ECE1371 Advanced Analog Circuits Lecture 12

MATCHING AND MISMATCH SHAPING

Richard Schreier richard.schreier@analog.com

Trevor Caldwell trevor.caldwell@utoronto.ca

Course Goals

 Deepen Understanding of CMOS analog circuit design through a top-down study of a modern analog system

The lectures will focus on Delta-Sigma ADCs, but you may do your project on another analog system.

 Develop circuit insight through brief peeks at some nifty little circuits

The circuit world is filled with many little gems that every competent designer ought to recognize.

Date			Lecture	Ref	Homework
2008-01-07	RS	1	Introduction: MOD1 & MOD2	S&T 2-3, A	Matlab MOD2
2008-01-14	RS	2	Example Design: Part 1	S&T 9.1, J&M 10	Switch-level sim
2008-01-21	RS	3	Example Design: Part 2	J&M 14, S&T B	Q-level sim
2008-01-28	тс	4	Pipeline and SAR ADCs	J&M 11,13	Pipeline DNL
2008-02-04	ISSCC – No Lecture				
2008-02-11	RS	5	Advanced $\Delta\Sigma$	S&T 4, 6.6, 9.4, B	CTMOD2; Proj.
2008-02-18	Reading Week – No Lecture				
2008-02-25	RS	6	Comparator and Flash ADC	J&M 7	
2008-03-03	тс	7	SC Circuits	Raz 12, J&M 10	
2008-03-10	тс	8	Amplifier Design		
2008-03-17	тс	9	Amplifier Design		
2008-03-24	тс	10	Noise in SC Circuits	S&T C	
2008-03-31	RS	11	Switching Regulator		
2008-04-07	No Lecture				
2008-04-14	тс	12	Matching & MM-Shaping	S&T 6.3-6.5,+	
2008-04-21	Project Presentations and Report				

ECE1371

NLCOTD: Class-AB Output Bias

• How do we bias this class-AB output stage? Want to keep both PMOS and NMOS transistors on

12-3

Highlights (i.e. What you will learn today)

1. Sources of Mismatch

2. Some matching techniques Common-centroid Interdigitation

3. Mismatch Shaping Randomization, 1st and 2nd order schemes

ECE1371

12-5

Need for Matching

Poorly matched devices (transistors, capacitors, resistors) can lead to non-idealities

Amplifier Offset Converter Non-linearity Gain Error

 DAC mismatch in ΔΣ Mismatch in DAC current sources or capacitors causes INL error in output

Sources of Matching Error

Systematic Mismatch Introduced by circuit/layout designer Can usually be avoided

Random Mismatch

Variation in process parameters and lithography Beyond the designers control – must take these into account during the design process

Gradient Mismatch

First- or second-order fluctuations over longer lengths across the chip

ECE1371

12-7

Systematic Mismatch

 Some good design techniques exist to help minimize these matching errors

Use multiples of small, unit sized devices (transistors stripes, resistor and capacitor arrays)

Use cascodes – increased output impedence (smaller current variations with changes in V_{DS})

Avoid asymmetric loading – especially for dynamic signals (match wire lengths, capacitances)

Don't mix different types of devices if they are supposed to match (e.g., poly resistors and n+ resistors)

Random Mismatch

• Due to random variations in...

Device length Channel doping Oxide thickness Sheet resistance Capacitance

How are these errors reduced?
 Increased device area
 Increased Area/Perimeter ratio (square is best)
 (more on this later...)

ECE1371

12-9

Gradient Mismatch

 To avoid these errors, devices should have similar environment

Same size, orientation, location, supplies, temperature

Minimize these errors with some layout techniques

Common-centroid – when devices are supposed to be matched, balance them so that their centroids are the same (eliminates 1st-order gradient errors) Interdigitation – not strictly common-centroid, but reduces impact of gradient errors

Capacitor Matching

• Example: Matching two capacitors C₁ and C₂

C₁ is 3pF C₂ is 4pF Want to maintain the 3:4 relative size with minimal errors

How do we layout these capacitors?

ECE1371

Capacitor Matching Example

For a given area, relative capacitance error is minimized for x=y (square)

Option 1

Make C_1 and C_2 both square capacitors with capacitor C_2 33% times bigger than C_1

=> minimizes relative capacitor error

ECE1371

12-13

Capacitor Matching Example

 How do we preserve the 3:4 ratio with a given relative error for each?

Ratio will be 3:4 as long as

$$\frac{\mathbf{X}_{3pF} + \mathbf{y}_{3pF}}{\mathbf{X}_{3pF} \mathbf{y}_{3pF}} = \frac{\mathbf{X}_{4pF} + \mathbf{y}_{4pF}}{\mathbf{X}_{4pF} \mathbf{y}_{4pF}}$$

Keep the area to perimeter ratio the same for both capacitors

Option 2

Make C_2 33% larger than C_1 but with the same area to perimeter ratio

=> matches relative capacitor error

ECE1371

12-15

Capacitor Matching Example

How do we match the boundary of each capacitor?

With irregularly shaped capacitors it is difficult to ensure that every capacitor 'sees' the same edges/materials

 Unit-sized capacitors with surrounding dummy capacitors

Smaller unit-sized capacitors can be realized to ensure that every capacitor 'sees' the same surrounding area

Option 3

Divide into unit-sized 1pF capacitors Use dummy capacitors around main C₁ and C₂

ECE1371

12-17

Capacitor Matching Example

Option 4

Common-centroid layout (with dummy caps) Minimizes effects of 1st-order gradients

Option 5

Smaller unit-sized capacitors (with dummy caps) Centroids can be closer together or identical

12-19

ECE1371

Interdigitation

Simple way to reduce 1st-order gradient effects
 Easiest when MOS devices have same source node
 Useful for current mirrors and differential pairs
 As the number of fingers increases, this approaches a
 common-centroid layout

Reducing Random Mismatch

• Even with interdigitation or common-centroid, random mismatch will exist in a diff. pair

Mismatch is proportional to area of transistor Standard deviation of error is

$$\sigma_{\Delta VT} = \frac{A_{VT}}{\sqrt{WL}}$$

A_{VT} decreases almost linearly with each process generation

Drain current variation

$$\frac{\sigma_{I}}{I}\Big|_{VT} = \sigma_{VT} \frac{2}{V_{GS} - V_{T}} = \frac{A_{VT}}{\sqrt{WL}} \frac{2}{(V_{GS} - V_{T})}$$

ECE1371

12-21

W,L σ_{ΔVT} W

What happens when...?

...the device current is decreased by 4x?

Error current $g_m \! \bigtriangleup \! V_T$ reduces by 2 while current reduces by 4

Alternatively, V_{EFF} reduces by 2

=> random mismatch error increases by 2

...more unit devices are used, but overall area is maintained?

Smaller unit sizes allow use of common-centroid array structures

Area is the same

=> random mismatch error is the same

What happens when...?

...W is increased by 4 (I_D is the same)? More area is used and V_{EFF} is reduced V_{EFF} decreases by 2, but σ_{VT} decreases by 2 => random mismatch error is the same

....W/L is increased by 2, while I_D and area are kept constant?

V_{EFF} decreases by √2 => random mismatch error increases by √2

ECE1371

12-23

Multi-bit Quantization

✓	Overcome stability-induced restrictions on NTF Larger no-overload range
	Dramatic improvements in SQNR
\checkmark	Smaller step-size
	Less slewing, CT less sensitive to jitter
\checkmark	Noise is 'whiter'
	Spurious tones can be avoided, dithering not required, design theory is much easier
×	Increased complexity of flash ADC and DAC
	More comparators, more DAC switches, larger layout
×	Loses inherent linearity property of binary DACs
	DAC levels are not evenly spaced and are non-linear
	DAC errors are not noise shaped like ADC errors

Multi-bit $\Delta\Sigma$

 Binary quantization imposes severe constraints on the NTF

Example: OSR = 16, a 5th-order binary modulator Binary quantizer only achieves SNR = 60dB With a 3-bit quantizer, SNR = 108dB is possible With a 4-bit quantizer, SNR = 120dB is possible

Compare SQNR for 1-bit and 3-bit $\Delta\Sigma$ modulators

ECE1371

12-25

SQNR Limits for 1-bit Modulators

SQNR Limits for 3-bit Modulators

ECE1371

DAC Mismatch

3rd-order, 3-bit quantizer, OSR=50
 DAC cell mismatch σ = 1%
 SNDR = 50dB (ideally 107dB)

12-27

DAC Mismatch

• Random DAC mismatches in multi-bit $\Delta\Sigma$ modulators are inevitable

DAC non-linearity causes harmonics that can limit the linearity of the whole modulator since they are introduced at the input

 These errors can be overcome with digital techniques

> Digital correction and calibration Mismatch shaping

ECE1371

12-29

Digital Correction

 Lookup table contains the equivalent of each DAC level

In practice, the look-up table only needs to store the differences between the actual and ideal DAC levels

Look-up table calibrated so that $V_{OUT} = V_{DAC}$ => DAC errors are shaped by the loop

Foreground Calibration

 Acquisition and storage of digital versions of DAC output signal (N-bit DAC, M-bit converter)

Each of the 2^N DAC codes is held for 2^M clock periods With a 1-bit $\Delta\Sigma$ ADC, each DAC level is converted to its M-bit digital representation and stored in the RAM

For background calibration, see Silva, CICC '02 ECE1371 12-31

Mismatch Shaping

- Ensures that element mismatch error results in shaped 'noise'
- Operates without knowledge of the actual mismatch errors

Even if the DAC errors drift, the output error will still be shaped

• Two requirements:

1) Redundancy: There must be more than one way to create the same digital output (this is the case with thermometer coded outputs)

2) Oversampling: Spectrally, there must be somewhere to put the unwanted mismatch noise

Mismatch Shaping

 Element Selection Logic chooses when to use each of the DAC elements

ECE1371

12-33

Mismatch Shaping

- Endpoints of DAC create ideal output curve
 Assumes no gain/offset error
- Average value of DAC Vout Ideal codes lies on ideal **DAC** Line **DAC** characteristic line **Errors are symmetric** about the characteristic **DAC** line **Mismatch shaping** Digital chooses DAC cells to Input 1 2 3 0 Δ keep the error bounded

Element Randomization

 Element selection logic randomly chooses DAC elements

For each thermometer-coded input K, the ESL randomly chooses K unit DAC elements

DAC error is no longer correlated with the input

Signal distortion is replaced by random noise spread throughout the entire spectrum

ECE1371

12-35

Element Randomization

SNDR = 62dB (improved from 50dB)
 Distortion no longer present
 Increased noise floor

Element Usage Patterns

 Randomization: All DAC levels are used even when the input is almost constant

(Thermometer coded => no ESL is used)

ECE1371

12-37

Data-Weighted Averaging

- Data-directed element selection logic
- Conceptual system

 DAC error is noise-shaped (high-pass filtered) But... DAC needs an infinite number of elements with the open-loop integrator

How can we implement this practically?

Element Rotation

Use the elements in a circular fashion
 At time n, use the next v(n) elements in the array
 Loop back around when end of array is reached
 DAC error is noise shaped by desired 1-z⁻¹ filter

ECE1371

12-39

DWA / Element Rotation

 SNDR = 97dB (47dB improvement) Noise floor is reduced since error is shaped Distortion is reduced (less correlated with input)

Bidirectional DWA

 DWA can cause tone generation if the DAC input is not a busy random signal

Like MOD1, if DAC input is DC/slowly varying, tones are produced since DAC output can be periodic

• Bi-DWA

Element selection ping-pongs between two independent DWA algorithms, each rotating through DAC elements in opposite directions

Tends to reduce tonal behaviour, but also effectively decreases the OSR of the mismatch-shaping by a factor of 2

RMS mismatch noise increases by 9dB

ECE1371

12-41

Bidirectional DWA

SNDR = 92dB (5dB worse than DWA)
 Distortion is reduced (less correlated with input)
 Noise floor is higher, SNDR less

Element Usage Patterns

 Bidirectional DWA: same as two DWA schemes operating independently and in reverse directions on opposing clocks

ECE1371

12-43

Alternative Scheme: Swapping

 Each swapper tries to equalize the activity of its outputs [Adams, 1993]

Each element becomes a first-order noise-shaped sequence

Can be generalized to 2nd-order (Tree Structure)

Vector-Based Mismatch Shaping

 Achieves higher-order noise spectral shaping M digital noise-shaping loops for each unit element – an array of these loops make up the ESL f(n) and r(n) are the same for all M loops x_i(n) controls the corresponding DAC element H(z) determines the order of the noise shaping

ECE1371

12-45

Vector-Based Mismatch Shaping

How is the output of the DAC noise shaped?

Output of the DAC elements $w(n) = \sum_{i=1}^{M} x_i(n) [1 + e_{DAC,i}]$

Loop filter outputs $x_i(n) = f(n) + [h * e_i](n)$

Resulting DAC element output is noise shaped by H where K is the intended DAC output

Vector-Based Mismatch Shaping

What are r(n) and f(n)? r(n) and the digital comparators are not actually implemented – we need K outputs to be 1 so that w(n) is the correct value The K largest w_i(n) are quantized to x_i(n) to minimize e_i(n), which reduces the DAC error f(n) is chosen to keep the data in the loop positive, but also as small as possible => choose f(n) = $-\min_i [t_i(n)]$ What is H(z)? H(z) is the NTF For 1st-order, H(z) = 1 - z⁻¹ (filter is z⁻¹)

For 2^{nd} -order, $H(z) = (1 - z^{-1})^2$ (filter is $2z^{-1} - z^{-2}$)

ECE1371

•

12-47

Vector-Based Shaping Spectrum

 Ideal SNDR: 107dB, No shaping: 50dB 1st-order shaping: 97dB 2nd-order shaping: 105dB

Tree Structure

Also useful for higher-order DAC noise-shaping

ECE1371

12-49

Tree Structure

Each switching block S_{k,r} contains a unique sequence generator s_{k,r}(n)

k is the layer, r is the location within the layer

 $\boldsymbol{s}_{\boldsymbol{k},\boldsymbol{r}}(n)$ is a 1-bit sequence that determines the noise shaping of the structure

Final DAC mismatch noise will be a weighted sum of the $\mathbf{s}_{\mathbf{k},\mathbf{r}}$ sequences

Sample 1st-order bit sequence 1,0,...,0,-1,0,...,0,1,0,...

Tree Structure

• Switching block must follow some rules

1) The two outputs of each switching block must be between 0 and 2^{k-1}

2) The sum of each switching block must equal the input

3) Each $s_{k,r}(n)$ Lth-order shaped sequence must be uncorrelated from the $s_{k,r}(n)$ sequences of the other blocks

If these are satisfied, DAC noise will be an Lthorder shaped sequence [Galton, TCAS2 1997]

ECE1371

12-51

Tree Structure Spectrum

 Ideal SNDR: 107dB, No shaping: 50dB 1st-order shaping: 91dB 2nd-order shaping: 100dB

NLCOTD: Class-AB Output Bias

12-53

What You Learned Today

- 1. Mismatch sources Systematic, Random, Gradient
- 2. Matching techniques Common-centroid and interdigitation
- 3. Mismatch shaping schemes Randomization, Element Rotation, BiDWA, Swapping Vector-based, Tree Structure