## ECE1371 Advanced Analog Circuits Lecture 4

# PIPELINE AND SAR ADCS 

Richard Schreier
richard.schreier@analog.com
Trevor Caldwell
trevor.caldwell@utoronto.ca

## Course Goals

- Deepen Understanding of CMOS analog circuit design through a top-down study of a modern analog system

The lectures will focus on Delta-Sigma ADCs, but you may do your project on another analog system.

- Develop circuit insight through brief peeks at some nifty little circuits

The circuit world is filled with many little gems that every competent designer ought to recognize.

| Date | Lecture |  |  | Ref | Homework |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2008-01-07 | RS | 1 | Introduction: MOD1 \& MOD2 | S\&T 2-3, A | Matlab MOD2 |
| 2008-01-14 | RS | 2 | Example Design: Part 1 | S\&T 9.1, J\&M 10 | Switch-level sim |
| 2008-01-21 | RS | 3 | Example Design: Part 2 | J\&M 14, S\&T B | Q-level sim |
| 2008-01-28 | TC | 4 | Pipeline and SAR ADCs | J\&M 11,13 | Pipeline DNL |
| 2008-02-04 | ISSCC - No Lecture |  |  |  |  |
| 2008-02-11 | RS | 5 | Advanced $\Delta \Sigma$ | S\&T 4, 6.6, 9.4, B | $\Delta \Sigma$ Toolbox; Proj |
| 2008-02-18 | Reading Week - No Lecture |  |  |  |  |
| 2008-02-25 | RS | 6 | Comparator and Flash ADC | J\&M 7 |  |
| 2008-03-03 | TC | 7 | SC Circuits | J\&M 10 |  |
| 2008-03-10 | TC | 8 | Amplifier Design |  |  |
| 2008-03-17 | TC | 9 | Amplifier Design |  |  |
| 2008-03-24 | TC | 10 | Noise in SC Circuits | S\&T C |  |
| 2008-03-31 | Project Presentations |  |  |  |  |
| 2008-04-07 | TC | 11 | Matching \& MM-Shaping |  | Project Report |
| 2008-04-14 | RS | 12 | Switching Regulator |  | Q-level sim |

## NLCOTD: Startup Circuit

- Example: Integrator in reset mode

Output tied to input, 2-stage OpAmp
If output CM of $A_{1}$ is low, output $C M$ of $A_{2}$ is high, everything turns off


How do we keep this from turning off during reset?

# Highlights <br> (i.e. What you will learn today) 

1. Review of ADC performance limitations
2. Basic operation of Pipeline ADCs
3. Basic operation of Successive Approximation ADCs
4. Fundamental trade-offs in ADCs

Bandwidth, Resolution and Power
Figures of Merit

## Review

- Performance Limitations in ADCs

Offset Error
Gain Error
Integral Nonlinearity (INL) Error
Differential Nonlinearity (DNL) Error
Sampling Time Uncertainty
Missing Codes
Conversion Time and Sampling Rate

## Offset and Gain Errors

- Look at transition points of input analog voltage $\mathrm{V}_{0 . . .01}$ is transition from 0 to 1 in output code
- Offset Error

$$
E_{\text {off }}=\frac{V_{0 . .01}}{V_{L S B}}-\frac{1}{2} L S B
$$

- Gain Error

$$
E_{\text {gain }}=\left(\frac{V_{1 \ldots 1}}{V_{L S B}}-\frac{V_{0 . . .01}}{V_{L S B}}\right)-\left(2^{N}-2\right)
$$



## INL and DNL Errors

- Remove Offset and Gain errors before finding INL and DNL error
- INL Error

Deviation from straight line

- DNL Error

Transition values should be 1 LSB apart
Error is deviation from 1 LSB


Differentiate INL Error

## Sampling Time Uncertainty



$$
V_{I N}=\frac{1}{2} \sin \left(2 \pi f_{I N} t\right)
$$

- Error occurs with uncertainty in sampling time Worst case at maximum slope of input signal

$$
\left.\frac{\Delta V}{\Delta \boldsymbol{t}}\right|_{\max }=\pi \boldsymbol{f}_{I N}
$$

For error less than 1 LSB

$$
\Delta t<\frac{1}{2^{N} \pi t_{I N}}
$$

## Other Limitations

- Missing Codes

Digital output code never occurs
Guaranteed not to happen if $\max (D N L)<1$ LSB or $\max ($ INL $)<0.5 L S B$

- Conversion Time and Sampling Rate

Conversion Time: time for a single measurement, includes latency of converter
Sampling Rate: maximum rate where samples can be continuously converted; not always the inverse of conversion time

## Comparison: Nyquist vs $\Delta \Sigma$ ADCs

- Larger bandwidth in Nyquist rate ADCs

Oversampling costs bandwidth, increases accuracy

- Nyquist ADC uses entire output spectrum
- Noise in $\Delta \Sigma$ primarily important in signal band Larger out-of-band shaped noise gets filtered
- Nyquist ADC digital output has one-to-one correspondence with a single input value
$\Delta \Sigma$ ADCs have memory, and the output is not simply a function of a single input


## Pipeline ADC

- Each stage quantizes the amplified quantization error signal from the previous stage
- Higher throughput, lower complexity



## Digital Outputs

- Binary weight and add digital outputs of each stage
- Example: 10-bit ADC 8 stages with 1.5-bit per stage, 2-bit final stage
$D_{1 . . .8}=\{-1,0,1\}, D_{9}=\{-1.5,-0.5,0.5,1.5\}$
$D_{\text {out }}=D_{1} 2^{8}+D_{2} 2^{7}+D_{3} 2^{6}+D_{4} 2^{5}+D_{5} 2^{4}+D_{6} 2^{3}+D_{7} 2^{2}+D_{8} 2^{1}+D_{9} 2^{0}$

1024 output levels: 10-bit converter
1-bit per stage x 8 stages + 2-bit final stage = 10 bits

## Sample Output Spectrum

- What is the SQNR?

Rectangular Window, $\mathrm{N}=2048=\mathbf{2 ~}^{11}$


## Gain and Quantization

- Using full range sensitive to offsets in A/D

Offset saturates input to subsequent stage


- Less sensitive to offsets

Fewer bits/stage, smaller gain to next stage


4-15

## Offset Errors

- Example: 3-bit ADC
1.5-bit stage followed by 2-bit final stage
$D_{1}=\{-1,0,1\}$
$\mathrm{D}_{2}=\{-1.5,-0.5,0.5,1.5\}$
$\mathrm{D}_{\mathrm{OUT}}=\mathrm{D}_{1} \mathbf{2}^{1+D_{2}} \mathbf{2}^{\mathbf{0}}$
- With an offset error, the outputs are the same Quantization error does not saturate the input to the subsequent stage


## Offset Errors

- Two Cases: No Offset; Offset present



## Error Sources



- Sub-ADC error doesn't matter
- DAC error and gain error cause discontinuity in transfer function

Signal dependent tones

- In a MASH, they increase noise


## Gain Error

- Example: Assume a gain error of 30\%



Sum the 2 curves assuming the residue $1.4 \mathrm{e}_{\mathrm{Q}}$ is quantized perfectly by the later stages


## DAC Error

- Example: Assume a DAC error of $\mathbf{\sim} \mathbf{2 0 \%}$


Sum the 2 curves assuming the residue is quantized perfectly by the later stages


## Pipeline and MASH $\Delta \Sigma$ ADC



## Motivation for SAR ADCs

- Many ADCs sample much faster (>1 MSPS) than needed for many applications

Industrial sensors
Power line measurements
Audio
Medical imaging

- Accuracy and power are the next priorities
- SAR ADCs are low power, and like any Nyquist rate ADCs, can be oversampled for improved accuracy


## Successive Approximation ADC

- ADC based on binary search algorithm



## DAC-based SAR ADC

- How do we implement this algorithm?
$D_{1}=1, D_{2 \ldots n}=0$, check $V_{D / A}$ against $V_{I N}$
If $V_{\text {IN }}>V_{D / A}, D_{1}=1$
If $\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DIA}}, \mathrm{D}_{1}=0$
Now try $D_{2}=1$, carry on...



## SAR Advantages

- Useful for signals from 1 Hz to 1 MHz

Internal clock must be faster than signal depending on the resolution

- Very accurate and power efficient

Less power with same resolution and bandwidth than other converters (see ISSCC)

- Does not need internal OpAmps

Only uses a single comparator

- Lower kT/C noise

No input referred noise from other stages

## SAR Algorithm

- Algorithm finds largest DAC value less than $\mathrm{V}_{\mathrm{IN}}$
- Every single bit acquired must be accurate to the resolution of the system

DAC linearity
Comparator Offset
S/H offset and linearity

- Comparator must respond to large changes

Large overdrive to 0.5 LSB in a single bit cycle period

## SAR Algorithm

- Bandwidth limitation

For N -bit resolution, N bit cycles are required, reducing the effective sampling frequency by $N$

- Comparison nodes must be quiet before comparator triggers


## Unipolar Charge-Redistribution SAR

1. Charge all caps to $\mathrm{V}_{\mathrm{IN}}\left(\mathrm{s}_{2}\right.$ on; $\mathrm{s}_{1}, \mathrm{~s}_{3}$ off)
2. Switch caps to ground, $\mathrm{V}_{\mathrm{x}}=-\mathrm{V}_{\text {IN }}\left(\mathrm{s}_{3}\right.$ on; $\mathrm{s}_{1}, \mathrm{~s}_{2}$ off)
3. Switch $s_{1}$ to $\mathrm{V}_{\mathrm{REF}}$, start bit cycling

Switch $D_{1}$ to $V_{\text {REF }}$, if $V_{x}$ negative then keep $D_{1}$ at $V_{\text {REF }}$
Find $V_{\text {REF }}$ weighting equivalent to $V_{\text {IN }}$


## Unipolar Charge-Redistribution SAR

- Extra capacitor C required for exact divide by 2
- DAC capacitor array serves as Sample-and-Hold
- Switching sequence is parasitic insensitive

Parasitic capacitors attenuate the signal on $\mathrm{V}_{\mathrm{x}}$ Better to keep capacitor bottom plates on the $\mathrm{V}_{\text {REF }}$ side (not the comparator side)

- Signed conversion with added $-V_{\text {REF }}$ input

If $\mathrm{V}_{\mathrm{x}}<0$ on step 2, proceed with $\mathrm{V}_{\text {REF }}$
If $\mathrm{V}_{\mathrm{x}}>0$ on step 2, use $-\mathrm{V}_{\mathrm{REF}}$, opposite comparison

## Speed Estimate of SAR

- Model RC network when $\mathrm{V}_{\mathrm{IN}}$ is charged

Replace switches with R's
Assume switches are sized proportional to capacitors


## Speed Estimate of SAR

- Speed limited by RC time constant of capacitor array and switches

$$
\tau_{e q}=\left(R_{s 1}+R_{s 2}+R / 2^{N}\right) 2^{N} C
$$

For better than 0.5 LSB accuracy

$$
e^{-T / \tau_{e q}}<\frac{1}{2^{N+1}}
$$

Sets minimum value for the charging time T

$$
T>0.69(N+1)\left(R_{\mathrm{s} 1}+R_{\mathrm{s} 2}+R / 2^{N}\right) 2^{N} C
$$

# What are the Fundamental Trade-offs among BW, DR and P? 

## DR-P Trade-Off: Part 1

- To increase DR at the expense of $P$, parallel two ADCs and average:

- Reduces noise by a factor of $\sqrt{ } 2: D R \uparrow 3 \mathrm{~dB}$, but uses twice the power: $\mathrm{P} \uparrow 3 \mathrm{~dB}$

Assumes arithmetic requires no power, noise sources are uncorrelated and the source can drive two ADCs.

## DR-P Trade-Off: Part 1b

- Can increase DR by 3 dB by reducing $\mathbf{T}$ by a factor of 2:

- But this also costs twice the power (based on thermodynamics)


## DR-P Trade-Off: Part 2

- To reduce $P$ at the expense of DR, "cut the ADC in half"

May not be practical if the ADC is already small, but if it can be done, $\mathrm{P} \downarrow 3 \mathrm{~dB} \& \mathrm{DR} \downarrow 3 \mathrm{~dB}$

- $\therefore$ For an ADC of some BW
$X d B$ in $D R$ costs $X d B$ in $P$,
or DR (in dB) - $10 \log 10(P)$ is a constant


## Q: Is This Trade-Off Optimal?

- A: Yes, because it is bi-directional

The fact that you can (in principal) go both ways for any ADC means that no other trade-off can exist for ADCs that are optimal.

- Consider a (supposedly) optimal ADC that can get more than 3 dB increase in DR for a doubling of $P$

Double $P$, then cut that ADC in half.
The resulting ADC has the same $P$ as the original, but more DR.

## What About BW?

- Reducing BW by a factor of 2 increases DR by 3 dB but leaves $P$ alone

Assuming the noise is white (distortion is not dominant) and that digital filtering takes no power.

- Time-interleaving two ADCs doubles BW and doubles $P$, but leaves DR unchanged

Assumes that interleaving is perfect (can be calibrated with no extra power).
I/Q processing also doubles BW \& P @ same DR.

- In these examples,

DR (in dB) + 10log10(BW/P) is a constant

## Resulting FOM

$$
F O M=(D R)_{d B}+10 \log _{10} \frac{B W}{P}
$$

- For a given FOM, factors of 2 in BW or P are equivalent to a 3 dB change in DR
- Should really include T, but since T is usually assumed to be 300K, omit it

Steyaert et al. $F O M=\frac{4 k T D D R \square 2 B W}{P}$

## Oversampled vs. Nyquist Rate

- For switched-capacitor design, assume power is dominated by kT/C noise
- Assume power is dominated by $1^{\text {st }}$ stage

In $\triangle \Sigma$ ADCs, this is usually more accurate
In Pipeline ADCs, more noise is from the later stages

- Which is more power efficient?

For the same resolution and speed, oversampled operates $\mathbf{N}$ times faster, capacitor is $\mathbf{N}$ times smaller
$\therefore$ Power is the same
It is the 'little things' (biasing, clocks, stage sizing, OpAmp gain, architecture) that make a big difference

## Common FOM

$$
F O M=\frac{P}{2 B W \square 2^{E N O B}}
$$

- Units of Joules per Conversion Step
$P$ in J/s, BW in 1/s, $2^{\text {ENOB }}$ in conversion steps
- Fundamentally incorrect:

1 extra bit costs $2 \times P$, instead of $4 \times P$
1 extra bit means noise is reduced by 6 dB , which requires 4 parallel ADCs, not 2

- Favours lower resolution ADCs


## Common FOM

- Example: OTA dominated by thermal noise SNR = Signal Power / Noise Power

Reduce noise power by 6 dB to get 1 more bit Noise Power proportional to 1/C

To reduce noise power by 6 dB , or $4 x$, we need to increase $C$ by 4
Keep $V_{\text {EFF }}$ and BW ( $g_{m} / C$ ) constant
Increase $I_{D}$ and $W$ by 4 (like 4 OTAs in parallel)
OTA power increased by 4
$\therefore 4 x$ power required for 1 extra bit Inconsistent with 'Common FOM’

## FOM vs. BW



## NLCOTD: Startup Circuit

How do we keep this from turning off during reset?


## Homework

1. Determine analytically the allowable gain error for the $1^{\text {st }}$-stage of a 1.5 bit/stage 10-bit pipeline ADC so that the DNL error is less than
a) 2 LSB
b) 0.5 LSB

Now simulate the pipeline in MATLAB to do the following:
2. Plot the DNL error for both cases.
3. Plot the output spectrum for both cases with a full-scale sine wave input.
4. What is the SNDR and what did you expect it to be for both cases?

## What You Learned Today

1. ADC performance limitations
2. Basic operation of Pipeline and Successive Approximation ADCs
3. Gain Errors in Pipeline ADCs (Homework)
4. Fundamental trade-offs between BW, DR and $P$ and ADC FOMs

## Projects (1)

List of $\Delta \Sigma$ projects...
(Choose OSR, order, cascaded/single-loop)

- 40MS/s 12-bit $\Delta \Sigma$ Modulator
- 2.2MS/s 14-bit $\Delta \Sigma$ Modulator
- 24kS/s 18-bit $\Delta \Sigma$ Modulator

List of Pipeline projects...

- 50MS/s 14-b Pipeline ADC
- 200MS/s 10-b Pipeline ADC


## Projects (2)

More interesting projects...

- 25MS/s, $5^{\text {th }}$-order, 14-b $\Delta \Sigma$ Modulator

Balmelli, JSSC Dec. 2004 (OSR=8,f $\mathrm{f}_{\mathrm{s}}=200 \mathrm{MHz}$ )

- 22-bit incremental (resetting $\Delta \Sigma$ ) ADC

Quiquempoix, JSSC July. 2006 ('OSR'=2048, 15 S/s)

- 13-b Audio $\Delta \Sigma$ using Switched-RC integrators Ahn, JSSC Dec. 2005 (OSR=64,f $\mathrm{f}_{\mathrm{s}}=3.1 \mathrm{MHz}, 0.6 \mathrm{~V}$ supply)
- 10-b 200MS/s Pipeline ADC with amplifier sharing

Kurose, JSSC July. 2006 (two channels, I \& Q)

## Projects (3)

High-Speed Continuous-Time $\Delta \Sigma$ projects...

- $640 \mathrm{MHz}, 12$-bit, continuous-time $\Delta \Sigma$

Mitteregger, JSSC Dec. 2005 (OSR=16, $3^{\text {rd }}$-order)

- $300 \mathrm{MHz}, 11$-bit, continuous-time $\Delta \Sigma$

Paton, JSSC July 2004 (OSR=10, $4^{\text {th }}$-order)

Other projects...
Feel free to propose projects for approval.

