization and
feedback. Noise-Shaping!

• Truncation noise is shaped by a 1–z–1 transfer
function, which provides ~35 dB of attenuation
in the 0-25 kHz frequency range

z-1

E = –LSBs

–E

V = U + (1–z–1)EU
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Spectral Implications
• Quantization noise is heavily attenuated at low

frequencies

Frequency
25 kHz 2.5 MHz

In-band quantization noise power
is very small, 55 dB below total power
⇒  SQNR = 105 dB!

Shaped
Quantization Noise
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MOD1: 1st-Order ∆Σ Modulator
Standard Block Diagram

z-1

z-1

QU VY

Quantizer

DAC

(1-bit)

Feedback
DAC

v

y

v’

v

V’

“∆” “Σ”
1

–1

Since two points define a line,
a binary DAC is inherently linear.
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MOD1 Analysis
• Exact analysis is intractable for all but the

simplest inputs, so treat the quantizer as an
additive noise source:

V(z) = U(z) + (1–z–1)E(z)

z-1

z-1

Q

Y V

E

⇒ (1–z-1) V(z) = U(z) – z-1V(z) + (1–z-1)E(z)

U VY

V(z) = Y(z) + E(z)
Y(z) = ( U(z) – z-1V(z) ) / (1–z-1)
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The Noise Transfer Function
• In general, V(z) = STF(z)•U(z) + NTF(z)•E(z)

• For MOD1, NTF(z) = 1–z–1

The quantization noise has spectral shape!

• The total noise power increases, but the noise
power at low frequencies is reduced

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4
NTF e j 2πf( ) 2

Normalized Frequency (f /fs)

ω2 for ω 1«≅
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In-band Noise Power
• Assume that e is white with power

i.e.
• The in-band noise power is

• Since ,

• For MOD1, an octave increase in OSR increases
SQNR by 9 dB

1.5-bit/octave SQNR-OSR trade-off.

σe
2

See ω( ) σe
2 π⁄=

N 0
2 H ejω( ) 2See ω( )dω

0

ωB

∫=
σe

2

π
------ ω2dω

0

ωB

∫≅

OSR π
ωB
-------≡ N 0

2
π2σe

2

3
------------- OSR( ) 3–=
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A Simulation of MOD1

10–3 10–2 10–1
–100

–80

–60

–40

–20

0

Normalized Frequency

20 dB/decade

SQNR = 55 dB @ OSR = 128

NBW = 5.7x10–6

Full-scale test tone

Shaped “Noise”

d
B

F
S

/N
B

W
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CT Implementation of MOD1
• Ri/Rf sets the full-scale; C is arbitrary

Also observe that an input at fs is rejected by the
integrator— inherent anti-aliasing

LatchedIntegrator

CK

D Q

DFF
clock QB

yu

C

Ri

Rf

v

Comparator
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MOD1-CT Waveforms

• With u=0, v alternates between +1 and –1

• With u>0, y drifts upwards; v contains
consecutive +1s to counteract this drift

0 5 10 15 200 5 10 15 20

0

u = 0

v

y

u = 0.06

Time Time

–1

1

0

v

y

–1

1
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Summary So Far
• ∆Σ works by spectrally separating the

quantization noise from the signal

• Noise-shaping is achieved by the use of filtering
and feedback

• A binary DAC is inherently linear,
and thus a binary modulator is too

• MOD1 has NTF(z) = 1–z–1

⇒ Arbitrary accuracy for DC inputs.
1.5 bit/octave SNR-OSR trade-off.

• MOD1-CT has inherent anti-aliasing

ECE1371 1-30

MOD2: 2nd-Order ∆Σ Modulator
• Replace the quantizer in MOD1 with another

copy of MOD1:

V(z) = U(z) + (1–z–1)E1(z),

E1(z) = (1–z–1)E(z)

⇒ V(z) = U(z) + (1–z–1)2E(z)

z-1

Q

z-1

z-1

z-1

U V
E1

E
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Simplified Block Diagrams

Q1
z−1

z
z−1

U V

E

NTF z( ) 1 z 1––( )2=
STF z( ) z 1–=

Q1
z−1

1
z−1

U V

E

-2-1 NTF z( ) 1 z 1––( )2=
STF z( ) z 2–=
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NTF Comparison

10–3 10–2 10–1
−100

−80

−60

−40

−20

0

N
T

F
ej

2π
f

(
)

(d
B

)

Normalized Frequency

MOD1

MOD2

MOD2 has twice as much
attenuation at all frequencies
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In-band Noise Power
• For MOD2,

• As before,  and

• So now

With binary quantization to ±1,
 and thus .

• “An octave increase in OSR increases MOD2’s
SNR by 15 dB (2.5 bits)”

H ejω( ) 2 ω4≈

N 0
2 H ejω( ) 2See ω( )dω

0

ωB∫=

See ω( ) σe
2 π⁄=

N 0
2

π4σe
2

5
------------- OSR( ) 5–=

∆ 2= σe
2 ∆2 12⁄ 1 3⁄= =
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Simulation Example
Input at 75% of FullScale

0 50 100 150 200
–1

0

1

0 0.25 0.5
–100

–80

–60

–40

–20

–0

1024-point FFT

Frequency Domain

Time Domain

Simulated Noise Density

Predicted Noise Density

Agreement is fair
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Simulated MOD2 PSD
Input at 50% of FullScale

10–3 10–2 10–1
–140

–120

–100

–80

–60

–40

–20

0

SQNR = 86 dB
@ OSR = 128

40 dB/decade

Theoretical PSD
(k = 1)

Simulated spectrum

Normalized Frequency

d
B

F
S

/N
B

W

(smoothed)

NBW = 5.7×10−7
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SQNR vs. Input Amplitude
MOD1 & MOD2 @ OSR = 256

–100 –80 –60 –40 –20 0
0

20

40
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Input Amplitude (dBFS)
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Q

N
R

 (
d

B
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MOD1
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Predicted SNR

Simulated SNR
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SQNR vs. OSR

4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

120

S
Q

N
R

 (
d

B
)

Behavior of MOD1 is erratic.
Predictions for MOD2 are optimistic.

(Theoretical curve assumes
-3 dBFS input)

(Theoretical curve assumes
0 dBFS input)

MOD1

MOD2
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Audio Demo: MOD1 vs. MOD2

MOD1

MOD2

Sine
Wave

Slow
Ramp

Speech
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MOD1 + MOD2 Summary
• ∆Σ ADCs rely on filtering and feedback to

achieve high SNR despite coarse quantization
They also rely on digital signal processing.
∆Σ ADCs need to be followed by a digital decimation
filter and ∆Σ DACs need to be preceded by a digital
interpolation filter.

• Oversampling eases analog filtering
requirements

Anti-alias filter in and ADC; image filter in a DAC
• Binary quantization yields inherent linearity

• CT loop filter provides inherent anti-aliasing

• MOD2 is better than MOD1
15 dB/octave vs. 9 dB/octave SNR-OSR trade-off.
Quantization noise more white.
Higher-order modulators are even better.
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NLCOTD

3V → 1V:
3V

1V

3V

3V

1V → 3V:

1V

3V

3V

3V

3V

3V
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Homework #1
Create a Matlab function that computes MOD2’s output
sequence given a vector of input samples and exercise your
function in the following ways.

1 Verify that the average of the output equals the input for
DC inputs in [–1,1].

2 Produce a spectral plot like that on Slide 35.
3 a) Construct a SQNR vs. input amplitude curve for

OSR = 128 for amplitudes from –100 to 0 dBFS.
b) Determine approximately how much the interstage

gain and feedback coefficients need to shift in order
to have a significant (~3-dB) impact.

4 Compare the in-band quantization noise of your system
with a half-scale sine-wave input against the relation
given on Slide 33 for OSR in [23,210].
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MOD2 Expanded

Q1
z−1

z
z−1

U V
E

z-1

u n( )
z-1

x 1 n( )

x 1 n 1+( ) x 2 n 1+( )
Q

x 2 n( ) v n( )

Difference Equations:
v n( ) Q x 2 n( )( )=

x 2 n 1+( ) x 2 n( ) v n( )– x 1 n 1+( )+=
x 1 n 1+( ) x 1 n( ) v n( )– u n( )+=
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Example Matlab Code
function [v,x] = simulateMOD2(u)

x1 = 0;
    x2 = 0;
    for i = 1:length(u)
        v(i) = quantize( x2 );
        x1 = x1 + u(i) - v(i);
        x2 = x2 + x1 - v(i);

end
return

function v = quantize( y )
    if y>=0
        v = 1;
    else
        v = -1;
    end
return
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~100 104-Point Simulations

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

u

v

(v–u) x 1000
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Example Spectrum
Nfft = 2^10;
ftest = 2;
t = 0:Nfft-1;
u = 0.5*sin(2*pi*ftest/Nfft*t); % Has ftest cycles in Nfft points
v = simulateMOD2(u);
U = fft(u);
V = fft(v);
f = linspace(0,1,Nfft+1); f=f(1:Nfft);
semilogx(f,dbv(U),'m', f,dbv(V),'b');
figureMagic([1e-4 0.5],[],[],[-80 80],10,2);

10
–4

10
–3

10
–2

10
–1

–80

–60

–40

–20

0

20

40

60

80

Peak at +50dB?

d
B

 (
?

)

Normalized
Frequency
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FFT Considerations (Partial)
• The FFT implemented in MATLAB is

• If †, then

⇒ Need to divide FFT by  to get A.

†. f is an integer in . I’ve defined ,
 since Matlab indexes from 1 rather than 0

X M k 1+( ) x M n 1+( )e
j–
2πkn

N
--------------

n 0=

N 1–

∑=

x n( ) A 2πfn N⁄( )sin=

0 N 2⁄,( ) X k( ) X M k 1+( )≡
x n( ) x M n 1+( )≡

X k( )
AN
2

--------- , k = f or N f–

0 , otherwise





=

N 2⁄( )
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The Need For Smoothing
• The FFT can be interpreted as taking 1 sample

from the outputs of N complex FIR filters:

⇒ an FFT yields a high-variance spectral estimate

x h0 n( )

h1 n( )

hk n( )

hN 1– n( )

y 0 N( ) X 0( )=

y 1 N( ) X 1( )=

y k N( ) X k( )=

y N 1– N( ) X N 1–( )=

hk n( ) e
j 2πk

N
-----------n

, 0 n N<≤
0 , otherwise






=
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How To Do Smoothing
1 Average multiple FFTs

Implemented by MATLAB’s psd() function

2 Take one big FFT and “filter” the spectrum
Implemented by the ∆Σ Toolbox’s logsmooth()
function

• logsmooth() averages an exponentially-
increasing number of bins in order to reduce the
density of points in the high-frequency regime
and make a nice log-frequency plot



ECE1371 1-49

Smoothed Spectrum

10
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40 dB / d
ecade
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Quantization Noise Spectrum?
• Assume that the quantization error e is uniformly

distributed in [–1,+1]

• Assume e is white

• Multiply by to get the PSD of
the shaped error

y

e Q y( ) y–=
1

–1 1–1
e

ρe σe
2 ρe e( )e2 ed∫=

0.5 e3

3
------⋅ 

 
1–

1

= 1
3
---=

0.5

0.50
f

σe
2 See f( ) fd

0
0.5

∫=See f( )1-sided PSD:

See f( ) 2σe
2=⇒

See f( ) NTF ej 2πf( ) 2



ECE1371 1-51

Simulation vs. Theory

10
–4

10
–3

10
–2

10
–1

–160

–140

–120

–100

–80

–60

–40

–20

0

20

Normalized Frequency

Simulated Spectrum
Theoretical Q. Noise?

d
B

F
S

“Slight”
Discrepancy
(~40 dB)
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What Went Wrong?
1 We normalized the spectrum so that a full-scale

sine wave (which has a power of 0.5) comes out
at 0 dB (whence the “dBFS” units)

⇒ We need to do the same for the error signal.
i.e. use .

But this makes the discrepancy 3 dB worse.

2 We tried to plot a power spectral density
together with something that we want to
interpret as a power spectrum

• Sine-wave components are located in individual
FFT bins, but broadband signals like noise have
their power spread over all FFT bins!

The “noise floor” depends on the length of the FFT.

See f( ) 4 3⁄=
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Spectrum of a Sine Wave + Noise

Normalized Frequency, f

(“
d

B
F

S
”)

Ŝ
x

′f(
)

0 0.25 0.5
–40

–30

–20

–10

0

N = 26

N = 28

N = 210

N = 212

0 dBFS 0 dBFSSine Wave Noise

–3 dB/
octave

⇒  SNR = 0 dB
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Observations
• The power of the sine wave is given by the

height of its spectral peak

• The power of the noise is spread over all bins
The greater the number of bins, the less power there
is in any one bin.

• Doubling N reduces the power per bin by a factor
of 2 (i.e. 3 dB)

But the total integrated noise power does not
change.
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So How Do We Handle Noise?
• Recall that an FFT is like a filter bank

• The longer the FFT, the narrower the bandwidth
of each filter and thus the lower the power at
each output

• We need to know the noise bandwidth (NBW) of
the filters in order to convert the power in each
bin (filter output) to a power density

• For a filter with frequency response ,H f( )

NBW
H f( ) 2 fd∫
H f 0( )2

----------------------------= H f( )
f

NBW

f0
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FFT Noise Bandwidth

,

[Parseval]

∴

h n( ) j 2πk
N

-----------n 
 exp=

H f( ) h n( ) j– 2πfn( )exp
n 0=

N 1–

∑=

f 0
k
N
----= H f 0( ) 1

n 0=

N 1–

∑ N= =

H f( ) 2∫ h n( ) 2∑ N= =

NBW
H f( ) 2 fd∫
H f 0( )2

---------------------------- N
N 2
------- 1

N
----= = =
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Better Spectral Plot

10–4 10–3 10–2 10–1
–160

–140

–120

–100

–80

–60

–40

–20
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d
B

F
S

/N
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Normalized Frequency

Simulated Spectrum
Theoretical Q. Noise

NBW = 1 / N = 1.5×10–5

N = 216

4
3
--- NTF f( ) 2 NBW⋅passband for

OSR = 128
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SQNR Calculation
• S = power in the signal bin

• QN = sum of the powers in the non-signal in-
band noise bins

⇒ Using MATLAB to perform these calculations for
the preceding simulation yields SQNR = 84.2 dB
at OSR = 128

• Can also eyeball SQNR from the plot:
S = –6 dB
QN = –113 + dbp‡(BW/NBW) = –89 dB
⇒  SQNR = –83 dB

‡. dbp(x ) = 10log10(x ).
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SQNR vs. Amplitude

–100 –80 –60 –40 –20 0
–20

0

20
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Tolerable Coefficient Errors?

• a1 & a2 are the feedback coefficients; nominally 1

• c1 is the interstage coefficient; nominally 1

• You should find that the SQNR stays high even if
these coefficients individually vary over a 2:1
range

z-1

u n( )
z-1 Q

v n( )

a1 a2

c1

z
z 1–
------------ 1

z 1–
------------
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SQNR vs. OSR for MOD2
Half-Scale Input (A = 0.5)

23 24 25 26 27 28 29 21020

40

60

80

100

120

140
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Q
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d
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OSR

Simulation
Theory

15A2 OSR( )5

2π4------------------------------------
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Windowing
• ∆Σ data is usually not periodic

Just because the input repeats does not mean that
the output does too!

• A finite-length data record = an infinite record
multiplied by a rectangular window:

,
Windowing is unavoidable.

• “Multiplication in time is convolution in
frequency”

w n( ) 1= 0 n≤ N<

0 0.125 0.25 0.375 0.5
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10

0
Frequency response of a 32-point rectangular window:

Slow roll-off ⇒ out-of-band Q. noise may appear in-bandd
B
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Example Spectral Disaster
Rectangular window, N = 256

0 0.25 0.5
–60

–40

–20

0
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d
B

Actual ∆Σ spectrum

Windowed spectrum

Out-of-band quantization noise
obscures the notch!

W f( ) w 2⁄
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Window Comparison (N = 16)
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Window Properties
Window Rectangular Hann†

†. MATLAB’s “hann” function causes spectral leakage of tones located
in FFT bins unless you add the optional argument “periodic.”

Hann2

,

(  otherwise)
1

Number of non-zero
FFT bins

1 3 5

N 3N/8 35N/128

N N/2 3N/8

1/N 1.5/N 35/18N

w n( )
n 0 1 … N 1–, , ,=

w n( ) 0=

1
2πn
N

-----------cos–

2
--------------------------------

1
2πn
N

-----------cos–

2
--------------------------------

 
 
 
 

2

w 2
2 w n( )2∑=

W 0( ) w n( )∑=

NBW
w 2

2

W 0( )2
----------------=
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Window Length, N
• Need to have enough in-band noise bins to

1 Make the number of signal bins a small fraction
of the total number of in-band bins

<20% signal bins ⇒  >15 in-band bins ⇒

2 Make the SNR repeatable
 yields std. dev. ~1.4 dB.
 yields std. dev. ~1.0 dB.

 yields std. dev. ~0.5 dB.

•  is recommended

30 OS⋅>

N 30 OSR⋅=
N 64 OSR⋅=
N 256 OSR⋅=

N 64 OSR⋅=
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Good FFT Practice
[Appendix A of Schreier & Temes]

• Use coherent sampling
Need an integer number of cycles in the record.

• Use windowing
A Hann window works well.

• Use enough points

• Scale the spectrum
A full-scale sine wave should yield a 0-dBFS peak.

• State the noise bandwidth
For a Hann window, .

• Smooth the spectrum if you want a pretty plot

N 64 OSR⋅=

NBW 1.5 N⁄=
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What You Learned Today
And what the homework should solidify

1 MOD1 and MOD2 structure and linear theory
SQNR-OSR trade-offs:
9 dB/octave for MOD1
15 dB/octave for MOD2

2 Inherent linearity of binary modulators

3 Inherent anti-aliasing of continuous-time
modulators

4 Proper use of FFTs for spectral analysis

5 (Hwk) MOD1 and MOD2 are tolerant of large
coefficient errors


