INTRODUCTION TO DELTA-SIGMA ADCS

Richard Schreier
richard.schreier@analog.com

Trevor Caldwell
trevor.caldwell@utoronto.ca
Course Goals

- Deepen understanding of CMOS analog circuit design through a top-down study of a modern analog system— a delta-sigma ADC

- Develop circuit insight through brief peeks at some nifty little circuits

 The circuit world is filled with many little gems that every competent designer ought to know.
Logistics

• Format:
 Meet Mondays 1:00-3:00 PM (not Feb 16, Apr 6)
 12 2-hr lectures plus proj. presentation

• Grading:
 30% homework
 40% project
 30% exam

• References:
 Schreier & Temes, “Understanding ΔΣ …”
 Chan-Carusone, Johns & Martin, “Analog IC …”
 Razavi, “Design of Analog CMOS ICs”

• Lecture Plan:
<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture (M 13:00-15:00)</th>
<th>Ref</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-01-05</td>
<td>RS 1 MOD1 & MOD2</td>
<td>ST 2, 3, A</td>
<td>1: Matlab MOD1&2</td>
</tr>
<tr>
<td>2015-01-12</td>
<td>RS 2 MODN + ΔΣ Toolbox</td>
<td>ST 4, B</td>
<td>2: ΔΣ Toolbox</td>
</tr>
<tr>
<td>2015-01-26</td>
<td>RS 4 Example Design: Part 2</td>
<td>CCJM 18</td>
<td></td>
</tr>
<tr>
<td>2015-02-02</td>
<td>TC 5 SC Circuits</td>
<td>R 12, CCJM 14</td>
<td>4: SC Integrator</td>
</tr>
<tr>
<td>2015-02-09</td>
<td>TC 6 Amplifier Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015-02-16</td>
<td>Reading Week– No Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015-02-23</td>
<td>TC 7 Amplifier Design</td>
<td></td>
<td>5: SC Int w/ Amp</td>
</tr>
<tr>
<td>2015-03-02</td>
<td>RS 8 Comparator & Flash ADC</td>
<td>CCJM 10</td>
<td></td>
</tr>
<tr>
<td>2015-03-09</td>
<td>TC 9 Noise in SC Circuits</td>
<td>ST C</td>
<td></td>
</tr>
<tr>
<td>2015-03-16</td>
<td>RS 10 Advanced ΔΣ</td>
<td>ST 6.6, 9.4</td>
<td></td>
</tr>
<tr>
<td>2015-03-23</td>
<td>TC 11 Matching & MM-Shaping</td>
<td>ST 6.3-6.5, +</td>
<td></td>
</tr>
<tr>
<td>2015-03-30</td>
<td>TC 12 Pipeline and SAR ADCs</td>
<td>CCJM 15, 17</td>
<td></td>
</tr>
<tr>
<td>2015-04-06</td>
<td>Exam</td>
<td>Proj. Report Due Friday April 10</td>
<td></td>
</tr>
<tr>
<td>2015-04-13</td>
<td>Project Presentation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NLCOTD: Level Translator

VDD1 > VDD2, e.g.

- 3-V logic → ? → 1-V logic

VDD1 < VDD2, e.g.

- 1-V logic → ? → 3-V logic

Constraints: CMOS
- 1-V and 3-V devices
- no static current
Highlights
(i.e. What you will learn today)

1 MOD1: 1st-order $\Delta\Sigma$ modulator
 Structure and theory of operation

2 Inherent linearity of binary modulators

3 Inherent anti-aliasing of continuous-time modulators

4 MOD2: 2nd-order $\Delta\Sigma$ modulator

5 Good FFT practice
0. Background
(Stuff you already know)

- The SQNR* of an ideal n-bit ADC with a full-scale sine-wave input is $(6.02n + 1.76)$ dB
 “6 dB = 1 bit.”

- The PSD at the output of a linear system is the product of the input’s PSD and the squared magnitude of the system’s frequency response

\[
S_{yy}(f) = |H(e^{j2\pi f})|^2 \cdot S_{xx}(f)
\]

- The power in any frequency band is the integral of the PSD over that band

* SQNR = Signal-to-Quantization-Noise Ratio
1. What is $\Delta \Sigma$?

- $\Delta \Sigma$ is NOT a fraternity
- Simplified $\Delta \Sigma$ ADC structure:

![Diagram of $\Delta \Sigma$ ADC structure]

- Key features: coarse quantization, filtering, feedback and oversampling

 Quantization is often *quite* coarse (1 bit!), but the effective resolution can still be as high as 22 bits.
What is Oversampling?

- Oversampling is sampling faster than required by the Nyquist criterion

 For a lowpass signal containing energy in the frequency range \((0, f_B)\), the minimum sample rate required for perfect reconstruction is \(f_s = 2f_B\)

- The *oversampling ratio* is \(OSR \equiv f_s / (2f_B)\)

- For a regular ADC, \(OSR \sim 2 - 3\)

 To make the anti-alias filter (AAF) feasible

- For a \(\Delta\Sigma\) ADC, \(OSR \sim 30\)

 To get adequate quantization noise suppression. Signals between \(f_B\) and \(~f_s\) are removed digitally.
Oversampling Simplifies AAF

OSR ~ 1:
- Desired Signal
- Undesired Signals
- First alias band is very close to $f_s/2$

OSR = 3:
- Wide transition band
- Alias far away from $f_s/2$
How Does A $\Delta \Sigma$ ADC Work?

- Coarse quantization \Rightarrow lots of quantization error. So how can a $\Delta \Sigma$ ADC achieve 22-bit resolution?
- A $\Delta \Sigma$ ADC spectrally separates the quantization error from the signal through *noise-shaping*
A $\Delta\Sigma$ DAC System

- Mathematically similar to an ADC system
 - Except that now the modulator is digital and drives a low-resolution DAC, and that the out-of-band noise is handled by an analog reconstruction filter.
Why Do It The $\Delta\Sigma$ Way?

- **ADC: Simplified Anti-Alias Filter**
 Since the input is oversampled, only very high frequencies alias to the passband. A simple RC section often suffices.
 If a continuous-time loop filter is used, the anti-alias filter can often be eliminated altogether.

- **DAC: Simplified Reconstruction Filter**
 The nearby images present in Nyquist-rate reconstruction can be removed digitally.

 + **Inherent Linearity**
 Simple structures can yield very high SNR.

 + **Robust Implementation**
 $\Delta\Sigma$ tolerates sizable component errors.
2. MOD1: 1st-Order ΔΣ Modulator

[Ch. 2 of Schreier & Temes]

Since two points define a line, a binary DAC is inherently linear.
MOD1 Analysis

- Exact analysis is intractable for all but the simplest inputs, so treat the quantizer as an additive noise source:

\[
V(z) = Y(z) + E(z)
\]

\[
Y(z) = \frac{U(z) - z^{-1}V(z)}{1-z^{-1}}
\]

\[
\Rightarrow (1-z^{-1}) V(z) = U(z) - z^{-1}V(z) + (1-z^{-1})E(z)
\]

\[
V(z) = U(z) + (1-z^{-1})E(z)
\]
The Noise Transfer Function (NTF)

- In general, \(V(z) = \text{STF}(z) \cdot U(z) + \text{NTF}(z) \cdot E(z) \)
- For MOD1, \(\text{NTF}(z) = 1 - z^{-1} \)

The quantization noise has spectral shape!

The total noise power increases, but the noise power at low frequencies is reduced.
In-band Quant. Noise Power

- Assume that e is white with power σ_e^2

i.e. $S_{ee}(\omega) = \sigma_e^2 / \pi$
- The in-band quantization noise power is

 $$IQNP = \int_0^{\omega_B} |H(e^{j\omega})|^2 S_{ee}(\omega) d\omega \approx \frac{\sigma_e^2}{\pi} \int_0^{\omega_B} \omega^2 d\omega$$

- Since $OSR \equiv \frac{\pi}{\omega_B}$, $IQNP = \frac{\pi^2 \sigma_e^2}{3} (OSR)^{-3}$
- For MOD1, an octave increase in OSR increases SQNR by 9 dB

 “1.5-bit/octave SQNR-OSR trade-off.”
A Simulation of MOD1— Time

Sample Number
A Simulation of MOD1—Freq.

- SQNR = 55 dB @ OSR = 128
- NBW = 5.7x10^{-6}

Full-scale test tone

Shaped “Noise”

20 dB/decade

Normalized Frequency vs. dBFS/NBW plot
CT Implementation of MOD1

- R_i/R_f sets the full-scale; C is arbitrary
 Also observe that an input at f_s is rejected by the integrator—*inherent anti-aliasing*
MOD1-CT Waveforms

- With $u = 0$, v alternates between +1 and –1
- With $u > 0$, y drifts upwards; v contains consecutive +1s to counteract this drift
MOD1-CT STF = \frac{1 - z^{-1}}{s}

Recall \(z = e^s \)

s-plane

Zeros @ \(s = 2k\pi i \)

Pole-zero cancellation @ \(s = 0 \)
MOD1-CT Frequency Responses

$\text{NTF} = 1 - z^{-1}$

$\text{STF} = \frac{1 - z^{-1}}{s}$

Quant. Noise Notch

Inherent Anti-Aliasing

Frequency (Hz)
Summary

- $\Delta\Sigma$ works by spectrally separating the quantization noise from the signal.
 Requires oversampling. $OSR \equiv f_s/(2f_B)$.

- Noise-shaping is achieved by the use of filtering and feedback.

- A binary DAC is inherently linear, and thus a binary $\Delta\Sigma$ modulator is too.

- MOD1 has $NTF(z) = 1 - z^{-1}$
 \Rightarrow Arbitrary accuracy for DC inputs.
 1.5 bit/octave SQNR-OSR trade-off.

- MOD1-CT has inherent anti-aliasing.
NLCOTD

3V → 1V:

1V → 3V:
3. MOD2: 2nd-Order \(\Delta\Sigma\) Modulator

[Ch. 3 of Schreier & Temes]

- Replace the quantizer in MOD1 with another copy of MOD1 in a recursive fashion:

\[
V(z) = U(z) + (1-z^{-1})E_1(z), \quad E_1(z) = (1-z^{-1})E(z)
\]

\[
\Rightarrow V(z) = U(z) + (1-z^{-1})^2E(z)
\]
Simplified Block Diagrams

\[
U \rightarrow \frac{z}{z-1} \rightarrow \frac{1}{z-1} \rightarrow Q \rightarrow V
\]

\[
NTF(z) = (1 - z^{-1})^2
\]

\[
STF(z) = z^{-1}
\]

\[
U \rightarrow \frac{1}{z-1} \rightarrow \frac{1}{z-1} \rightarrow Q \rightarrow V
\]

\[
NTF(z) = (1 - z^{-1})^2
\]

\[
STF(z) = z^{-2}
\]
MOD2 has twice as much attenuation as MOD1 at all frequencies.
In-band Quant. Noise Power

- For MOD2, \(|H(e^{j\omega})|^2 \approx \omega^4\)

- As before, \(IQNP = \int_0^B |H(e^{j\omega})|^2 S_{ee}(\omega) d\omega\) and \(S_{ee}(\omega) = \sigma_e^2 / \pi\)

- So now \(IQNP = \frac{\pi^4 \sigma_e^2}{5} (OSR)^{-5} \times \)

With binary quantization to \(\pm 1\),
\(\Delta = 2\) and thus \(\sigma_e^2 = \Delta^2/12 = 1/3\).

- “An octave increase in OSR increases MOD2’s SQNR by 15 dB (2.5 bits)”
Simulation Example
Input at 75% of FullScale

Sample number
Simulated MOD2 PSD
Input at 50% of FullScale

SQNR = 86 dB
@ OSR = 128

Simulated spectrum (smoothed)

Theoretical PSD \(k = 1 \)

40 dB/decade

NBW = \(5.7 \times 10^{-6} \)

Normalized Frequency

dBFS/NBW
SQNR vs. OSR

Predictions for MOD2 are optimistic.
Behavior of MOD1 is erratic.
Audio Demo: MOD1 vs. MOD2
[dsdemo4]
MOD1 + MOD2 Summary

- $\Delta\Sigma$ ADCs rely on filtering and feedback to achieve high SNR despite coarse quantization.
- They also rely on digital signal processing.
- $\Delta\Sigma$ ADCs need to be followed by a digital decimation filter and $\Delta\Sigma$ DACs need to be preceded by a digital interpolation filter.

- Oversampling eases analog filtering requirements.
- Anti-alias filter in an ADC; image filter in a DAC.

- Binary quantization yields inherent linearity.

- MOD2 is better than MOD1.
 - 15 dB/octave vs. 9 dB/octave SQNR-OSR trade-off.
 - Quantization noise more white.
 - Higher-order modulators are even better.
4. Good FFT Practice

[Appendix A of Schreier & Temes]

- Use coherent sampling
 I.e. have an integer number of cycles in the record.

- Use windowing
 A Hann window \(w(n) = \frac{1 - \cos(2\pi n / N)}{2} \)
 works well.

- Use enough points
 Recommend \(N = 64 \cdot OSR \).

- Scale (and smooth) the spectrum
 A full-scale sine wave should yield a 0-dBFS peak.

- State the noise bandwidth
 For a Hann window, \(NBW = 1.5 / N \).
• Coherent sampling: only one non-zero FFT bin
• Incoherent sampling: “spectral leakage”
Windowing

- $\Delta \Sigma$ data is usually not periodic
 Just because the input repeats does not mean that
 the output does too!
- A finite-length data record = an infinite record
 multiplied by a rectangular window:
 $w(n) = 1, \ 0 \leq n < N$
 Windowing is unavoidable.
- “Multiplication in time is convolution in
 frequency”

Frequency response of a 32-point rectangular window:

Slow roll-off \Rightarrow out-of-band Q. noise may appear in-band
Example Spectral Disaster
Rectangular window, $N = 256$

Out-of-band quantization noise obscures the notch!

- - - - Actual $\Delta \Sigma$ spectrum
$W(f) / \| w \|_2$
Windowed spectrum
Window Comparison \((N = 16)\)
Window Properties

<table>
<thead>
<tr>
<th>Window</th>
<th>Rectangular</th>
<th>Hann†</th>
<th>Hann²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w(n),) (n = 0, 1, \ldots, N - 1) ((w(n) = 0 \text{ otherwise}))</td>
<td>1</td>
<td>(1 - \cos \frac{2\pi n}{N})</td>
<td>(\left(1 - \cos \frac{2\pi n}{N} \right)^2)</td>
</tr>
<tr>
<td>Number of non-zero FFT bins</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>(| w |_2^2 = \sum w(n)^2)</td>
<td>(N)</td>
<td>(3N/8)</td>
<td>(35N/128)</td>
</tr>
<tr>
<td>(W(0) = \sum w(n))</td>
<td>(N)</td>
<td>(N/2)</td>
<td>(3N/8)</td>
</tr>
<tr>
<td>(NBW = \frac{| w |_2^2}{W(0)^2})</td>
<td>(1/N)</td>
<td>(1.5/N)</td>
<td>(35/18N)</td>
</tr>
</tbody>
</table>

†. MATLAB’s “hann” function causes spectral leakage of tones located in FFT bins unless you add the optional argument “periodic.”
Window Length, N

- Need to have enough in-band noise bins to
 1. Make the number of signal bins a small fraction of the total number of in-band bins
 \[<20\% \text{ signal bins} \Rightarrow >15 \text{ in-band bins} \Rightarrow N > 30 \cdot \text{OSR}\]
 2. Make the SNR repeatable
 \[N = 30 \cdot \text{OSR} \text{ yields std. dev. } \sim 1.4 \text{ dB.}\]
 \[N = 64 \cdot \text{OSR} \text{ yields std. dev. } \sim 1.0 \text{ dB.}\]
 \[N = 256 \cdot \text{OSR} \text{ yields std. dev. } \sim 0.5 \text{ dB.}\]

- $N = 64 \cdot \text{OSR}$ is recommended
FFT Scaling

• The FFT implemented in MATLAB is

\[X_M(k + 1) = \sum_{n=0}^{N-1} x_M(n + 1) e^{-j\frac{2\pi kn}{N}} \]

• If \(x(n) = A\sin(2\pi fn/N) \), then

\[|X(k)| = \begin{cases} \frac{AN}{2}, & k = f \text{ or } N - f \\ 0, & \text{otherwise} \end{cases} \]

\[\Rightarrow \text{ Need to divide FFT by } (N/2) \text{ to get } A. \]

\[\dagger \text{ } f \text{ is an integer in } (0, N/2). \text{ I've defined } X(k) \equiv X_M(k + 1), \]
\[x(n) \equiv x_M(n + 1) \text{ since Matlab indexes from 1 rather than 0.} \]
The Need For Smoothing

- The FFT can be interpreted as taking 1 sample from the outputs of N complex FIR filters:

$$
y_0(N) = X(0) \quad y_1(N) = X(1) \quad \ldots \quad y_k(N) = X(k) \quad \ldots \quad y_{N-1}(N) = X(N-1)
$$

$$
h_k(n) = \begin{cases}
e^{rac{2\pi kn}{N}}, & 0 \leq n < N \\ 0, & \text{otherwise} \end{cases}
$$

⇒ an FFT yields a high-variance spectral estimate
How To Do Smoothing

1. Average multiple FFTs
 Implemented by MATLAB’s `psd()` function

2. Take one big FFT and “filter” the spectrum
 Implemented by the ΔΣ Toolbox’s `logsmooth()` function
 `logsmooth()` averages an exponentially-increasing number of bins in order to reduce the density of points in the high-frequency regime and make a nice log-frequency plot
Raw and Smoothed Spectra dBFS

Normalized Frequency

Raw FFT
logsmooth
Simulation vs. Theory (MOD2)

- Simulated Spectrum
- NTF = Theoretical Q. Noise?

“Slight” Discrepancy (~40 dB)

Normalized Frequency

dBFS
What Went Wrong?

1. We normalized the spectrum so that a full-scale sine wave (which has a power of 0.5) comes out at 0 dB (whence the “dBFS” units)

 ⇒ We need to do the same for the error signal.

 i.e. use $S_{ee}(f) = 4/3$.

 But this makes the discrepancy 3 dB worse.

2. We tried to plot a *power spectral density* together with something that we want to interpret as a *power spectrum*

 • Sine-wave components are located in individual FFT bins, but broadband signals like noise have their power spread over all FFT bins!

 The “noise floor” depends on the length of the FFT.
Spectrum of a Sine Wave + Noise

\[S_x'(f) \text{ ("dBFS")} \]

Normalized Frequency, \(f \)

\[\Rightarrow \text{SNR} = 0 \text{ dB} \]

-3 dB/octave
Observations

- The power of the sine wave is given by the height of its spectral peak.

- The power of the noise is spread over all bins.
 The greater the number of bins, the less power there is in any one bin.

- Doubling N reduces the power per bin by a factor of 2 (i.e. 3 dB).
 But the total integrated noise power does not change.
So How Do We Handle Noise?

- Recall that an FFT is like a filter bank
- The longer the FFT, the narrower the bandwidth of each filter and thus the lower the power at each output
- We need to know the *noise bandwidth* (NBW) of the filters in order to convert the power in each bin (filter output) to a power density
- For a filter with frequency response $H(f)$,

\[
NBW = \frac{\int |H(f)|^2 \, df}{H(f_0)^2}
\]
FFT Noise Bandwidth

Rectangular Window

\[h_k(n) = \exp\left(j \frac{2\pi k}{N} n\right), \quad H_k(f) = \sum_{n=0}^{N-1} h_k(n) \exp(-j2\pi fn) \]

\[f_0 = \frac{k}{N}, \quad H_k(f_0) = \sum_{n=0}^{N-1} 1 = N \]

\[\int |H_k(f)|^2 = \sum |h_k(n)|^2 = N \text{ [Parseval]} \]

\[\therefore \text{NBW} = \frac{\int |H_k(f)|^2 df}{H_k(f_0)^2} = \frac{N}{N^2} = \frac{1}{N} \]
Simulated Spectrum
Theoretical Q. Noise

$\text{NBW} = 1.5 / N = 2 \times 10^{-5}$

$N = 2^{16}$

passband for OSR = 128

$\frac{4}{3} |NTF(f)|^2 \cdot \text{NBW}$

Normalized Frequency

dBFS/NBW
Homework #1 (Due 2015-01-12)

A. Create a Matlab function that computes MOD1’s output sequence given a vector of input samples and exercise your function in the following ways.

1. Verify that the average of the output equals the input for a few random DC inputs in [–1,1].

2. Plot the output spectrum with a half-scale sine-wave input. Use good FFT practice. Include the theoretical quantization noise curve and list the theoretical and simulated SQNR for OSR = 128.

B. Repeat with MOD2.

C. Compose your own question and answer it.
MOD2 Expanded

Difference Equations:

\[v(n) = Q(x_2(n)) \]
\[x_1(n + 1) = x_1(n) - v(n) + u(n) \]
\[x_2(n + 1) = x_2(n) - v(n) + x_1(n + 1) \]
Example Matlab Code

function \[v\] = simulateMOD2(u)
 \[\text{x1} = 0;\]
 \[\text{x2} = 0;\]
 \[\text{for } i = 1: \text{length}(u)\]
 \[v(i) = \text{quantize}(\text{x2});\]
 \[\text{x1} = \text{x1} + u(i) - v(i);\]
 \[\text{x2} = \text{x2} + \text{x1} - v(i);\]
 \[\text{end}\]
 return

function \[v\] = quantize(\[y\])
 \[\text{if } y \geq 0\]
 \[v = 1;\]
 \[\text{else}\]
 \[v = -1;\]
 \[\text{end}\]
 return
What You Learned Today
And what the homework should solidify

1 MOD1: 1st-order \(\Delta\Sigma\) modulator
 Structure and theory of operation
2 Inherent linearity of binary modulators
3 Inherent anti-aliasing of continuous-time modulators
4 MOD2: 2nd-order \(\Delta\Sigma\) modulator
5 Good FFT practice