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Course Goals

• Deepen understanding of CMOS analog circuit
design through a top-down study of a modern
analog system— a delta-sigma ADC

• Develop circuit insight through brief peeks at
some nifty little circuits

The circuit world is filled with many little gems that
every competent designer ought to know.
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Date Lecture (M 13:00-15:00) Ref Homework

2015-01-05 RS 1 MOD1 & MOD2 ST 2, 3, A 1: Matlab MOD1&2

2015-01-12 RS 2 MODN + ∆Σ Toolbox ST 4, B 2: ∆Σ Toolbox

2015-01-19 RS 3 Example Design: Part 1 ST 9.1, CCJM 14 3: Sw.-level MOD2

2015-01-26 RS 4 Example Design: Part 2 CCJM 18

2015-02-02 TC 5 SC Circuits R 12, CCJM 14 4: SC Integrator

2015-02-09 TC 6 Amplifier Design

2015-02-16 Reading Week– No Lecture

2015-02-23 TC 7 Amplifier Design  5: SC Int w/ Amp

2015-03-02 RS 8 Comparator & Flash ADC CCJM 10

Project

2015-03-09 TC 9 Noise in SC Circuits  ST C

2015-03-16 RS 10 Advanced ∆Σ ST 6.6, 9.4

2015-03-23 TC 11 Matching & MM-Shaping ST 6.3-6.5, +

2015-03-30 TC 12 Pipeline and SAR ADCs CCJM 15, 17

2015-04-06 Exam Proj. Report Due Friday April 10

2015-04-13 Project Presentation
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NLCOTD: Dynamic Flip-Flop
• Standard CMOS version

• Can the circuit be simplified?
Is a complementarty clock necessary?

D Q

CK
Q
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Highlights
(i.e. What you will learn today)

1 Nth-order modulator (MOD N )

2 High-level design with the ∆Σ Toolbox
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0. Review: A ∆Σ ADC System

∆Σ
Modulator

Digital
Decimator

U

V

W

Loop
Filter

DAC

U V

E

V (z ) = STF (z )U( z ) + NTF (z )E (z )

STF (z ): signal transfer function
NTF (z ): noise transfer function
E (z ): quantization error

desired

shaped

Nyquist-rate
PCM Data

noise

f s 2⁄f B

f s 2⁄f B

f B

signal

Y
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Review: MOD1

QU
E
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Review: MOD2
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Review Summary
• ∆Σ works by spectrally separating the

quantization noise from the signal
Requires oversampling. .
Achieved by the use of filtering  and feedback.

• A binary DAC is inherently linear,
and thus a binary ∆Σ modulator is too

• MOD1-CT has inherent anti-aliasing

• MOD1 has NTF (z) = 1 – z–1

⇒ Arbitrary accuracy for DC inputs;
9 dB/octave SQNR-OSR trade-off.

• MOD2 has NTF (z) = (1 – z–1)2
⇒ 15 dB/octave SQNR-OSR trade-off.

OSR f s 2f B( )⁄≡
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1. MODN
[Ch. 4 of Schreier & Temes]

• MODN’s NTF is the Nth power of MOD1’s NTF

Q1
z−1

z
z−1U Vz

z−1

NTF z( ) 1 z 1––( )N=
STF z( ) z 1–=

N integrators
(N–1) non-delaying, 1 delaying
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NTF Comparison
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Predicted Performance
• In-band quantization noise power

• Quantization noise drops as the (2 N+1)th power
of OSR— (6N+3) dB/octave SQNR-OSR trade-off

IQNP NTF e j 2πf( ) 2 See f( )⋅ fd

0

0.5 OSR⁄

∫=

2πf( )2N 2σe
2⋅ fd

0

0.5 OSR⁄

∫≈

π2N

2N 1+( ) OSR( )2N 1+
-------------------------------------------------------σe

2=
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Improving NTF Performance–
NTF Zero Optimization

• Minimize the integral of  over the
passband

Normalize passband edge to 1 for ease of
calculation:

NTF 2

…

–1 1a–a

H f( )
2

Need to find the ai which minimize

x 2 a1
2–( )2 x 2 a2

2–( )2 xd
1–

1
∫ , n = 4

x 2 x 2 a1
2–( )2 xd

1–
1

∫ , n = 3

x 2 a1
2–( )2 xd

1–
1

∫ , n = 2

fs/fB

the integral
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Solutions Up to Order = 8
Order

Optimal Zero Placement
Relative to fB

SQNR
Improvement

1 0 0 dB

2 3.5 dB

3 0, 8 dB

4 13 dB

5 0, [Y. Yang] 18 dB

6 ±0.23862, ±0.66121, ±0.93247 23 dB

7 0, ±0.40585, ±0.74153, ±0.94911 28 dB

8 ±0.18343, ±0.52553, ±0.79667, ±0.96029 34 dB

1 3⁄±

3 5⁄±

3 7⁄ 3 7⁄( )2 3 35⁄–±±

5 9⁄ 5 9⁄( )2 5 21⁄–±±
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Topological Implication
• Feedback around pairs integrators:

1
z−1

z
z−1

-g

1
z−1

1
z−1

-g

2 Delaying Integrators Non-delaying + Delaying
Integrators (LDI Loop)

Poles are the roots of

1 g 1
z 1–
------------ 

  2
+ 0=

i.e. z 1 j g±=

Not quite on the unit circle,
but fairly close if g<<1.

Poles are the roots of
1 gz

z 1–( )2
--------------------+ 0=

i.e. z e jθ±=

Precisely on the unit circle,
θcos 1 g 2⁄–=,

regardless of the value of g.

ECE1371 2-16

Problem: A High-Order Modulator
Wants a Multi-bit Quantizer

E.g. MOD3 with an Infinite Quantizer
and Zero Input

0 10 20 30 40-7

-5

-3

-1
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3

5

7

Sample Number

v

Quantizer input gets
large, even if the

6 quantizer levels are
used by a small input.

input is small.
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Simulation of MOD3-1b
(MOD3 with a Binary Quantizer)

• MOD3-1b is unstable, even with zero input!
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–100

0

100

200

Sample Number

v

y
HUGE!

Long
strings
of +1/–1
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Solutions to the Stability Problem
Historical Order

1 Multi-bit quantization
Initially considered undesirable because we lose the
inherent linearity of a 1-bit DAC.

2 More general NTF (not pure differentiation)
Lower the NTF gain so that quantization error is
amplified less.
Unfortunately, reducing the NTF gain reduces the
amount by which quantization noise is attenuated.

3 Multi-stage (MASH) architecture

• Combinations of the above are possible



ECE1371 2-19

Multi-bit Quantization
A modulator with NTF = H and STF = 1 is
guaranteed to be stable if  at all times,
where  and

• In MODN , so
,

and thus

•  implies
MODN is guaranteed to be stable with an N-bit
quantizer if the input magnitude is less than ∆/2 = 1.
This result is quite conservative.

• Similarly, guarantees that MOD N is
stable for inputs up to 50% of full-scale

u u max<
u max nlev 1 h 1–+= h 1 h i( )i 0=

∞∑=

H z( ) 1 z 1––( )N=
h n( ) 1 a1– a2 a3– … 1–( )N aN 0…, , , , ,{ }= ai 0>

h 1 H 1–( ) 2N= =

nlev 2N= u max nlev 1 h 1–+ 1= =

nlev 2N 1+=
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M-Step Symmetric Quantizer
∆ = 2, (nlev  = M + 1)

• No-overload range: ⇒

M even: mid-treadM odd: mid-rise

y

e = v – y

v

e = v – y

v

y
1

M

–M

2

M

–M

–M –1 M +1 –M –1 M +1

v: odd integers
from – M to +M

v: even integers
from – M to +M

y nlev≤ e ∆ 2⁄≤ 1=
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Inductive Proof of  Criterion
• Assume STF = 1 and

• Assume  for .[Induction Hypothesis]

Then
⇒
⇒

• So by induction  for all i > 0

h 1

n∀( ) u n( ) u max≤( )
e i( ) 1≤ i n<

y n( ) u n( ) h i( )e n i–( )i 1=
∞∑+=

u max h i( ) e n i–( )i 1=
∞∑+≤

u max h i( )i 1=
∞∑+≤ u max h 1 1–+=

u max nlev 1 h 1–+=
y n( ) nlev≤
e n( ) 1≤

e i( ) 1≤
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More General NTF
• Instead of  with ,

use a more general
Roots of B are the poles of the NTF and must be
inside the unit circle.

NTF z( ) A z( ) B z( )⁄= B z( ) z n=
B z( )

Moving the poles away
from z = 1 toward z = 0
makes the gain of the
NTF approach unity.
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The Lee Criterion for Stability
in a 1-bit Modulator:

[Wai Lee, 1987]

• The measure of the “gain” of H is the maximum
magnitude of H over frequency, aka the infinity-
norm  of H:

Q: Is the Lee criterion necessar y for stability?
No. MOD2 is stable (for DC inputs less than FS)
but .

Q: Is the Lee criterion sufficient to ensure stability?
No. There are lots of counter-examples,
but  often works.

H ∞ 2≤

H ∞ max
ω 0 2π,[ ]∈

H ejω( )( )≡

H ∞ 4=

H ∞ 1.5≤
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Simulated SQNR vs.
5th-order NTFs; 1-b Quant.; OSR = 32

H ∞
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SQNR Limits— 1-bit Modulation
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SQNR Limits for 2-bit Modulators
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SQNR Limits for 3-bit Modulators
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Generic Single-Loop ∆Σ ADC
• Linear Loop Filter + Nonlinear Quantizer:

E

L1

L0 Y V
U

Inverse Relations:
L1 = 1 – 1/NTF, L0 = STF / NTF

Y L0U L1V+=
V Y E+=

NTF 1
1 L1–
---------------= & STF L0 NTF⋅=

V STF U⋅ NTF E⋅+= , where
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∆Σ Toolbox
http://www.mathworks.com/matlabcentral/fileexchange

Search for “Delta Sigma Toolbox”

NTF (and STF)
available.

Specify OSR,
lowpass/bandpass,

no. of Q. levels.

synthesizeNTF

realize-

predictSNR,

ABCD: state-
space description
of the modulator.

scaleABCD

Parameters for
a specific
topology.

stuffABCD

mapABCD

Time-domain
simulation and
SNR measure-

ments.

simulateDSM,

calculateTF

simulateSNR

mapCtoD
simulateESL
designHBF

Also

Manual is delsig.pdf  (App. B of Schreier & Temes)

NTF
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∆Σ Toolbox Modulator Model

L1

L0 Y V
U

Quantizer:
M = 1 M = 2 M = 3

Mid-tread quantizer;
v: even integers [ – M,+M ]

Mid-rise quantizer;
v: odd integers [ – M,+M ]

Modulator:

[ -M, +M ]
[ -M, +M ]

∆ = 2

NTF 1
1 L1–
---------------=

STF
L0

1 L1–
---------------=

y
v

y

v
1

–1

2

–2

2

e
e

–2 3–3 4–4
y

v3

1

-1

-3

e

Loop filter can be specified by NTF or
by ABCD, a state-space representation
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NTF Synthesis
synthesizeNTF

• Not all NTFs are realizable
Causality requires , or, in the frequency
domain, . Recall

• Not all NTFs yield stable modulators
Rule of thumb for single-bit modulators:

 [Lee].

• Can optimize NTF zeros to minimize the
mean-square value of H in the passband

• The NTF and STF share poles, and in some
modulator topologies the STF zeros are not
arbitrary
Restrict the NTF such that an all-pole STF is maximally
flat. (Almost the same as Butterworth poles.)

h 0( ) 1=
H ∞( ) 1= H z( ) h 0( )z 0 h 1( )z 1– …+ +=

H ∞ 1.5<
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Lowpass Example [ dsdemo1 ]
5th-order NTF, all zeros at DC

• Pole/Zero diagram:

OSR = 32;
H = synthesizeNTF(5);
plotPZ (H);

f = linspace(0,0.5);
z = exp(2i*pi*f);
H_z = evalTF (H,z);
plot(f,dbv(H_z));
g = rmsGain (H,0,0.5/OSR)
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Lowpass NTF
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Improved 5 th-Order Lowpass NTF
Zeros optimized for OSR=32

OSR = 32;
H = synthesizeNTF (5,OSR,1);
...

Zeros spread across
the band-of-interest to
minimize the rms value
of the NTF.

optimization
flag
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Improved NTF
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Bandpass Example
OSR = 64;
f0 = 1/6;
H=synthesizeNTF (6,OSR,1,[], f0 );...

center frequency

[] or NaN means
use default value,
i.e. Hinf = 1.5
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Bandpass NTF and STF

0 0.5
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NTFdB
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all-pole STF with same poles as
∆Σ toolbox NTF
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Summary: NTF Selection
• If OSR is high, a single-bit modulator may work

• To improve SQNR,
Optimize zeros,
Increase , or
Increase order.

• If SQNR is insufficient, must use a multi-bit
design

Can turn all the above knobs to enhance
performance.

• Feedback DAC assumed to be ideal

H ∞
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NTF-Based Simulation [ dsdemo2 ]

• In mex form; 128K points in < 0.1 sec

order=5; OSR=32;
ntf = synthesizeNTF (order,OSR,1);
N=2^17; fbin=959; A=0.5; % 128K points
input = A*sin(2*pi*fbin/N*[0:N-1]);
output = simulateDSM (input,ntf);
spec = fft(output.* ds_hann (N)/(N/4));
plot( dbv (spec(1:N/(2*OSR))));

   0 1024 2048–200
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–100
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Simulation Example Cont’d
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SNR vs. Amplitude: simulateSNR

Input Amplitude (dBFS)

S
Q

N
R

 (
dB

)

–100  –80  –60  –40  –20 0
0

 20

 40

 60

 80

100

Peak SNR is 85 dB.
Max. input is –3 dBFS.

[snr amp] = simulateSNR (ntf,OSR);
plot(amp,snr,'b-^');

OSR=32
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Homework #2 (Due 2015-01-19)
A. Extract code from dsdemo1  & dsdemo2  to:

1 Create a 3 rd-order NTF with zeros optimized for
OSR = 32 and . Plot the poles/zeros
and frequency response of your NTF.

2 Simulate an 8-step (9-level) ∆Σ modulator with
this NTF.
Plot example input and output waveforms.
Plot a spectrum and the predicted noise curve. *

Plot the SQNR vs. input amplitude curve and
note the maximum stable input.

B. Compose your own short question and answer it.

*. Beware that with an M-step modulator the full-scale is M.

NTF ∞ 2=
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What You Learned Today
And what the homework should solidify

1 Nth-order modulator (MOD N )

2 High-level design with the ∆Σ Toolbox

ECE1371 2-44

NLCOTD: True Single-Phase
Dynamic FF

+ Clock not inverted anywhere

+ Small

+ Fast

D

C Q
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TSPFF Operation

D

C Q

C

C

X

Y Z

D
C
X
Y
Z
Q

d

~d

d
~d

d

Can drop inverter.
(Handy if making
a divider.)
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TSPFF Gotchas
• Leakage:

Won’t work if clock is too slow.
Possible high current if clock is stopped.

Need to add devices that hold the dynamic nodes at
a safe value.

• No positive feedback
Vulnerable to metastability.


