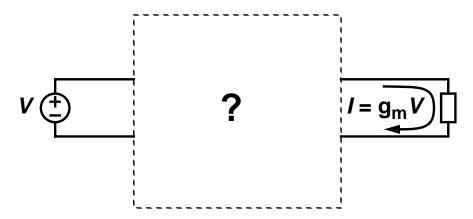
## ECE1371 Advanced Analog Circuits Lecture 8

## COMPARATOR & FLASH ADC DESIGN

Richard Schreier richard.schreier@analog.com

Trevor Caldwell trevor.caldwell@utoronto.ca

#### **Course Goals**


- Deepen understanding of CMOS analog circuit design through a top-down study of a modern analog system— a delta-sigma ADC
- Develop circuit insight through brief peeks at some nifty little circuits

The circuit world is filled with many little gems that every competent designer ought to know.

| Date       | Lecture                          |    |                         | Ref             | Homework          |
|------------|----------------------------------|----|-------------------------|-----------------|-------------------|
| 2012-01-12 | RS                               | 1  | Introduction: MOD1      | ST 2, A         | 1: MOD1 in Matlab |
| 2012-01-19 | RS                               | 2  | MOD2 & MODN             | ST 3, 4, B      | 2: MOD2 in Matlab |
| 2012-01-26 | RS                               | 3  | Example Design: Part 1  | ST 9.1, CCJM 14 | 3: Swlevel MOD2   |
| 2012-02-02 | TC                               | 4  | SC Circuits             | R 12, CCJM 14   | 4: SC Integrator  |
| 2012-02-09 | TC                               | 5  | Amplifier Design        |                 |                   |
| 2012-02-16 | TC                               | 6  | Amplifier Design        |                 | 5: SC Int w/ Amp  |
| 2012-02-23 | Reading Week + ISSCC- No Lecture |    |                         |                 |                   |
| 2012-03-01 | RS                               | 7  | Example Design: Part 2  | CCJM 18         | Start Project     |
| 2012-03-08 | RS                               | 8  | Comparator & Flash ADC  | CCJM 10         |                   |
| 2012-03-15 | TC                               | 9  | Noise in SC Circuits    | ST C            |                   |
| 2012-03-22 | TC                               | 10 | Matching & MM-Shaping   | ST 6.3-6.5, +   |                   |
| 2012-03-29 | RS                               | 11 | Advanced $\Delta\Sigma$ | ST 6.6, 9.4     |                   |
| 2012-04-05 | TC                               | 12 | Pipeline and SAR ADCs   | CCJM 15, 17     |                   |
| 2012-04-12 | No Lecture                       |    |                         |                 |                   |
| 2012-04-19 | Project Presentation             |    |                         |                 |                   |

ECE1371 8-3

### **NLCOTD:** Linear Transconductor



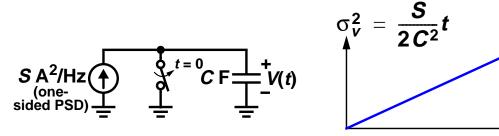
#### Useful in

- 1 gm-C filter
- 2 LNA
- 3 mixer
- 4 CT  $\Delta\Sigma$  ADC

## Highlights (i.e. What you will learn today)

- 1 Operation of Example Comparator Circuit
- 2 Regeneration Time Constant
- 3 Metastability, Probability of Error
- 4 Dynamic Offset
- 5 Other Comparator Circuits
- 6 A Bunch of Transconductor Circuits

ECE1371 8-5

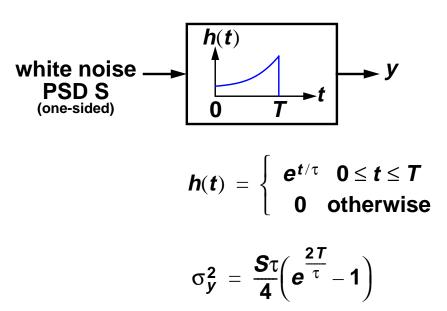

### **Background: Filtered White Noise**

white noise 
$$h(t)$$
  $\sigma_y^2 = S \int_{-\infty}^{\infty} |h(t)|^2 dt$ 

- The power of the output is the product of the PSD and the power gain of the filter
- Example:  $h(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & \text{otherwise} \end{cases}$

$$\Rightarrow \sigma_y^2 = ST$$

# Circuits Application: Integrated White Noise



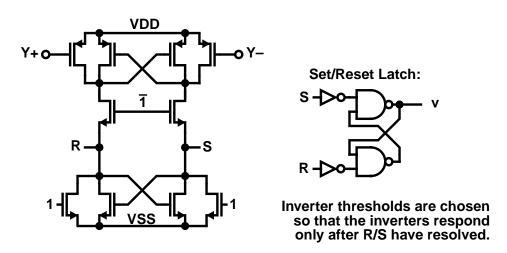

- Variance of V increases linearly with time
- "Random Walk" or "Brownian Motion" For any given increment of time  $\Delta t$ , the change in V is a random variable with constant variance

$$\delta(t) \equiv V(t) - V(t - \Delta t) \implies \sigma_{\delta}^2 = \text{constant}$$

ECE1371 8-7

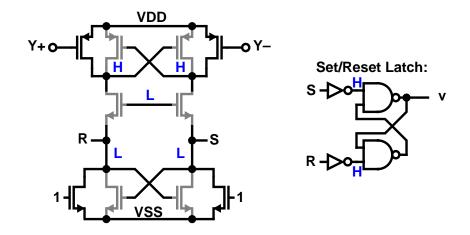
## **Today's Application**




### **Background: PDF of a Sum**

- Suppose x and y are two independent random variables with probability density functions (PDFs)  $\rho_x(x)$  and  $\rho_v(y)$
- Then the PDF of their sum is the convolution of the individual PDFs

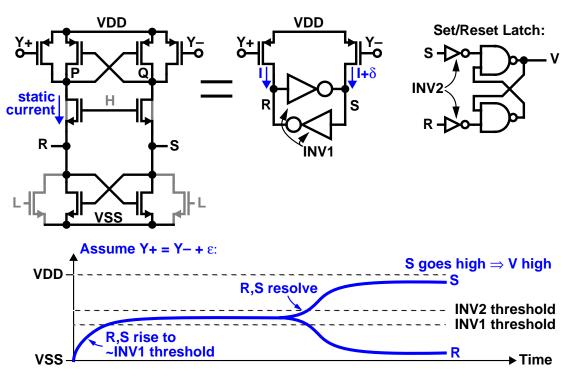
$$z = x + y \Rightarrow \rho_z(z) = \int_{-\infty}^{\infty} \rho_x(x) \rho_y(z - x) dx$$


ECE1371 8-9

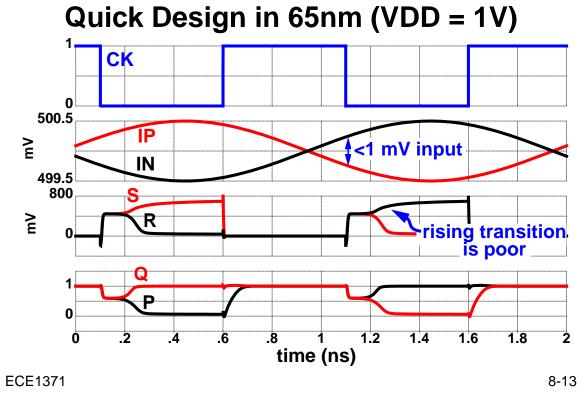
## Review: Latched Comparator From Lecture #7's 1-MHz MOD2



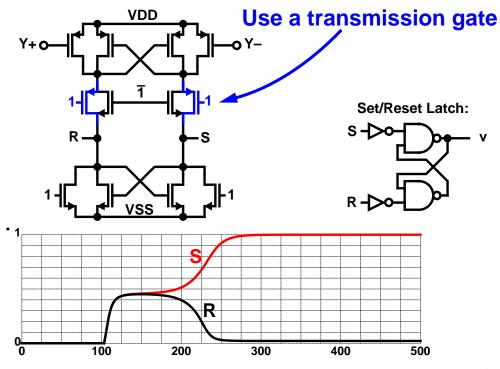
Falling phase 1 initiates regenerative action
 S and R connected to a Set/Reset latch.


## Phase 1 = High: "Reset" Mode

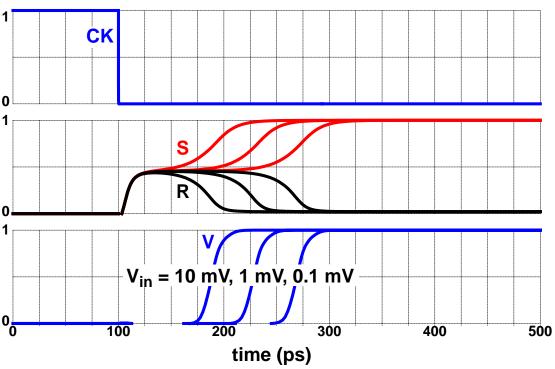



- Grayed-out devices are off
   ⇒ the active part of the comparator is reset
- R and S are low ⇒ the SR latch is in hold mode

ECE1371 8-11

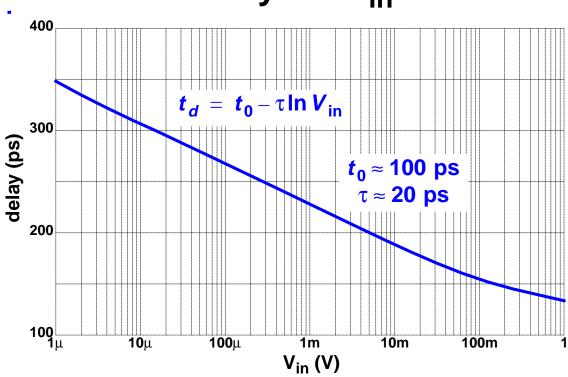

#### Phase 1 Goes Low: "Latch" Mode




## Example Waveforms



### **Better Design**



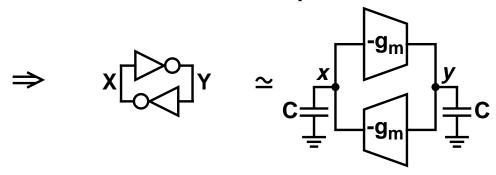

## Responses for Various Vin



ECE1371 8-15

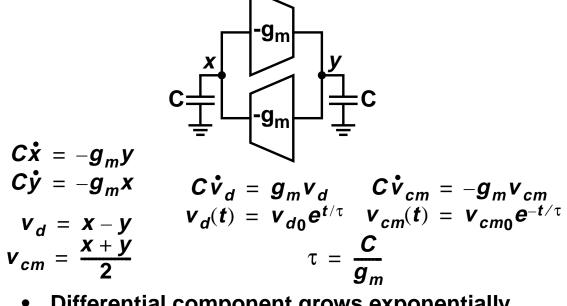
## Delay vs. V<sub>in</sub>




### **Latch Mode Dynamics**

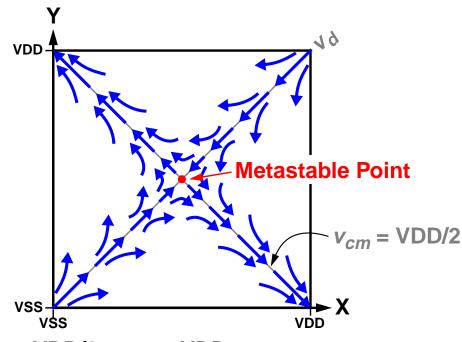
• For V<sub>in</sub> near the trip point, an inverter is essentially just a transconductor:

$$- \bigcirc - = - \bigcirc - g_m$$


$$= g_{mn} + g_{mp}$$

So near balance the comparator looks like this:



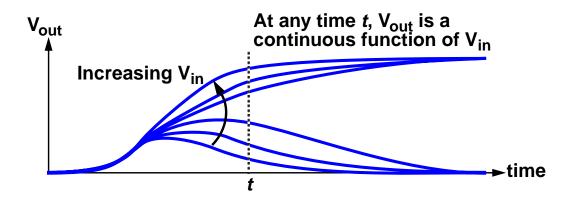

8-17 ECE1371

## **Small-Signal Analysis**



- Differential component grows exponentially
- **CM** component decays exponentially






•  $v_{cm} \rightarrow VDD/2, v_d \rightarrow \pm VDD$ 

ECE1371 8-19

## Metastability

- Metastability is fundamentally unavoidable
- Assuming the universe is continuous and deterministic, a comparator can be unresolved for any length of time

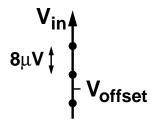


## Probability of Error, $P_E$

$$P_E = P\{ \text{not resolved by time } t \}$$

$$= P \left\{ V_{in} < \exp{-\left(\frac{t - t_0}{\tau}\right)} \right\}$$

- Take  $t_0 = 100$  ps and  $\tau = 20$  ps
- Then for t = 500 ps (1 GHz clock with a half-cycle between the comparator's clock and the clock of the subsequent latch),


$$P_E = P\{|V_{in}| < 2 \text{ nV}\}$$

• Assuming  $V_{in}$  is uniformly distributed in [-0.5, +0.5] V,  $P_E = 2 \times 10^{-9}$  Metastability occurs twice a second!

ECE1371 8-21

## **Quantized Charge Helps?**

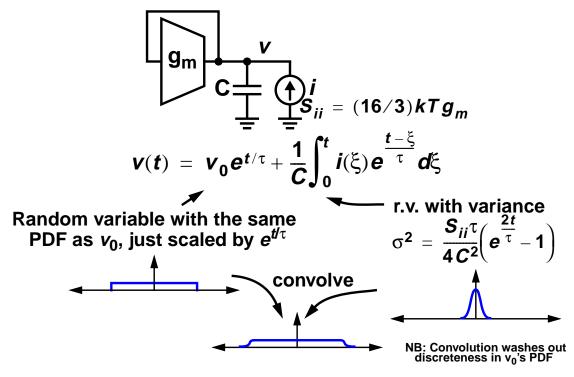
- If C = 20 fF, then 1 electron yields 8 μV
- V<sub>in</sub> = 2 nV and hence metastability impossible?



- + Unless V<sub>offset</sub> is within 2 nV of one of the discrete V<sub>in</sub> levels, metastability can't happen
- But if V<sub>offset</sub> is within 2 nV of an allowed V<sub>in</sub> level, metastability will be abnormally frequent
- Offset drift will tend to make metastability appear/disappear sporadically (?)

#### **Noise Helps?**

- kT/C = 500  $\mu$ V, so it is impossible to guarantee that metastability will result even if V<sub>in</sub> = 0
- + Noise does help a comparator resolve if it is metastable
- But for any given noise (random initial condition), there is always an input which results in metastability
- Noise makes it hard to set initial conditions that will result in metastability, but does not reduce the probability of error

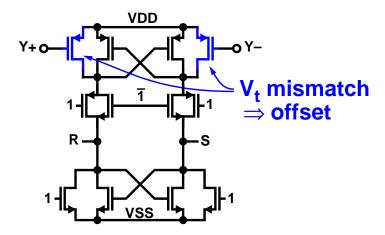

ECE1371 8-23

# What About Noise During Regeneration?



Noise from the g<sub>m</sub>s prevents metastability?

#### **Differential Circuit**




ECE1371 8-25

#### Let's "Make Numbers"

- Assume  $g_m = 1$  mA/V, C = 20 fF, t = 400 ps  $\Rightarrow \tau = 20$  ps;  $20\tau$  to resolve
- If  $v_0$  uniformly distributed in [-2,+2] mV, then 1<sup>st</sup> term is uniformly distributed in [-1,+1] MV
- Standard deviation of 2<sup>nd</sup> term is 250 kV Equivalent to a 0.5-mV initial condition
- Noise during regeneration helps when the input is known to be small, but is usually negligible compared to the exponential growth of the initial conditions

#### Offset

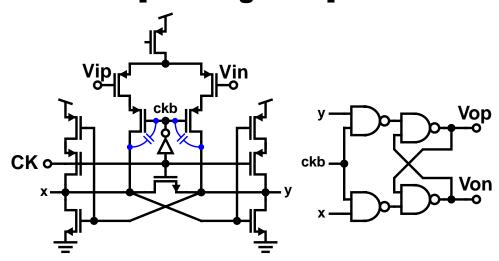


 Obvious sources of offset include mismatch in the input differential pair as well as mismatch in the regenerating devices

ECE1371 8-27

## **Dynamic Offset**




 Mismatched parasitic capacitance also causes offset

20 mV/fF for this comparator!

Bad design

Can fix this!

## Improved Comparator [S&T Fig. 9.36]



- Reset when CK = 1; regenerates when CK = 0
- x & y don't step if biased properly
  Mismatch in overlap capacitance still a problem.

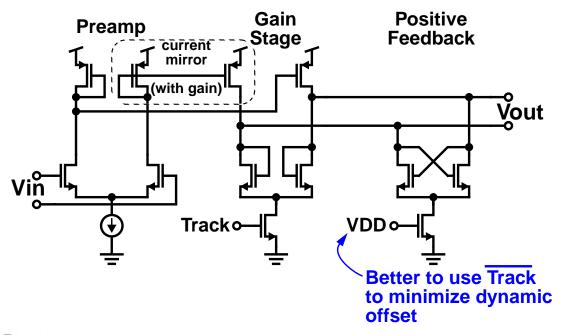
ECE1371 8-29

## Reducing Offset with a Preamp

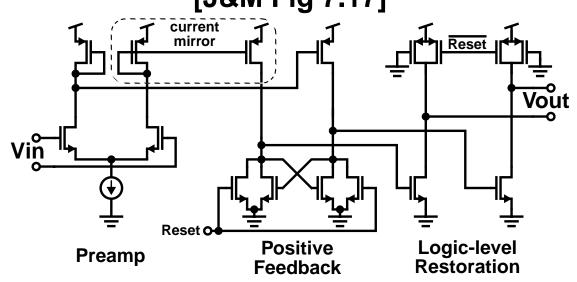


$$V_{\text{off,tot}} = V_{\text{off,amp}} + V_{\text{off,comp}} / A$$

- + Comparator offset is reduced by preamp gain Amplifier offset dominates.
- + Amplifier also isolates driving stage from "charge kickback"
- Amplifier bandwidth limits speed, especially recovery from overload


## Auto-zeroed SC Comparator [J&M Fig 13.17]

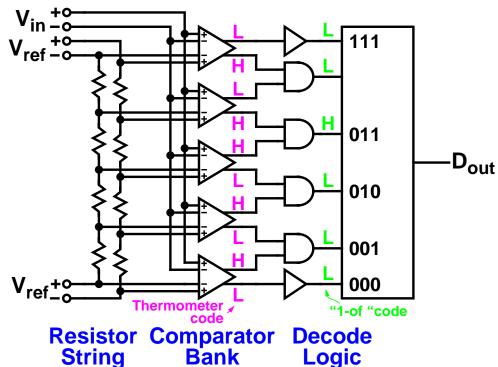



- During P1, the inverter/amplifier is biased at its threshold/offset voltage
- During P2, the difference between V<sub>in</sub> and V<sub>ref</sub> is amplified

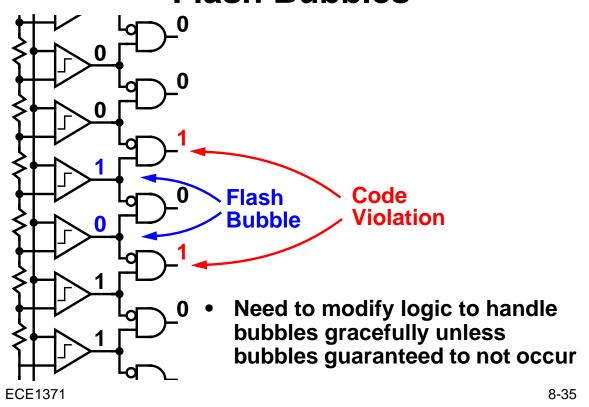
ECE1371 8-31

## Comparator with Preamp [J&M Fig. 7.16]




## Two-Stage Comparator [J&M Fig 7.17]

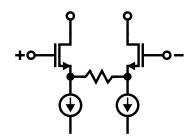



Precharges regeneration nodes low & digital output nodes high

ECE1371 8-33

## Flash ADC

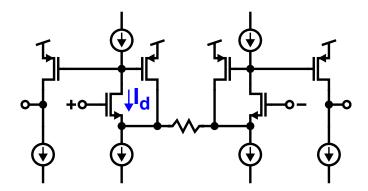



#### Flash Bubbles



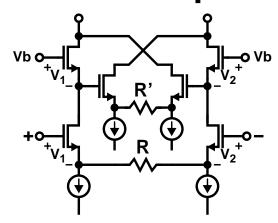
## **Averaging and Interpolation**




## NLCOTD: Linear Transconductors Degenerated Differential Pair



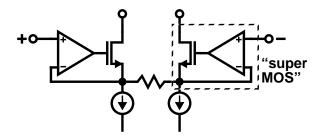
- + Simple!
- $\,\,V_{gs}$  varies nonlinearly with  $I_{out} \Rightarrow g_m$  is nonlinear


ECE1371 8-37

## Force Constant V<sub>gs</sub>

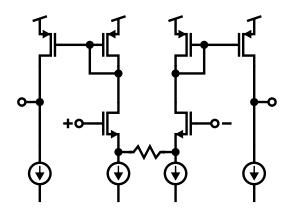


- $I_d$  constant  $\Rightarrow V_{gs}$  constant
- Linearity dependent on current-mirror linearity


### Cascomp



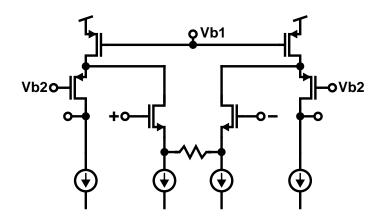
- V<sub>gs</sub> of input devices replicated in cascodes and distortion-cancelling current injected into output
- + All NMOS ⇒ fast
- Cancellation depends on matching Should tie bulk to source?


ECE1371 8-39

### **Add Op Amps**

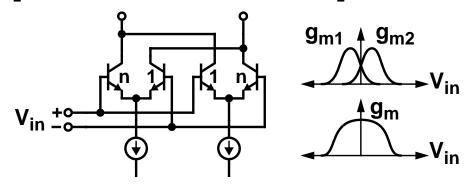


- + Linearity limited only by op amp gain and BW
- + High output resistance
- Output compliance depends on input swing


### **Mirror the Output Current**



- + Output compliance is VDD 2 V<sub>dsat</sub>
- Top of differential pair at VDD  $V_{gs}$

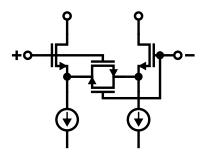

ECE1371 8-41

### **Fold the Output Current**



- + Increased headroom for differential pair
- + Increased output resistance

## Multi-Tanh Doublet [Gilbert JSSC Dec. 1998]




- With BJTs, ratioing the emitter areas creates a well-controlled offset
- With the right offset, the cubic term in the nonlinearity is zero!

$$n = 2 + \sqrt{3} = 3.73 \approx 15/4$$

ECE1371 8-43

#### **MOS Quad**



 Supposedly can get less distortion than a degenerated differential pair by fiddling with W/L

## **What You Learned Today**

- 1 Operation of Example Comparator Circuit
- **2 Regeneration Time Constant**
- 3 Metastability, Probability of Error
- 4 Dynamic Offset
- **5 Other Comparator Circuits**
- **6 A Bunch of Transconductor Circuits**