ECE1371 Advanced Analog Circuits Lecture 3

EXAMPLE DESIGN-PART 2

Richard Schreier richard.schreier@analog.com

Trevor Caldwell trevor.caldwell@utoronto.ca

Course Goals

 Deepen understanding of CMOS analog circuit design through a top-down study of a modern analog system

The lectures will focus on Delta-Sigma ADCs, but you may do your project on another analog system.

 Develop circuit insight through brief peeks at some nifty little circuits

The circuit world is filled with many little gems that every competent designer ought to know.

ECE1371

Date			Lecture	Ref	Homework		
2008-01-07	RS	1	Introduction: MOD1 & MOD2	S&T 2-3, A	Matlab MOD2		
2008-01-14	RS	2	Example Design: Part 1	S&T 9.1, J&M 10	Switch-level sim		
2008-01-21	RS	3	Example Design: Part 2	J&M 14	Q-level sim		
2008-01-28	тс	4	Pipeline and SAR ADCs		Arch. Comp.		
2008-02-04			ISSCC- No Lecture				
2008-02-11	RS	5	Advanced ΔΣ	S&T 4, 6.6, 9.4, B	$\Delta \Sigma$ Toolbox; Proj.		
2008-02-18			Reading Week- No Lec				
2008-02-25	RS	6	Comparator & Flash ADC	J&M 7			
2008-03-03	тс	7	SC Circuits	J&M 10			
2008-03-10	тс	8	Amplifier Design				
2008-03-17	тс	9	Amplifier Design				
2008-03-24	тс	10	Noise in SC Circuits	S&T C			
2008-03-31			Project Presentation				
2008-04-07	тс	11	Matching & MM-Shaping		Project Report		
2008-04-14	RS	12	Switching Regulator		Q-level sim		
	_	_	-				

ECE1371

ECE1371

3-3

NLCOTD: Non-Overlapping Clock Generator

• Our SC circuits require two non-overlapping clocks. How do we generate them?

ECE1371

Highlights (i.e. What you will learn today)

- 1 Transistor-level implementation of MOD2 op-amp, SC CMFB, comparator, clock generator
- 2 MOD2 variants
- 3 Variable quantizer gain

Review: MOD2 Standard Block Diagram

Scaled Block Diagram

3-5

ECE1371

3-2

3-4

ECE1371

Review: Simulated Spectrum

Review: Implementation Summary

- 1 Choose a viable SC topology and manually verify timing
- 2 Do dynamic-range scaling You now have a set of capacitor ratios. Verify operation.
- ✓ 3 Determine absolute capacitor sizes Verify noise.
- 4 Determine op-amp specs and construct a transistor-level schematic Verify.
 - 5 Layout, fab, debug, document, get customers, sell by the millions, go public, ...

ECE1371

A fraction of q₂ leaks away each clock cycle:

$$\boldsymbol{q_2(n+1)} = (1-\varepsilon)\boldsymbol{q_2(n)},$$

where
$$\varepsilon = \mu C_1 / C_2$$

- Thus, the integrator is lossy, with a pole at $z = 1 \epsilon$
- Q: How big can ϵ get before the effect becomes significant?

Effect of Finite Op Amp Gain Linear Theory

- Suppose that the amplifier has finite DC gain A. Define $\mu = 1/A.$
- To determine the effect on the integrator pole, let's look at our SC integrator with zero input:

ECE1371

3-7

3-9

3-10

Op Amp Gain Requirement Linear Theory

 According to the linear theory, finite op amp gain should not degrade the noise significantly as long as

$$A > (C_1 / C_2) (OSR / \pi)$$

- For our implementation of MOD2, in which $C_1/C_2 = 1/4$ and OSR = 500, this leads to A > 40 = 32 dB, which is quite a lax requirement!
- As OSR is decreased, the gain requirement goes down

3-11

ECE1371

Op Amp Transconductance Settling time

ECE1371

 \Rightarrow

$\tau = \mathbf{C}_{eff} / (\beta \mathbf{g}_m)$

3-13

Settling Requirements

- If g_m is linear, incomplete settling has the same effect as a coefficient error and thus g_m can be very low
- In practice, the g_m is not linear and we need to ensure nearly complete settling
- As a worst case scenario, let's require transients to settle to 1 part in 10⁵

This should be more than enough for -100 dBc distortion.

ECE1371

3-14

Settling Requirements (cont'd)

- If linear settling is allocated 1/4 of a clock period,
 - we want $\exp\left(-\frac{T/4}{\tau}\right) = 10^{-5}$, or $\tau = \frac{T}{4\ln 10^5} = 20$ ns and thus $\boldsymbol{g}_m = \frac{\boldsymbol{C}_{eff}}{\beta \tau} = \frac{\boldsymbol{C}_{eff}}{\beta} 4 \boldsymbol{f}_s \ln 10^5$
- For INT1 of our MOD2: ٠

$$C_{eff} = 0.5 \left(\frac{4p \cdot 1.33p}{4p + 1.33p} + 30f\right) = 0.5 \text{ pF}^*$$
$$\beta = 3/4$$
$$f_s = 1 \text{ MHz}$$
$$g_m = 30 \text{ } \mu\text{A/V}$$

*. 0.5 comes from the single-ended to differential translation. ECE1371 3-15

Slewing

The maximum charge transferred through C1 is

$$u_{p,max} = 0.5 V C1$$

$$q_{max} = C_1 \cdot 1V = 1.33 pC$$

$$v_{refn} = -0.5 V$$

• If we require the slew current to be enough to transfer q_{max} in 1/4 of a clock period, then

$$I_{slew} = \frac{q_{max}}{T/4} \approx 5 \ \mu A$$

ECE1371

3-16

Folded-cascode op-amp with switched-capacitor common-mode feedback

Op-Amp Design— Bias Current

Slew constraint dictates I >5 µA ٠

ECE1371

- Square-law MOSFET model: $g_{m1} = (2I_D)/(\Delta V)$ ٠
- $I_D = 5 \ \mu\text{A}, \ g_m \ge 30 \ \mu\text{A/V} \Rightarrow \Delta V \le 0.33 \ \text{V}$ Usually $\Delta V \approx$ 200 mV, so we should be able to get high enough g_m .

ECE1371

Transistor Sizes & Bias Point

Allowable swing is +0.6 V, -0.75 V

Simulated $g_m = 36 \mu A/V$, A = 48 dB g_m is high enough and the gain is 6× required.

Simulated Waveforms

ECE1371

P2 V 2.2

> 2 1.8

> 1.6

1.4 1.2 1

> .8 .6

v(x1p)

3-19

3-20

3-22

Ideal Common-Mode Feedback

Can use this circuit to speed up the simulation ٠

ECE1371

3-23

Expanded Waveforms P2 2.2 v(x1p) Slewing 1.8 1.6 1.4 Linear Settling 1.2 τ ~ 30 ns (Longer than expected) .8 .6 x1n 100 ns/div

0.5 µs/div

Simulated Spectrum

SC Common-Mode Feedback

Latched Comparator

Inverter thresholds are chosen so that the inverters respond only after R/S have resolved.

Falling phase 1 initiates regenerative action • S and R connected to a Set/Reset latch.

ECE1371

3-25

3-26

- If R_{sw} is constant, its has only a filtering (linear) • effect, which is benign
- Unfortunately, the on-resistance of MOS ٠ switches varies with V_{qs} (and hence V_{in})
- ⇒ Must make MOS switches large enough

ECE1371

3-27

- R_{sw} increases the settling time by a factor of $1 + 4g_m R_{sw}$
- Set $R_{sw} \le \frac{1}{40g_m}$ - to make the increase in τ small
- So in our MOD2, we want $R_{sw} \le 0.75$ k Ω . BTW, my simulation used $R_{sw} = 1 \text{ k}\Omega$ and was OK.

ECE1371

NLCOTD: Non-Overlapping Clock Generator

State Diagram

Truth Table

0	0	1	0	1
1	0	1	0	0
1	0	0	1	0
1	1	0	1	0
0	1	0	0	0
0	0	0	0	1

ECE1371

3-28

Non-Overlapping Clock Generator

3-32

Clocking Details— Early/Late Phases

- Charge injected via M1 is (non-linearly) signaldependent, whereas charge injection from M2 is signal-independent
- $\Rightarrow~$ Open M2 (early) then open M1 (late) so that charge injected from C_{gs1} cannot enter C1

ECE1371

3-33

Clocking Details— Bottom-plate sampling

- Parasitic capacitance on the right terminal of C1 degrades the effectiveness of early/late clocking
- C_p for the top plate is smaller, so use the top plate for the right terminal and the bottom plate for the left

ECE1371

3-34

Complementary Clock Alignment

- We need complementary clocks if transmission gates are used for the switches
- Q: How do we align them?
- A: Carefully size the inverters relative to their capacitive loads, or use a transmission gate to mimic an inverter delay:

Professional Clock Generator

• To maximize the time available for settling, make the early and late phases start at the same time

3-35

Review: Implementation Summary

- \checkmark 1 Choose a viable SC topology and manually verify timina
- ✓ 2 Do dynamic-range scaling
- ✓ 3 Determine absolute capacitor sizes
- ✓ 4 Determine op-amp specs and construct a transistor-level schematic Verify. Verify. Verify.
 - 5 Layout, fab, debug, document, get customers, sell by the millions, go public, ... This last step is an "exercise for the reader."

ECE1371

3-37

3-39

Topological Variant– Feed-Forward

- + Output of first integrator has no DC component Dynamic range requirements of this integrator are relaxed.
- Although $|STF| \approx 1$ near $\omega = 0$, |STF| = 3 for $\omega = \pi$ Instability is more likely.

ECE1371

3-38

Topological Variant-Feed-Forward with Extra Feed-In

- + No DC component in either integrator's output Reduced dynamic range requirements in both integrators, esp. for multi-bit modulators.
- + Perfectly flat STF No increased risk of instability.
- Timing is tricky

ECE1371

Error Feedback ,E

Topological Variant-

- + Simple
- Very sensitive to gain errors Only suitable for digital implementations.

ECE1371

3-40

Is MOD2 The Only 2nd-Order Modulator?

Internal states, sensitivity, thermal noise etc. can differ from realization to realization

BUT, in terms of input-output behavior,

A 2nd-order modulator is truly different only if it possesses a truly different (2nd-order) NTF

SNR vs. Amp Comparison

MOD2 Internal Waveforms Input @ 75% of FS

MOD2b Internal Waveforms

Gain of a Binary Quantizer

- The effective gain of a binary quantizer is not known a priori
- The gain (*k*) depends on the statistics of the quantizer's input
 - Halving the signal doubles the gain.

3-47

ECE1371

Gain of the Quantizer in MOD2

 The effective gain of a binary quantizer can be computed from the simulation data using

$$k = \frac{E[|y|]}{E[y^2]}$$
 [S&T Eq. 2.5]

- For the simulation of 1-35, k = 0.63
- $k \neq 1$ alters the NTF:

$$NTF_{k}(z) = \frac{NTF_{1}(z)}{k + (1 - k)NTF_{1}(z)}$$

ECE1371

Homework #3

- 1 Design amplifiers for your MOD2 of Homework #2 and verify your ADC. Use $f_s = 10$ MHz. You may assume ideal comparator, switches, biasing and common-mode feedback.
- 2 Using your MOD2 model from Homework #1, compute and plot the effective gain of the quantizer as a function of the DC input. Also compare the simulated spectrum for MOD2 with the "predicted" spectrum for a -3-dBFS sine-wave.
- 3 Bonus: Create a circuit which generates 3 nonoverlapping phases of width ~T given a clock of period T. See if you can do the same for a clock of period 2T.

Demonstrate that your circuit works in simulation.

ECE1371

Variable Quantizer Gain

- When the input is small (below –12 dBFS), the effective gain of MOD2's quantizer is *k* = 0.75
- MOD2's "small-signal NTF" is thus $NTF(z) = \frac{(z-1)^2}{z}$

$$\frac{1}{z^2 - 0.5z + 0.25}$$

• This NTF has 2.5 dB less quantization noise suppression than the $(1 - z^{-1})^2$ NTF derived from the assumption that k = 1

Thus the SQNR should be about 2.5 dB lower than \times .

 As the input signal increases, k decreases and the suppression of quantization noise degrades SQNR increases less quickly than the signal power. Eventually the SQNR saturates and then decreases as the signal power reaches full-scale.

ECE1371

3-49

3-51

3-53

What You Learned Today And what the homework should solidify

- 1 Transistor-level implementation of MOD2 op-amp, SC CMFB, comparator, clock generator
- 2 MOD2 variants
- 3 Variable quantizer gain

ECE1371

3-52

3-50

Op Amp Gain Requirement Nonlinear Theory 1

• MOD2 has a "deadband" around *u* = 0 whose width is approximately

$$\frac{0.5(a_1c_1)+a_2}{A^2} = \frac{0.5((1/3)\cdot(1/3))+(1/9)}{A^2} = \frac{1}{6A^2}$$

• To make the deadband less than 1 "LSB" wide,

$$\frac{1}{6A^2} < undbv(-100) = 10^{-5},$$

or $A > 400 = 52 \text{ dB}$

• Since we didn't need so much gain to get excellent AC performance, this calculation looks like it is conservative

Op Amp Gain Requirements Nonlinear Theory 2

- Finite DC gain \Rightarrow incomplete charge transfer
- The gain is a nonlinear function, so the residual charge is nonlinearly related to the output voltage of the amplifier The residual charge is akin to noise.
- However, if the amplifier output contains signal components, then nonlinear gain can result in harmonic distortion The feedforward topology is known to yield low distortion even when the amplifier gain is low.
- The effects are difficult to quantify analytically, and so we typically rely on simulations

ECE1371

ECE1371